
MODELLING QUALITY ATTRIBUTES IN FEATURE MODELS
IN SOFTWARE PRODUCT LINE ENGINEERING

Guoheng Zhang, Huilin Ye and Yuqing Lin
School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan 2308, NSW, Australia

Keywords: Quality attributes assessment, Non-functional requirement framework, Software product lines and analytic
hierarchical process.

Abstract: In software product line engineering, product configuration is the process of selecting the desired features
from a feature model based on customers’ functional requirements. The quality attribute assessments for a
configured product are neglected in most existing product configuration approaches. As we know, the key
issue of assessing quality attributes for a configured product is to measure the interdependencies between
functional features and quality attributes. To address this issue, we have proposed a quantitative-based
approach to establish the interdependencies based on analytic hierarchical process (AHP) in our previous
work. In this paper, we supplement our previous work from two aspects: first, we adapt non-functional
requirement (NFR) framework to identify quality attributes for a software product line and extend current
feature models to represent the identified quality attributes; second, we develop an evaluation method to
check the consistency of domain experts’ judgments to ensure the effectiveness of our approach. A
simplified tourist guide software product line is used as an example to illustrate our approach.

1 INTRODUCTION

A software product line (SPL) enables to create a
number of similar products by selecting and
composing the reusable software artefacts (Pohl,
2005). The commonalities and variabilities of SPL
members are identified during domain analysis and
modeled as features in a feature model (White,
2007). A feature model is mostly represented as a
feature tree where nodes represent features and
edges represent the selection relationships among
features. From a feature model, a specific member
product can be derived by selecting the desired
features based on customers’ requirements and
feature relationships specified in the feature model.
However, quality attributes, such as performance,
security and development cost, are usually handled
until the target product is produced and tested in the
system testing phase (Montagud, 2009). It is costly
to fix the problems if we find that the produced
product cannot meet the customers’ requirements on
quality attributes. Therefore, the quality attributes of
a target product should be assessed in the earliest
stage of product development in software product
lines—product configuration in a feature model.

The key issue of assessing quality attributes for a
configured product derived from a feature model is
to measure the different impacts on the quality
attribute imposed by different functional features. To
address this issue, we have developed a quantitative-
based approach which uses analytic hierarchical
process to measure the interdependencies between a
quality attribute and its correlated contributors, the
functional features which have impact on the quality
attribute (Zhang, 2010). Although the quality
attributes of a configured product can be easily
assessed based on the measured interdependencies,
the completeness and effectiveness of our approach
have not been fully achieved in our previous work.
In this paper, we aim to supplement our previous
work from two aspects: first, we will develop a
systematic method of identifying and representing
quality attributes that are critical for a software
product line using an adapted non-functional
requirements framework (Chung, 2000) to improve
the completeness of our approach; second, we will
develop an evaluation method of checking the
correctness of domain experts’ judgments to ensure
the effectiveness of our approach.

The rest of this paper is organized as follows:
Section 2 will introduce how to identify and

249Zhang G., Ye H. and Lin Y..
MODELLING QUALITY ATTRIBUTES IN FEATURE MODELS IN SOFTWARE PRODUCT LINE ENGINEERING.
DOI: 10.5220/0003646602490254
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 249-254
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

represent quality attributes for a software product
line; Section 3 will briefly review our previous work
about how to measure the interdependencies
between functional features and quality attributes.
Section 4 will introduce an evaluation method to
check the correctness of domain experts’ judgments.
Section 5 illustrates how to assess quality attributes
for a configured product based on the measured
interdependencies. We conclude this paper and
identify the future work in Section 6.

2 IDENTIFYING AND
REPRESENTING QUALITY
ATTRIBUTES

In this section, we will propose a systematic
approach of identifying the most critical quality
attributes for the software systems in a software
product line (SPL) and represent the identified
quality attributes in feature models. An adapted non-
functional requirement (NFR) framework (Chung,
2000) is used to identify quality attributes and
current feature models are extended to represent the
identified quality attributes. A tourist guide SPL is
used as an example to illustrate our approach. Fig. 1
shows the feature model of the simplified tourist
guide SPL. The semantics of feature relationships
have been described in detail in our previous work
(Zhang, 2010).

Figure 1: A feature model of tourist guide system SPL.

First, we identify the most critical quality
attributes for software product line members by
adapting NFR framework (Chung, 2000). It is
difficult and time-consuming for domain experts to
identify the quality attributes that are critical for

software systems in software product line because of
the elusive nature of quality attributes. The NFR
template from NFR framework provides detailed
classification and description for each specific
quality attribute, such as usability, availability,
reliability, performance, security, scalability,
modifiability, and reusability. In our approach, the
NFR template can be used as a checklist to identify
the most critical quality attributes for a software
product line.

The quality attributes identified from NFR
template are always abstract. The degree of
specificity of the identified abstract quality
attributes, such as security and performance, would
not permit non-functional requirements analysis and
we need to refine the abstract quality attributes into
more detailed quality attributes which have more
semantics. NFR framework provides a sort catalogue
for each abstract quality attribute based on the
development knowledge taken from the literature
and industrial experiences. A NFR sort catalogue
summarizes the potentially set of concepts (sorts) of
the quality attribute in a hierarchy and can serve as a
rich set of alternatives to choose from as well as
check-points to guard against omitting any important
concerns in quality attribute decomposition. If a sub-
quality attribute in the NFR sort catalogue is critical
for one or more product line members, in will be
included into the decomposition, otherwise it will be
excluded from the decomposition.

Finally, we represent the abstract quality
attributes and the refined sub-quality attributes in a
feature model. Kang et al. defined a feature as “the
prominent or distinctive user-visible aspect, quality
or characteristic of a software system or systems”
(Kang, 1998). Based on this definition, each quality
attribute can be modeled as a feature. Therefore, we
extend current feature models with a sub-feature tree
to represent quality attributes. This sub-feature tree
is named as quality attribute (QA) feature tree and its
included features are named as quality attribute (QA)
features. The root of the QA feature tree is the
overall quality attribute which represents the overall
“goodness” of the system. The second level of the
QA feature tree is formed by the abstract quality
attributes identified from NFR template. Typically,
performance, security, usability and availability are
the children of the root. Under each of these quality
attributes are specific quality attribute refinements.
The leaves of the QA feature tree are the detailed
sub-quality attributes that are concrete enough for
prioritization and analysis.

Following the above three steps, we identify
three abstract quality attributes performance, low

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

250

cost and security for the tourist guide software
product line, refine them into sub-quality attributes
and extend the original feature model with a sub-
quality attribute feature tree as illustrated in Fig. 2.

Figure 2: The extended feature model of tourist guide
SPL.

3 MEASURING THE
INTERDEPENDENCIES

In this section, we briefly review our previous
approach of measuring the interdependencies
between functional features and quality attributes
based on analytic hierarchical process. The
following steps need to be followed:

• identify the contributors, the functional
features that contribute to a quality attribute
(QA) feature

• prioritize the contributors of a QA feature
based on their relative importance to the
QA feature

• identify the relationships among functional
features with respect to contributing to the
QA feature

• calculate the overall impact of a configured
product with respect to the QA feature

The identification of the contributors of a quality
attribute is based on NFR framework (Chung, 2000)
and domain experts’ knowledge and experience. We
have identified the contributors of “data transfer
speed” (DTS) in tourist guide SPL as “Encryption”,
“PDA”, “Mobile”, “Modem19200”, “Modem9600”,
“LAN”, “WAN”. Among these contributors,
“Encryption” has negative impact on DTS and we
transform the negative impact of “Encryption” on
DTS when it is included into the product (selected
status) to a positive impact on DTS when it is
excluded from the product (deselected status). We
use ¬f to represent feature f in deselected status and

define the set of contributors of QA as RF (QA).
Thus we have: RF (DTS) = {LAN, WAN, PDA,
Mobile, Modem9600, Modem19200, ¬Encryption}.

In the second step, we adapt analytic hierarchical
process (AHP) (Hallowell, 2007), to prioritize the
identified contributors of QA based on their relative
importance for satisfying QA. A comparison matrix
is generated and the relative impact of individual
contributors on QA is calculated using AHP tools.
We use Relative Importance Value (RIV) to
represent the calculated relative impact of each
individual contributor on QA. The expression RIV
(QA, F) is used to represent the RIV of feature F on
QA if F has positive impact on QA in selected status
and RIV (QA, ¬F) is used to represent the RIV of
feature F on QA when F has positive impact on QA
in deselected status. We have calculated the RIVs of
the contributors in RF (DTS), such as RIV (DTS,
¬Encryption) =15.45 and RIV (DTS, LAN) = 33.37.

Once we have calculated the relative impact of
individual contributors in RF (QA), we can calculate
the overall impact on QA made by a set of
contributors from RF (QA). We define the overall
impact as Overall Importance Value (OIV) and use
OIV (QA, fg) to represent the OIV of a set of
contributors (fg) which is a subset of RF (QA). As
the contributors often affect QA interdependently,
we defined four types of feature groups in our
approach: SumGp, AvgGp, MaxGp and MinGp to
indicate the relationships among the contributors in
RF (QA) with respect to affecting QA. The detailed
definitions of the above feature groups can be found
in our previous work (Zhang, 2010). In the RF
(DTS) we have identified four feature groups:
{¬Encryption} is a SumGp; {Modem19200,
Modem9600} and {PDA, Mobile} are two AvgGp;
and {LAN, WAN} is a MinGp.

A configured product may include a subset of RF
(QA) for satisficing QA and we define the set of
features which contribute to QA in a configured
product as a valid selection (VS) with respect to QA
and represented as VS (QA). Then the overall impact
of a configured product on QA can be considered as
the overall importance value of its included VS (QA).
The calculation of OIV (QA, VS (QA)) is based on
definitions of different feature groups and the
detailed calculation process can be found in (Zhang,
2010). The OIV is not intuitive for stakeholders to
understand. It must be compared with OIVs of all
other valid selections with respect to QA to represent
its relative QA level. We define the normalized
overall importance value (NOIV) which is in [0…1]
scale to represent the relative QA level of a valid
selection compared with other valid selections. The

MODELLING QUALITY ATTRIBUTES IN FEATURE MODELS IN SOFTWARE PRODUCT LINE ENGINEERING

251

detailed normalization method can be found in
(Zhang, 2010). Following our approach, for a valid
selection of DTS in the tourist guide SPL: {LAN,
Modem 9600, ¬Encryption}, its OIV is 55.70 and its
NOIV is 0.89 which represents a relative high level
of DTS.

4 CHECKING DOMAIN
EXPERTS’ JUDGMENTS

Domain experts’ judgments are needed in our AHP-
based approach. If there are errors in domain
experts’ judgments, the relative importance values of
individual contributors of a quality attribute will be
incorrect. Based on the incorrect RIVs, the predicted
quality attributes for a configured product will be
wrong. Therefore, one critical issue of our approach
is to ensure the correctness of domain experts’
judgments.

In our AHP-based approach, domain experts
need to make judgments on n (n-1)/2 pair-wise
comparisons for n contributors of quality attribute
QA, X1 , X2 ,…Xn based on their contribution to QA.
The results of pair-wise comparisons are written into
a comparison matrix as shown in table 1 where Cij
represents the importance intensity value of
comparing Xi with Xj. A priority vector (PV) which
consists of the relative importance values of all the
contributors of QA involved in the comparison can
be calculated from the comparison matrix. Then we
use the relative importance values in PV to measure
the interdependencies between QA and its
contributors. Based on the interdependencies, we
can assess the QA level for any configured product.

Table 1: A comparison matrix made by domain experts.

1X 2X

...
1nX − nX

1X
1

12C
…

1(1)nC − 1nC

2X
 1 …

2(1)nC − 2nC
… 1 … …

1nX −
 1

(1)n nC −

nX
 1

When making pair-wise comparisons in AHP
method, domain experts may make two kinds of
errors. Firstly, a domain expert may make
inconsistent pair-wise comparisons for the
contributors of QA. For example, in the comparison
matrix of table 1, if (Cij>0) ∧(Cjk>0) ∧(Cik<0), there

will be conflicts among these three comparisons,
because we can deduce that Ci is more important
than Ck as Cij>0 illustrates that Ci is more important
than Cj and Cjk>0 illustrates that Cj is more
important than Ck. However, this deduction conflicts
with Cik<0 which means Ci is less important than Ck.
In this case, we say that the domain expert makes
inconsistent pair-wise comparisons.

Inconsistencies in one domain expert’s
judgments can be identified by checking the
consistency ratio (CR) of the comparison matrix.
AHP allows small inconsistency in judgements
because human is not always consistent. A CR
below 0.1 is acceptable (Hallowell, 2007). We also
adapt 0.1 as a borderline to check whether all the
pair-wise comparisons made by one domain expert
are consistent. The calculation of CR is supported by
most AHP tools. In our approach, if CR of a
comparison matrix is above 0.1, the domain expert
needs to identify the inconsistent pair-wise
comparisons and modify the comparison matrix until
the CR is below 0.1.

The second kind of errors that a domain expert
may make is the biased judgments. For example, a
feature X has significant contribution to a quality
attribute QA in one domain expert’s opinion.
However, X is not that important to QA in reality.
The RIV (QA, X) calculated based on the domain
expert’s judgment must be higher than its real value.
To avoid the biased judgments made by one domain
expert, we adapt two domain experts in our approach
and measure the consistency between two domain
experts’ judgments. Assume that two domain experts
generate two comparison matrixes: matrix � and
matrix � for the feature set X1, X2…Xn and calculate
two priority vectors PV1 and PV2 respectively. The
NOIV1 (QA, VSi) illustrates the NOIV of valid
selection VSi based on PV1 while the NOIV2 (QA,
VSi) illustrates the NOIV of valid selection VSi based
on PV2. Then we use the following formula (1) to
measure the consistency between two domain
experts’ judgments.

2
1 2

1
((,) (,))i i

VS
AD NOIV QA VS NOIV QA VS

n

s
= −∑ (1)

The above formula represents the average
difference (AD) between the assessed QA levels
based on PV1 and assessed QA levels based on PV2
for all valid selections VSs from RF (QA). The
minimum value of AD is 0.0 when PV1 and PV2 are
completely same while the maximum value of AD is
1.0 when PV1 and PV2 are completely contrary. A
smaller AD can represent higher consistency

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

252

between two priority vectors and further illustrate
higher consistency between two domain experts’
judgments. Using our approach to assess quality
attributes, if the expression |NOIV (QA, VSi)-NOIV
(QA, VSj)|<0.1, we consider that VSi and VSj have the
same QA level. Then we can deduct that if AD is
less than 0.1, we consider that the assessed quality
attribute level based on PV1 and the assessed quality
attribute level based on PV2 are the same. Therefore,
the borderline of AD is 0.1. If the AD is higher than
0.1, the domain experts need to find the biased
judgments and modify the comparison matrix until
AD is less than 0.1.

5 ASSESS QUALITY
ATTRIBUTES

The interdependencies between qualities attribute
features and functional features are very complex.
We have design an xml-based representation schema
in (Zhang, 2010) to represent the interdependencies
between a QA feature and its contributors. Fig. 3
shows the representation schema of “data transfer
speed” in the tourist guide SPL. The semantics of
the elements and attributes in the representation
schema are described as follows:

• Element <QA> represents a quality attribute
feature QA.

• Element <Relevant Features> represent all the
contributors of QA in RF (QA).

• Element <Feature> under element <Relevant
Features> represents a contributor of QA. Its
attribute “name” illustrates the contributor name
and attribute “RIV” illustrates the relative
importance value of the contributor on QA.

• Element <Feature Groups> represents all the
feature groups in RF (QA).

• Element <FG> under element <Feature Groups>
represents a feature group. Its attribute “type”
illustrates the type of feature group and attribute
“included features” illustrates all the features in
the feature group.

• Element <VS_OIV> represents the overall
importance value of valid selections from RF
(QA). Its attribute “max_oiv” illustrate the
maximum OIV and attribute “min_oiv”
illustrates the minimum OIV among all the valid
selections.

Once we have the representation schema of the
measured interdependency between a quality
attribute feature and its contributors, we can assess

the level of quality attribute for any configured
product. A configured product can be represented as
a 2-tuple of the form (S, R) where S is the set of
features to be included and R is the set of features to
be removed. For a specific configured product PC =
(S, R), to assess its level on quality attribute QA, a
set of steps need to be followed based on the
representation schema of quality attributes.

Figure 3: The representation schema for DTS.

• Identify Valid Selection. The first step is to
identify the valid selection VS with respect to QA
from the configured product PC using the
formula VS = (RF (QA) ∩ S) ∪ (RF (QA) ∩ R).
The feature set RF (QA) and the relative
importance value of each feature can be found
from the attribute “name” and “RIV” of element
“Feature” in the representation schema.

• Calculate OIV for Valid Selection. The second
step is to calculate the overall importance value
of the identified valid selection VS on quality
attribute QA using the formula OIV (QA, VS) =
Sum (OIV (QA, fgi ∩ VS)) where fgi illustrates
one of the feature groups in RF (QA). The feature
groups can be found from the element “Feature
Groups”. The included features of a feature
group fgi and its type can be found from the
attribute “included features” and “type” of the
element “FG” in the representation schema. To
calculate OIV (QA, fgi ∩ VS), we assume that vfgi
= fgi ∩ VS and use the following formulas to
calculate the OIVs.
OIV (QA, vfgi) = Sum (RIV (QA, fj) | fj ∈ vfgi
∧vfgi ⊆ fgi), if fgi is a SumGp.
OIV (QA, vfgi) = Average (RIV (QA, fj) | fj ∈ vfgi
∧ vfgi ⊆ fgi), if fgi is an AvgGp.
OIV (QA, vfgi) = Maximum (RIV (QA, fj) | fj ∈
vfgi ∧ vfgi ⊆ fgi), if fgi is a MaxGp.

MODELLING QUALITY ATTRIBUTES IN FEATURE MODELS IN SOFTWARE PRODUCT LINE ENGINEERING

253

OIV (QA, vfgi) = Minimum (RIV (QA, fj) | fj ∈
vfgi ∧ vfgi ⊆ fgi), if fgi is a MinGp.

• Normalize OIV into NOIV. The third step is to
calculate the normalized overall importance
value (NOIV) of the valid selection VS with
respect to quality attribute QA using the
following formula (2). The expression MIN (OIV
(VSi)) can be found from the attribute “min_oiv”
of the element “VS_OIV” while the expression
MAX (OIV (VSi)) can be found from the attribute
“max_oiv” of the element “VS_OIV” in the
representation schema.

() (())
(,)

(()) (())i i

iOIV VS MIN OIV VS
NOIV QA VS

MAX OIV VS MIN OIV VS

−
=

−
 (2)

Following the above three steps, we can assess
the level of QA for any configured product based on
the representation schema of QA. Assume that we
have a configured product: PC = ({network
connection, tourist guide, operating environment,
service, position detection, satellite, WAN, terminal
device, Mobile, PDA}, {LAN, Encryption,
authentication, modem, modem19200, modem
9600}). The valid selection VS with respect to DTS
can be identified from PC as {WAN, Mobile, PDA,
¬Encryption}. Then we divide VS into four groups:
vfg1, vfg2, vfg3, vfg4 where vfgi = fgi ∩ VS. Based on
the formulas in step two, we can calculate the OIV of
each group as well as the OIV of VS as 46.94. In the
final step, we normalize the calculated overall
importance value into NOIV using the formula in
step three as: NOIV (DTS, VS) = (46.94-31.66) /
(58.69-31.66) = 0.56 which represents a relative
medium DTS level.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we improve our previous work (Zhang,
2010) from two aspects: first, we improve the
completeness of our previous work by identifying
and representing the quality attributes of a software
product line using an adapted non-functional
requirement framework; second, we improve the
effectiveness of our previous work by developing a
method to check the correctness of domain experts’
judgments. After these two supplements, our
approach provides more efficient and precise quality
attribute assessments.

• The assessment is more efficient as we can easily
predict or assess the impact on a quality attribute

made by any combination of its contributors
without involving human effort to assess the
combinations one by one.

• The assessment is more precise than existing
approaches as domain experts can provide more
precise judgments in the pair-wise comparisons
of AHP method. The quality attribute level for a
configured product which is calculated based on
the pair-wise comparison results is more precise
than other approaches.

One limitation of our approach is that we cannot
identify the relationships between conflicting quality
attributes. During product configuration, quality
attributes can never be achieved in isolation. The
achievement of any one will have impact, sometimes
positive and sometimes negative, on the
achievement of others. The relationships between
conflicting quality attributes play an important role
when we aim to derive a product with desired
quality attributes. In the future, we aim to
understand the relationships between conflicting
quality attributes and concentrate on how to identify
the conflicting quality attributes and how to measure
their relationships.

REFERENCES

Klaus Pohl, Gunter Bockle and Frank van der Linden.,
2005. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer

Jules White and Douglas C. Schmidt, 2007. Automating
Product-Line Variant Selection for Mobile Devices. In
the 11th International Software Product Line
Conference.

Sonia Montagud and Silvia Abrahao, 2009. Gathering
Current Knowledge about Quality Evaluation in
Software Product Lines. In Software Product Line
Conference 2009.

Guoheng Zhang, Huilin Ye and Yuqing Lin, 2010. Quality
Attribute Assessment for Feature-Based Product
Configuration in Software Product Line, in Asian
Pacific Software Engineering Conference, Sydney,
Australia.

Lawrence Chung, Brian A Nixon, Eric Yu, John
Mylopoulos, 2000. Non-Functional Requirements in
Software Engineering. Kluwer Academic.

Kyo Chul Kang, G.C.S., J.A.Hess, W.E.Novak and
A.S.Petersem, 1990. Feature-Oriented Domain
Analysis (FODA) Feasibility Study, in Technical
Report CMU/SEI 90-TR-21.

David L. Hallowell, 2007. Analytical Hierarchical Process
(AHP)-Getting Oriented. ISixSigma.com Retrieved
2007-08-21.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

254

