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Abstract: Premise selection and ranking is a pressing problem for applications of automated reasoning to large formal
theories and knowledge bases. Smart selection of premises has a significant impact on the efficiency of auto-
mated proof assistant systems in large theories. Despite this, machine-learning methods for this domain are
underdeveloped. In this paper we propose a general learning algorithm to address the premise selection prob-
lem. Our approach consists of simultaneous training of multiple predictors that learn to rank a set of premises
in order to estimate their expected usefulness when proving a new conjecture. The proposed algorithm ef-
ficiently constructs prediction functions and can take correlations among multiple tasks into account. The
experiments demonstrate that the proposed method significantly outperforms algorithms previously applied to
the task.

1 INTRODUCTION

Over the last two decades, the body of formally ex-
pressed knowledge has grown substantially. Formal
mathematics is becoming increasingly well-known,
used, and experimented with (Hales, 2008). Projects
like the formal proof of the Kepler Conjecture (Fly-
Speck) (Hales, 2005), the formal proof of the Four
Color Theorem (Gonthier, 2008), verification of tiny
(but real) operating systems (Klein et al., 2009), and
the increased use of proof assistants for software
and hardware verification (D’Silva et al., 2008) are
stimulating the development of interactive verifica-
tion tools and interactive theorem provers (ITPs), and
the growths of the libraries of formal proofs, defini-
tions, and theorems. Linked to this is the development
of strong automated theorem provers (ATPs), which
are used either independently to solve hard prob-
lems in suitable domains (McCune, 1997; Phillips
and Stanovsky, 2008), or assisting the interactive tools
(Urban, 2006; Meng and Paulson, 2008; Hurd, 2003;
Urban and Sutcliffe, 2008). In the usual setting, the
ATP is given a set of premises and a conjecture. The
ATP then has to prove that the conjecture is a logical
implication of the premises; or show that this isn’t the
case. In general, the more premises a problem has, the
bigger the search space for the ATP and the harder it
is to find a proof.

With the continuing growth of formal knowledge
bases, the selection of relevant knowledge, when one

is presented with a new conjecture that needs to
be proven, becomes a concrete and pressing task.
Providing good solutions to this problem is impor-
tant both for mathematicians, and for existing ATPs
which typically cannot be successfully used directly
with hundreds or thousands of axioms. Experiments
with large theory benchmarks like the MPTP Chal-
lenge1, or the LTB (Large Theory Batch) division of
the CASC competition(Sutcliffe and Suttner, 2006),
showed that smart selection of relevant knowledge
can significantly boost the performance of ATPs in
large domains (Urban et al., 2008; Urban et al., 2010).

Premise selection for automated theorem proving
can be seen as a ranking problem: Given a rank-
ing for a large set of premises, the ATP can try to
prove the conjecture by using only the highest ranked
premises. Several attempts to solving this problem
have been made (e.g. (Urban et al., 2010; Roederer
et al., 2009)). However, no state-of-the-art machine
learning techniques have been used.

In this paper, we develop new learning methods
for the selection of premises of new conjectures in
large formal theories. We apply our methods to avail-
able large libraries of formal proofs and compare
them with already existing algorithms.

1http://www.tptp.org/MPTPChallenge
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1.1 Formulation of the Problem as a
Machine-learning Task

Informally, we have to solve the following prob-
lem: Given a large knowledge base P of hundreds
of premises and a conjecture x, find the premises
Px that are most relevant for proving x. Note that
this can be seen as a multi-label classification prob-
lem where conjectures would correspond to examples
and premises to labels (Tsoumakas et al., 2010). We
present two different ways to approach this problem:

Let G be the set of all first order formulas over a
fixed countable alphabet, X = fxi j 1� i� ng � G be
the set of conjectures, P = fp j j 1 � j � mg � G be
the set of premises, and Y : X �P ! f0;1g be the
indicator function such that yxi;p j = 1 if p j is used to
prove xi and yxi;p j = 0 if p j is not used to prove xi.

Binary Classification. For each premise p 2 P we
can construct a dataset Dp = f(x;yx;p) j x2X g. Based
on Dp, a suitable algorithm can learn a classifier
Cp(�) : G! R which, given a formula x as input, can
predict whether the premise p is relevant for proving
x. Typically, classifiers give a graded output. Having
learned classifiers for all premises p 2 P , the clas-
sifier predictions Cp(x) can be ranked: the premises
that are predicted to be most relevant will have the
highest output Cp(x). This approach to premise selec-
tion/ranking is proposed in (Tsivtsivadze et al., 2011).

Multi-output Ranking. We can also consider the
above problem as a label ranking task (see e.g.
(Fuernkranz and Huellermeier, 2011)): We assume
that for every conjecture x, there is a transitive, asym-
metric preference relation �x� P �P such that for
all p;q 2 P p �x q if and only if q is more relevant
for proving x than p. The goal is to predict this re-
lation. For each conjecture, we are given the output
vector yx = (yx;p1 ; : : : ;yx;pm). Note that due to the na-
ture of our data we are concerned with bipartite rank-
ing (Agarwal, 2005), but the formulation stands for
real-valued yx;p as well. If we consider a matrix of di-
mension n�m constructed with the output vectors of
all conjectures in the dataset, predicting each column
corresponds to a single classification task as described
above.

Finally, the training set can be written as D =
f(x;yx) j x 2 X g. Given the training set, our task is
to find a ranking function f : G! Rm such that for
each conjecture x 2 X the ranking � f (x)� P �P in-
duced by the function f is a good “prediction” of the
true preference relation �x� P �P .

Differences to the Standard Ranking Setting. It is
interesting to note that the ranking problem described
above is somewhat different to standard ranking prob-
lems that are frequently encountered in information
retrieval, bioinformatics, natural language processing,
and many other domains. For example, a common
task in information retrieval is document ranking task.
Given a query we are interested in predicting the rank-
ing of some set of retrieved documents for the par-
ticular query. Drawing a parallel with the premise
selection task, given a conjecture we are interested
in determining a ranking of the premises so that the
premises that are most useful are ranked on top. How-
ever, there is a crucial difference: The datasets for
document ranking tasks (e.g. LETOR dataset2) con-
tain feature representations of the query and the doc-
uments as well as their rankings, while in our dataset
only feature representations of the conjectures and the
appropriate rankings of the premises (but not their
feature representations) are available3.

Therefore, the approach we take in the next sec-
tion can be informally summarized as follows. We
aim to determine the ranking of the set of premises for
a particular conjecture. However, because no feature
representation of the premises is available for learn-
ing we instead solve the problem by determining how
useful a particular premise is to prove a conjecture.
Once that score (rank) is determined we can induce a
total order over the set of premises that can be used to
prove the conjecture.

1.2 Organization

The remainder of the paper is organized as follows:
Section 2 describes the developed kernel algorithm
and the algorithms that have already been used in this
setting. An evaluation of the different methods can be
found in section 3. We discuss the results of the ex-
periments in section 4. In section 5, we argue about
the significance and the impact of this work. Finally,
a conclusion is presented in section 6.

2 ALGORITHMS

In this section we present our framework for multi-
output ranking for premise selection as well as two
algorithms that have already been used for this prob-
lem. We will compare all introduced algorithms in the
experiments.

2http://research.microsoft.com/users/tyliu/LETOR/
3One example for such a problem is the cross-

verification of a single proof within a large library where
we do not have access to the imported theorems.
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2.1 Multi-output Ranking

We propose a method for multi-output ranking
(MOR) that is a relatively straightforward extension
of the preference learning algorithm described in
(Tsivtsivadze et al., 2010). We also note that the algo-
rithm is a generalization of the multi-output regular-
ized least-squares method and is not specifically tied
to the automated reasoning domain. It can be applied
to various problems in bioinformatics (e.g. protein
ranking), information retrieval (e.g. collaborative fil-
tering), natural language processing (e.g. parse rank-
ing), etc.

Our method is based on the regularized least-
squares (RLS) (Rifkin et al., 2003) algorithm. This
choice is motivated by the fact that RLS has been
shown to perform comparably to state-of-the-art su-
pervised learning algorithms (e.g. SVM) (van Gestel
et al., 2004; Zhang and Peng, 2004) and has several
computational advantages, e.g. the fact that it can be
efficiently extended to handle multiple output predic-
tion problems. The standard version of the RLS al-
gorithm can be considered as as special case of the
following regularization problem known as Tikhonov
regularization (for a more comprehensive description,
see e.g., (Poggio and Smale, 2003)):

min
f

n

å
i=1

l( f (xi);yi)+lk fk2
k ; (1)

where l is the loss function used by the algorithm,
f : X ! R is a prediction function, l 2 R+ is a reg-
ularization parameter, and k � kk is a norm in a Re-
producing Kernel Hilbert Space (RKHS) (Schoelkopf
et al., 2001) defined by a positive definite kernel func-
tion k. The loss function used with RLS for regression
problems is defined as l( f (x);y) = (y� f (x))2: When
we restrict the prediction function f to be an element
of

F =
�

f 2 RG j f (x) =
¥

å
i=1

bik(x;zi);bi 2 R;

zi 2 G;k fkk < ¥
	
:

(2)

then, by the Representer Theorem (see e.g.,
(Schoelkopf et al., 2001)), the minimizer of equation
(1) has the following form:

f (x) =
n

å
i=1

aik(x;xi); (3)

where ai 2R for 1� i� n and k is the kernel function
associated with the RKHS mentioned above.

We can also consider a loss function that considers
pairs.

This can be further specified by defining a rele-
vance matrix W 2 Rn�n for the data points. For ex-
ample, we could have that [W ]i; j = 1 for the differ-
ence between the predictions for xi;x j if they are rel-
evant for the learning task and 0 otherwise (Tsivtsi-
vadze et al., 2010). We get the following problem:

min
f2F

n

å
i; j=1

[W ]i j((yi� y j)� ( f (xi)� f (x j))
2 +lk fk2

H

(4)
Instead of simply regressing the scores, our ex-

tension of the algorithm predicts pairwise preferences
among the output. We also show how to take infor-
mation about relevant data points that is shared across
multiple rankings into account. For all p 2 P let
fp 2 F be a prediction function and let Wp be a rel-
evance matrix. We write the minimization problem
as

min
fp1 ;:::; fpm

m

å
i=1

n

å
k; j=1

[Wpi ]k j((yxk;pi � yx j ;pi)

�( fpi(xk)� fpi(x j)))
2 +lk fpik

2
H :

(5)

Since we consider all conjecture pairs as relevant,
we have that [Wpi ]k j = 1 for all pi 2 P ;1 � j;k �
n. Using the Representer Theorem we know that
each prediction function fp can be written as fp(x) =
å

n
i=1 ai;pk(x;xi). Let A = (ai;p)i;p with 1 � i � n; p 2

P , i.e. A is the matrix where each column con-
tains the parameters of one premise classifier , K =
(k(xi;x j))i; j;1 � i; j � n be the kernel matrix and let
Y = (yx;p)x;p;x 2 X ; p 2 P . Similar to (Tsivtsivadze
et al., 2010), we can rewrite the minimization prob-
lem in matrix notation as

min
A

tr
�
(Y �KA)tL(Y �KA)+lAtKA

�
; (6)

where L is the Laplacian matrix of the graph defined
by the relevance matrix W . To minimize (5), we take
the derivative with respect to A:

¶

¶A
tr
�
(Y �KA)tL(Y �KA)+lAtKA

�
=�2KL(Y �KA)+2lKA
=�2KLY +(2KLK +2lK)A

(7)

We set the derivative to zero and solve with respect to
A:

A = (KLK +lK)�1KLY (8)

= (LK +lI)�1LY (9)

The last equality follows from the strict positive defi-
niteness of K 2 Rn�n.

It is interesting to note that a special case of our
algorithm corresponds to multi-output regression, that
is when L= I. In later sections we refer to the learning
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algorithm where L is constructed from W as MOR-
ALLPAIRS and use the naming MOR-REGRESSION
when L = I.

Using a square loss function leads to an efficient
multi-output ranking solution, namely we obtain pre-
dictions for each output by inverting the kernel ma-
trix only once and therefore the complexity of the al-
gorithm is hardly increased compared to a standard
single output problem.

2.2 SNoW

SNoW (Sparse Network of Winnows) is a machine
learning toolkit (Carlson et al., 1999) which is used in
the MaLARea (Urban et al., 2008) system. MaLARea
using SNoW in naı̈ve Bayes mode is currently 1.3
times stronger on the large-theory division of the
MPTP Challenge benchmark4 than other automated
reasoning systems and meta systems.

SNoW is used mainly for natural language pro-
cessing tasks, and is designed to work efficiently in
domains where the number of features and targets is
very large, which is useful for large theories with their
large numbers of symbols and premises. SNoW im-
plements several learning algorithms (Winnow, Per-
ceptron, Naı̈ve Bayes), and also comes with a pre-
processor for efficient emulation of some first-order
learning methods. An earlier preliminary evalua-
tion of the machine learning methods available in the
SNoW toolkit suggested using naı̈ve Bayesian learn-
ing.

The setup for the training of SNoW is to select
some suitable features characterizing the conjectures,
and to try to learn the association of such features with
the premises occurring in their proofs. The output fea-
tures are the premises used in the proof of the conjec-
ture, in particular, their ranking given by the activa-
tion weights.

2.3 APRILS

APRILS is a ranking method which was used in the
Divvy system (Roederer et al., 2009). APRILS is
based on Latent Semantic Analysis (LSA), a tech-
nique for analyzing the relationships between docu-
ments, using the terms they contain (Deerwester et al.,
1990).

LSA is used to compute the relevance of premises
to a conjecture by treating the formulas as documents,
and the predicate and function symbols as the terms
they contain. The computation of premise relevance

4http://www.tptp.org/MPTPChallenge/

using LSA is a three step process. First, a relation-
ship strength between every pair of symbols is com-
puted. An initial relationship strength is computed
based on the co-occurrences of the symbols in the for-
mulas, and the total number of formulas containing
the symbols. The final relationship strength is com-
puted by repeatedly combining the existing relation-
ship strength with the relationship strengths between
each of the two symbols and each other symbol, i.e.,
taking into account transitive relationships between
symbols. Second, a relationship strength vector is
computed for each formula. The vector has an entry
for each symbol. A symbol’s entry is the sum, across
all other symbols, of the product of the relationship
strength between the two symbols, and the number
of occurrences of the other symbol in the formula (so
that other symbols that do not occur in the formula
make no contribution to the vector entry). Finally, the
relevance of each premise to the conjecture is com-
puted as the dot product of their symbol relationship
strength vectors.

3 EXPERIMENTS

In this section, we compare the rankings obtained
from MOR-REGRESSION, MOR-ALLPAIRS, SNoW
and APRILS. Our experiments are conducted on three
subsets of the Mizar mathematical library (MML)5.
We note that the MML was recently used to evaluate
the performance of ATP systems6. An implementa-
tion of the MOR algorithm in Python, and all datasets
are freely available at the authors website.

Each subset consists of several examples (conjec-
tures). For each conjecture we are given a bipartite
ranking of all premises, where the premises which
were used in the proof of the conjecture have rank
1, and the premises that were not used in the proof
have rank 0. We randomize the complete dataset and
use 90% for training and reserve 10% for testing pur-
poses. The goal is to learn to predict the ranking of
the premises for the unseen examples (conjectures).

In our experiments we use the following settings.
For simplicity and comparability of the results we

5The MML contains today over 1100 formal mathemat-
ical articles, covering a substantial part of standard under-
graduate mathematical knowledge. The library has about
50000 theorems, proved with about 2.5 million lines of
mathematical proofs. Such proofs often contain nontrivial
mathematical ideas, sometimes evolved over decades and
centuries of development of mathematics and abstract for-
mal thinking. It is available at http://www.mizar.org

6http://www.tptp.org
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choose the “bag of symbols” feature representation7

for SNoW and the MOR algorithms. The features
of a conjecture are the number of occurrences of the
symbols of the conjecture. I.e. the feature map f is
defined as f : G!Rn where n is the number of differ-
ent symbols in the whole data set (the cardinality of
the signature of G). Since APRILS only takes TPTP8

input, we use this representation for the APRILS ex-
periments.

As the kernel function, we use the so-called Gaus-
sian kernel (Shawe-Taylor and Cristianini, 2004)
which is parameterized by a single parameter s. It
is defined as

k(x;x0) =exp
�
� 1

2s2 (hf(x);f(x)i

�2hf(x);f(x0)i+ hf(x0);f(x0)i)
� (10)

with h�; �i being the normal dot product on Rn.
The kernel algorithm uses a 10-fold cross-

validation on the training set to select the optimal pa-
rameters l, s. Once the parameters are estimated we
train the algorithm on the complete training set and
evaluate the performance on the test set. SNoW is
used in naı̈ve Bayes mode. APRILS has no parame-
ters.

Finally, to compute the performance of an al-
gorithm we create 100 randomized copies of each
dataset. Each copy is split into a test (90%) and a
training (10%) part. The AUC performance of the al-
gorithm on a copy is the average of the AUC of the
conjectures in the test set. The final performance is
the average AUC performance over all 100 copies.

3.1 Performance Metrics

We present the performance measures used in the ex-
periments.

3.1.1 AUC

Our basic performance measure is the AUC (see e.g.
(Cortez and Mori, 2004)) - the area under the ROC
curve. It can be interpreted as the probability that,
given a randomly drawn positive example and a ran-
domly drawn negative example, the decision function
assigns a higher value to the positive example. Values

7It has been demonstrated that suitable feature represen-
tation can significantly boost the performance of existing
ATP techniques in large domains (Urban et al., 2008). Con-
structing an appropriate feature space for the learning al-
gorithm is an important and relevant task, which is outside
of the scope of this paper. We refer to (Tsivtsivadze et al.,
2011) for the discussion on feature representations that have
been previously used in automated reasoning systems.

8http://www.cs.miami.edu/�tptp/TPTP/SyntaxBNF.html

closer to 1 show better performance. The AUC mea-
sure is appropriate for evaluating the performance of
bipartite rankings.

Formally, let c be a classifier, x1; ::;xn be the out-
put of c on the positive examples and y1; ::;ym be the
output on the negative examples. Then, the AUC of c
is

AUC(c) =
å

n
i å

m
j 1xi>y j

mn
(11)

where 1j = 1 iff j is true and zero otherwise.

3.1.2 Wilcoxon Signed-ranks

We use the Wilcoxon signed-ranks test (Wilcoxon,
1945) to test whether the AUC difference between
two algorithms is statistically significant. The
Wilcoxon signed-ranks test is a non-parametric sta-
tistical hypothesis test which ranks the differences in
performance of two classifiers for each data set, ignor-
ing the signs, and comparing the ranks for the positive
and negative differences. The exact definition is as
follows:

Let c1
i and c2

i denote the performance scores of
the two classifiers on the i� th of N data sets, and
let di = c1

i � c2
i denote the difference. We rank the

differences according to their absolute values. In case
of a tie, average ranks are assigned. Let

R+ = å
di>0

rank(di)+
1
2 å

di=0
rank(di) (12)

R� = å
di<0

rank(di)+
1
2 å

di=0
rank(di) (13)

and
T = min(R+;R�) (14)

For large values of N, the statistics

z =
T � 1

4 N(N +1)q
1
24 N(N +1)(2N +1)

(15)

is distributed normally. With a = 0:05 we can assume
that the ranking differences are not coincidental if z <
�1:96 (Demšar, 2006).

3.2 Datasets

The evaluation is done on three datasets extracted
from the large Mizar Mathematical Library using the
MPTP system.

3.2.1 The MPTP Challenge Dataset

The MPTP Challenge is a MPTP-based benchmark
established for large-theory automated reasoning in

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

46



2006. This is a small subset (subtree) of the Mizar
library leading to the general topological proof of the
Bolzano-Weiestrass theorem (Bancerek et al., 2001)
(formulated generally in terms of nets instead of
countable sequences), and can be seen as the basic
benchmark for premise selections algorithms. Ear-
lier experiments have shown that learning over this
dataset significantly helps with premise selection for
ATP system (Urban et al., 2008).

The MPTP Challenge dataset consists of 211 con-
jectures. 341 different premises are used. The total
number of used premises is 1227 which gives an av-
erage of 5:82 used premises per conjecture.

Table 1: AUC Results for the MPTP Dataset.

Algorithm Av. AUC Std. Deviation

MOR-REGRESSION 0.85588 0.03457
MOR-ALLPAIRS 0.81466 0.03680

SNoW 0.78685 0.04663
APRILS 0.85478 0.02629

Table 1 shows the average AUC and the standard
deviation over 100 randomizations of all four algo-
rithms on the MPTP dataset. In figure 1, we see
the statistical significance of the results. Two algo-
rithms are connected by a bold line iff the differ-
ence in their AUCs is insignificant. In this example
the AUC difference between APRILS and the MOR-
REGRESSION is insignificant.

0:65 1:0
MOR-REG.
APRILS

SNoW
MOR-ALLP.

Figure 1: Comparison of the AUCs on the MPTP Dataset.

Figure 2 shows the detailed performance of the al-
gorithms on the MPTP dataset. The diagonal plots
show the histogram of the AUC performance on the
100 randomizations. The scatter plots show a pair-
wise comparison of the algorithms.

3.2.2 The Dataset of 370 Most used Mizar
Premises

This dataset was created in order to have the most bal-
anced positive/negative set of examples from MML.
Use of premises is generally quite sparse in mathe-
matics, leading generally to very unbalanced training
examples. This small dataset contains the premises
with the highest number of positive occurrences in
the MML, allowing experiments with methods that re-
quire reasonably balanced data.

This dataset consists of 351 conjectures with 525
different premises. The total number of used premises
is 2280, i.e. on average 6:50 used premises per con-
jecture.

Table 2: AUC Results for the 370 Dataset.

Algorithm Av. AUC Std. Deviation

MOR-REGRESSION 0.88868 0.02221
MOR-ALLPAIRS 0.84890 0.02809

SNoW 0.82823 0.03545
APRILS 0.85301 0.02194

Table 2 shows the average AUC and the standard
deviation over 100 randomizations of all four algo-
rithms on this dataset. In figure 3, we see the statis-
tical significance of the results. In this dataset, the
AUC difference between the MOR-ALLPAIRS and
APRILS is statistically insignificant.

3.2.3 The Trigonometric Dataset

This is a dataset suitable for testing methods working
with structural input features. The examples are cre-
ated from a number of Mizar theorems about trigono-
metric functions. These theorems very often contain
the same set of symbols, for example fsin;cos; tan;=
;p;+;�g, and they thus mainly differ in the term and
formula structure.

The trigonometric challenge dataset consists of
530 conjectures with a total of 1020 different
premises. There are 5705 used premises altogether,
which gives an average of 10:76 used premises per
conjecture. Due to the formula structure and the num-
ber of premises, this dataset can be seen as the ’hard-
est’ of the three.

Table 3: AUC Results for the Trigonometric Dataset.

Algorithm Av. AUC Std. Deviation

MOR-REGRESSION 0.93977 0.01181
MOR-ALLPAIRS 0.92964 0.01674

SNoW 0.77078 0.02166
APRILS 0.70676 0.02288

Table 3 shows the average AUC and the standard
deviation over 100 randomizations of all four algo-
rithms on the trigonometric dataset. In figure 4, we
see the statistical significance of the results. Here, all
AUC differences are statistically significant.

Figure 5 shows the detailed performance of the al-
gorithms on the trigonometric dataset. The diagonal
plots show the histogram of the AUC performance on
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Figure 2: The results of the MPTP experiments.

0:65 1:0
MOR-REG.
APRILS

SNoW
MOR-ALLP.

Figure 3: Comparison of the AUCs on the 370 Dataset.

0:65 1:0
MOR-REG.
MOR-ALLP.

APRILS
SNoW

Figure 4: Comparison of the AUCs on the trigonometric
Dataset.

the 100 randomizations. The scatter plots show a pair-
wise comparison of the algorithms.

4 DISCUSSION

On all three datasets, the MOR-REGRESSION al-
gorithm outperform previously used methods for
premise selection. While the performance of APRILS
is not satisfactory on the largest dataset, both MOR-
ALLPAIRS and MOR-REGRESSION perform better
the more training data is available. It can be observed
that SNoW performs quite well on the 370 dataset, but
its average AUC score decreases again in the trigono-
metric dataset. We think that one reason for the good
performance of the MOR-REGRESSION algorithm is

the suitable formulation and use of a non-linear ker-
nel function, namely a Gaussian kernel. We also note
that the MOR-ALLPAIRS approach is in many cases
inferior to MOR-REGRESSION. Apparently, ranking
premises on conjectures does not lead to better per-
formance when the final aim is to rank premises on
conjectures.

Furthermore, for estimating the ranking of all
premises the MOR algorithm requires time compa-
rable to training a single binary classifier. Formally,
given p binary classification tasks usually the training
time of the algorithm is multiplied by the number of
problems to be solved. For p < n, the by far most
computational demanding operation is the inversion
of the kernel matrix. However, training of the MOR
algorithm requires only O(n3) for p < n. This cor-
responds to the time necessary to train a single RLS
classification algorithm.

The AUC together with 100 randomizations and
the Wilcoxon Signed-Ranks test seems like a very rea-
sonable measure to compare different ranking algo-
rithms, but it would also be interesting to test whether
high AUC scores actually translate to better ATP per-
formance. First experiments show that this is indeed
the case. Experimentally, we plugged the MOR-
REGRESSION algorithm into the MaLARea (Urban
et al., 2008) system, and compare its speed and
precision on the MPTP Challenge benchmark with
MaLARea running with naive Bayes (SNoW) as a
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Figure 5: The results of the trigonometric experiments.

learning algorithm. In this first test, the MOR-
REGRESSION algorithm solved more problems than
SNoW while needing approximately the same amount
of time. Furthermore, the number of problems solved
by the system after the sixth fast one-second run us-
ing the MOR-REGRESSION-based premise selection
outperforms any other non-learning (non-MaLARea-
based) system run in 21 hours on the MPTP Challenge
problems.

5 SIGNIFICANCE AND IMPACT

Trained mathematicians know a large number of the-
orems, solved problems, and tricks spanning many
mathematical areas. They have also developed an in-
tuition about the relevance of various parts of their
knowledge for various new problems. Existing au-
tomated deductive tools typically attack problems by
trying several human-programmed deductive strate-
gies, typically in an exhaustive and (theoretically)
complete way. This approach can be successful in
limited domains and/or for reasonably easy tasks, it
however does not scale to large complicated domains,
where the search space grows enormously.

Our approach in this situation is to complement
existing “theory-driven” implementations by develop-
ing suitable “data-driven” approaches for automated
reasoning. Once large numbers of formally expressed

theorems exist, they indeed complicate the exhaus-
tive search methods of existing deductive tools. On
the other hand, proofs of the large number of the-
orems provide a means to remedy the problem by
learning and re-using previously successful ideas for
steering the automated proof search methods. Suit-
able pre-selection of premises – and in particular their
ranking according to their expected proof relevance –
provides a way to efficiently combine existing ATP
systems with external “intuitive” advice. This can
lead to interesting combinations and feedback loops
between intuition-assisted deductive finding of facts,
and learning new intuitions from them. In this sense,
large formal theories provide an opportunity for cre-
ating new smart AI methods and systems. Suitable
learning methods for capturing the mathematical in-
tuitions – as developed in this work – are a necessary
prerequisite for building such smart mathematical as-
sistants.

6 CONCLUSIONS AND FUTURE
WORK

The contributions of this paper are threefold. First,
we present premise selection for automated theorem
proving as an interesting and challenging domain for
machine learning. Second, we propose a frame-
work for kernel based multi-output-ranking (MOR)
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and make it, and the datasets that we use, publicly
available. Our MOR framework is much more com-
putationally efficient compared to a binary classifica-
tion approach. Note that although in this study we
are primarily concerned with the automated reason-
ing domain, our method is general enough to be ap-
plicable to ranking tasks in bioinformatics, natural
language processing, information retrial, etc. Third,
we compare our framework with existing premise se-
lection algorithms on three different datasets. The
experiments show that our method significantly out-
performs the existing algorithms, in particular on the
harder problems.

In the future, we will first extract and then uti-
lize feature representations of the premises in order
to improve the ranking performance of the proposed
algorithm. So far, we were only concerned with rel-
atively small problems. Our biggest dataset had only
1020 distinct premises. Eventually, we would like to
use our algorithm efficiently over datasets with tens
or even hundreds of thousands of premises. Our fi-
nal goal is to incorporate the developed algorithm into
open source ATP systems which hopefully leads to
notable benefits both in terms of accuracy and effi-
ciency.
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