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Abstract: Dealing with large data sets, the computational cost and resource demands using the nearest neighbor (NN) 
classifier can be prohibitive. Aiming at efficient template condensation, this paper proposes a template re-
duction algorithm for NN classifier by introducing the concept of critical boundary vectors in conjunction 
with K-means centers.  Initially K-means centers are used as substitution for the entire template set. Then, in 
order to enhance the classification performance, critical boundary vectors are selected according to a newly 
proposed training algorithm which completes with only single iteration. COIL-20 and COIL-100 databases 
were utilized for evaluating the performance of image categorization in which the bio-inspired directional-
edge-based image feature representation (Suzuki and Shibata. 2004) was employed. UCI iris and UCI Land-
sat databases were also utilized to evaluate the system for other classification tasks using numerical-valued 
vectors. Experimental results show that by using the reduced template sets, the proposed algorithm shows a 
superior performance to NN classifier using all samples, and comparable to Support Vector Machines using 
Gaussian kernel which are computationally more expensive. 

1 INTRODUCTION 

The nearest neighbor (NN) classifier is one of the 
most widely used nonparametric methods for pattern 
recognition because of its simplicity for implementa-
tion. However, a number of implementations of the 
algorithm suffer from its intrinsic burdens of repeti-
tive distance calculation with a large number of 
template vectors, which lead to large memory occu-
pation and high computational cost.  

To solve the problem, reducing the number of 
samples is eagerly demanded. So far, many template 
reduction techniques have been developed and dis-
cussed, but there still exist lots of issues.  For exam-
ple, a supervised clustering is employed for editing 
dataset in (Eick et al., 2004). Although the reduction 
rates were quite high in their experiments, the accu-
racy was sometimes degraded after reduction, and 
the clustering in the training session is extremely 
complex and time-consuming due to the greedy 
calculation. In (Zhou et al., 2009), by introducing a 
sample austerity technique in conjunction with K-
means clustering, a better performance on both accu-

racy and reduction was achieved. However, the 
process relies heavily on parameters, and its appli-
cability to tasks other than text categorization is 
questionable because of the devolvement of bound-
ary information. Meanwhile, the template reduction 
of kNN classifier proposed in (Fayed and Atiya. 
2009) applies a chain finding method for selecting 
boundary samples. Although achieving a good per-
formance, the method is still highly parameter de-
pendant, and not easy to implement. Among these 
techniques, K-means clustering or similar center-
based scheme is being frequently employed in tem-
plate condensing of NN classifier (Wu et al., 2004); 
(Eick et al., 2004) and (Zhou et al., 2009), but the 
performance is still trapped by the complexity of 
implementation and the difficulty of parameter de-
signing. To develop a method with efficient template 
reduction rate while maintaining a high accuracy 
performance, a more effective and less parameter 
dependant method needs be developped. 

In contrast, support vector machines (SVMs) 
proposed in 1990s offer an efficient way to deal with 
the problem of template reduction. By using only 
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critical boundary support vectors for classification, 
SVM shows quite good performance in pattern rec-
ognition tasks (Chapelle et al., 1999) and (Bovolo et 
al., 2010) as well as other applications. However, 
SVM presents some serious shortcomings. Firstly, 
unlike NN classifier, SVM is designed for binary 
classification, which means complicated extra pro-
cedures are required for multi-class tasks (Hsu and 
Lin, 2002). Moreover, the training process of SVM 
is extremely time-consuming, usually ending up 
with a massive amount of iterations to achieve con-
vergence. In addition, to get a good performance, 
SVM often needs to employ kernel operations, for 
example Gaussian kernel (Radial Basis Function 
kernel), which is far more resource consuming than 
simple distance calculation in NN. As a result, al-
though SVM is being widely used in software appli-
cations, there are not many examples of VLSI im-
plementation of Gaussian kernel-SVMs having on-
chip training functions. Therefore, since employing 
boundary vectors for classification is a promising 
way for efficient template reduction (Nikolaidis et 
al., 2011), it is important to explore much simpler 
methods for boundary vector selection as compared 
to SVMs. 

The purpose of this paper is to develop an effi-
cient template reduction method for the nearest 
neighbor classifier using K-means centers, by intro-
ducing the concept of critical boundary vectors. 
Different from the complex SVM training, the pro-
posed method is based on simple distance calcula-
tion which is more VLSI-hardware-implementation 
friendly. In addition, it is easily extendible to multi-
class large-scale classification. To initially condense 
the sample set, only K-means centers are utilized as 
rough templates for classification, instead of using 
the entire sample set. Then, in order to enhance the 
classification performance, boundary vectors that are 
critical for better accuracy are selected according to 
a newly proposed training algorithm. In contrast to 
the complex SVM training or other condensing 
methods, only single iteration step is sufficient for 
selection. Experimental results show that the pro-
posed algorithm has a superior performance to regu-
lar NNs and linear-kernel-SVM, and is comparable 
to computationally expensive Gaussian kernel-SVM.  

The organization of this paper is as follows. Sec-
tion 2 explains the proposed classification algorithm. 
Section 3 reports the experiments conducted to 
evaluate the performance of the proposed algorithm. 

In addition, discussion on hardware implementa-
tion issues is given in Section 4. Finally, Section 5 
gives a conclusion of this paper. 

 

 

 

Figure 1: (a) original template vectors for 3-class classifi-
cation; (b) rough boundary determined by gravity centers 
obtained using K-means clustering; (c) training process to 
select critical boundary vectors to which weight=1 is 
assigned (0 is assigned to others vectors); (d) classification 
of a new input vector by finding the nearest vector from 
boundary vectors and K-means centers. 

2 ALGORITHM 

The NN-based classifier developed in the present 
work is explained in the following. It consists of two 
stages: the training stage and the classification stage. 
The final goal is to determine the decision bounda-
ries that assign a proper class label to a new input 
vector using only a limited number of original tem-
plate vectors. 

For a supervised classification task, a template 
set ܣ  including samples belonging to ܰ  classes, ܣ = {ܵଵ, ⋯ , ܵே} is given. Figure 1 illustrates a sim-
ple 3-class example of 2-dimension–vector classifi-
cation. Each class ܵ is defined as ܵ = ቄ࢞(): ݅ = 1, ⋯ ,  () is the i-th vector of࢞ ቅ, whereܯ

class-j, and ܯ is the total number of samples in the 
j-th class. 

Throughout the entire classification processing, 
including K-means clustering and nearest neighbor 
search, Manhattan distance function ݀൫࢞, ൯࢞  is 
used as dissimilarity measure because of its simplic-
ity in hardware implementation. 

 ݀൫࢞, ൯࢞ = ห࢞ − ห. (1)࢞
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2.1 Training Stage 

For condensing template vectors, the training stage 
can be divided into two parts: a rough clustering by 
K-means and the selection of critical boundary vec-
tors. 

2.1.1 Rough Clustering 

As a pre-processing of training, aiming at determin-
ing rough classification boundaries, K-means algo-
rithm using Manhattan distance is employed to ob-
tain the gravity centers in each class. These K-means 
centers serve as substitution to all sample vectors in 
the class and represent the sample category as shown 
in Fig. 1(b). For each class ܵ, K-means clustering is 
carried out only for samples belonging to the class ܵ, 

thus obtaining K gravity centers 
ܥ   = ,ଵ()ࢉ} ⋯  {()ࢉ

of class-j. 
As a pre-processing part, only a rough K-means 

clustering is sufficient, therefore the iteration steps 
in this part can be set to a very limited number. 

2.1.2 Selection of Critical Boundary Vectors 

In order to determine more accurate class boundaries 
between two neighbouring classes, critical boundary 
vectors are selected using a margin parameter ࢻ.   

In this scheme, a binary weight ݓ() ∈ {0,1}  is 

assigned for each vector ࢞() as shown in Fig. 1(c). 

For a vector ࢞() , assignment of weight ݓ()is de-
cided according to the comparison of its distances 

with the nearest center of intra-class centers ࢉ() and 
the nearest sample of inter-class samples ࢞ . After 
weight assignment for all samples is finished, those 
vectors weighted as 1 will form the critical boundary 
vector set ܤ and other vectors with weight 0 will be 

discarded from the template set. The weight ݓ() is 
defined according to the following rule: 

()ݓ   = ቐ0, min ௫∉ௌೕ ݀ ቀ࢞(), ቁ࢞ ≥ minଵ… ݀ ቀ࢞(), ()ቁࢉ (1 + ,1(ࢻ min ௫∉ௌೕ ݀ ቀ࢞(), ቁ࢞ < minଵ… ݀ ቀ࢞(), ()ቁࢉ (1 +  (ࢻ
(2)

Here margin parameter ࢻ is used to control the cov-
erage of boundary vector selection and guarantee the 
accuracy of classification. 

2.2 Classification Stage 

After the training stage as described above, classifi-
cation is carried out for a new input vector ࢞  as 

shown in Fig. 1(d). Current template set T consists 

of critical boundary vector sets {
,ଵܤ  ⋯ -ே} and Kܤ  

means center sets { ,ଵܥ   ⋯  :to assign class label is then defined as  (࢞)݂ ே}. The decision functionܥ  
(࢞)݂  = ݃ݎܽ min୨ୀଵ…( min݆ܥ∪݆ܤ∋(݆݅)࢞ ݀ ቀ࢞, ቁ)  (3)(݆݅)࢞

 

It should be noted that only single iteration is 
sufficient for selecting boundary vectors and that 
high-speed classification is possible using 
remarkably low number of critical boundary vectors 
along with K-means centers. Furthermore, as 
similarity evaluation, Manhattan distance calculation 
is much simpler as compared with kernel calculation 
such as Gaussian kernel in SVM, which makes the 
proposed method more hardware-implementation-
friendly. 

In the proposed algorithm, the number of K-
means centers ܭ and the margin parameter ࢻ are the 
two key parameters to be determined for maximizing 
the performance and efficiency. The influence of 
variation in ܭ and ࢻ is quantitatively assessed in the 
following section. 

3 EXPERIMENTAL RESULTS 
AND DISCUSSION 

To prove the effectiveness of the proposed algorithm, 
four popular datasets were used in the experiments: 
COIL-20, COIL-100 datasets from Columbia Object 
Image Library, and Iris, Landsat Satellite datasets 
from UCI machine learning repository. These data-
sets are all being widely used for verification of 
classifiers such as NN, SVM and Radial Basis Func-
tion (RBF) networks. In our experiments, COIL-20 
and COIL-100 were pre-processed to 64-dimension 
vectors by an existing bio-inspired edge-based fea-
ture extraction method called Projected-Principle-
Edge-Distribution (Suzuki, Shibata. 2004), while Iris 
and Landsat datasets are directly provided as 4-
dimension and 36-dimension vectors, respectively. 
In addition, we have applied 3-fold cross validation 
to COIL-20 and COIL-100 datasets for comparison. 
The specifications of the four datasets are shown in 
Table 1. Large variations in the number of classes, 
the number of dimensions and the scale of datasets 
have been included within the experiment sets. 

The proposed classifier was implemented by C 
language and compiled by GNU C Compiler Gcc-
4.3.2. Meanwhile, NN, SVM with linear-kernel, 
SVM with RBF-kernel were used for comparison, 
and the one-against-one practice has been adopted 
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Table 1: Summary of data sets. 

Dataset Number of categories Number of dimensions Number of training / testing samples Cross validation 

UCI-Iris 3 4 60 / 90 No 

UCI-Landsat 6 36 4435 / 2000 No 

COIL-20 20 64 960/480 3-fold 

COIL-100 100 64 4800/2400 3-fold 

 

 

Figure 2: Comparison of accuracy performance. 

Table 2: Summary of the recognition accuracy (Acc) and mean number of vectors in reduced template vectors (NRV) over 
different datasets. 

Dataset 
proposed algorithm nearest neighbour 

SVM 
+ linear-kernel 

SVM 
+ RBF-kernel 

Acc(%) NRV Acc(%) NRV Acc(%) NRV Acc(%) NRV 

UCI-Iris 
95.56 14 

94.44 60 95.56 60 96.67 13 
(K=1   α=0.25) 

UCI-Landsat 
90.45 2240 

89.95 4435 85.25 1460 91.45 1640 
(K=13 α=0.25) 

COIL-20 
99.24 351 

99.03 960 98.19 632 99.79 702 
(K=2   α=0.25) 

COIL-100 
94.58 2727 

94.65 4800 91.06 4148 96.03 4220 
(K=2   α=0.25) 

 

for multi-class classification of SVM. The SVM 
software used in these experiments was LibSVM.  

3.1 Experimental Results 

The results of classification accuracy are shown in 
Figure 2. The average accuracy of proposed algo-
rithm is 94.96%, which is much higher than SVM 
using linear-kernel, slightly higher than regular NN 
classifier and comparable to SVM using RBF-kernel. 
Detail data are shown in Table 2.  

Figure 3 compares the number of reduced tem-
plate vectors for classification. Regarding the pro-
posed algorithm, the number equals to the summa-
tion of critical boundary vectors and K-means cen-
ters, and for SVM using RBF kernel, it means the 
number of support vectors. The observation is very 
interesting. For the two datasets with a small number 
of classes (Iris and Landsat), the proposed algorithm 
used nearly the same number of samples for classifi-
cation in Iris, and a little increased number of sam-
ples for classification in Landsat compared with 
SVM. However, for other two datasets with rela-
tively larger class numbers, the proposed algorithm 

has a superior performance in terms of template 
reduction as compared to SVM. 

It should be mentioned that for all datasets, the 
value of ࢻ was set to 0.25. Actually within a series 
of experiments, it has been empirically determined 
that  ࢻ = 0.25 yields the best value in terms of both 
recognition accuracy and template reduction rate. 
Therefore even if other values could show a slightly 
better accuracy or improved reduction rate, the value 
of 0.25 was used throughout the experiments for 
comparison with other algorithms. Meanwhile, ex-
periments have also shown that the value of K does 
not have a large impact on the performance. Further 
discussion will be given in Section 3.3. 

3.2 Benefit of Applying Critical 
Boundary Vectors 

To demonstrate the importance of using both critical 
boundary vectors and K-means centers, three groups 
of experiments R, R1 and R2, were carried out on 
those large datasets according to the constitution of 
template used for classification: 
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Figure 3: Comparison of the mean number of samples in reduced template sets used for classification. For NN, the value is 
100% because all samples are used for classification. For SVM using RBF kernel, the value stands for the number of sup-
port vectors. For the proposed algorithm, it stands for the summation of K-means centers and critical boundary vectors. 

 

Figure 4: Comparison of recognition accuracy using different part from reduced template set. 

R: Use both critical boundary vectors and K-means centers as 
template. 

R1: Use only K-means centers as template. 
R2: Use only critical boundary vectors as template. 

All the experiments were carried out by setting 
the parameters same in Table 1, and the results are 
shown in Figure 4. According to the results, we can 
conclude that both critical boundary vectors and K-
means centers play important roles in classification.  

However, there exist large variations among the 
results of different datasets. This is because the 
specifications including feature extraction methods, 
category numbers of these datasets are totally differ-
ent. Therefore the distribution of their vectors in 
feature space varies a lot. As a result, using either 
part of the reduced template set in the proposed 
algorithm can be hardly expected to show good 
performance for all situations. In conclusion, intro-
ducing critical boundary vectors into the NN classi-
fier using K-means centers can not only improve the 
accuracy performance, but also the robustness of 
classifier dealing with various kinds of datasets. 

3.3 Parameter Analysis 

As mentioned earlier, margin parameter ࢻ  and K-
means parameter K are two parameters that related 
to the performance in this algorithm.  

According to the intrinsic characteristic of the 
proposed algorithm, with the increasement of ࢻ, the 
number of selected critical boundary vectors 
increases, which lead to higher computation cost and 
resource consumption. On the other hand, accuracy 
can be improved by increasing ࢻ  to select more 

critical boundary vectors. To explore the relationship 
between ࢻ and performance, experiments about the 
two parameters were carried out using two large 
datasets Landsat and COIL-100. The curves of 
classification performance versus ࢻ  using different 
K-means clustering parameter K are given in Figure 
5. As shown in the figure, the accuracies become 
saturated when the value of ࢻ reached about 0.25. 
Even sometimes the saturation came below or above 
the value, but the differences were very small. 
Therefore, considering the performance on both 
reduction rate and classification accuracy, the value 
0.25 yields a better trade-off and was selected 
emperically as the fixed value of ࢻ. 

 

 

 

Figure 5: Variation of accuracy rate by changing margin 
parameter α and K, with comparison to NN. 
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At the same time, from Figure 5 we can conclude 
that the value of K does not have a major influence 
on the performance. Still it should be confirmed with 
more examples. Currently it has been shown empiri-
cally that the value of K could be selected as about 
4% of the minimum number of samples in single 
class. 

4 HARDWARE 
IMPLEMENTATION ISSUES 

As described in the algorithm part, the calculation of 
the proposed algorithm is nearly the same with K-
means clustering. The dedicated custom VLSI chips 
for large-scale K-means clustering have already 
been developped (Shikano et al., 2007) and (Ma and 
Shibata. 2010). By adding only a series of Margin 
processing unit for calculating the multiplication of ࢻ  and distance, the algorithm can be easily 
implementated on VLSI. 

5 CONCLUSIONS 

A template reduction algorithm for nearest neighbor 
classifier using K-means centers based on critical 
boundary vectors has been proposed. Experiments 
have shown this algorithm has superior classification 
performance to NN classifier and linear-kernel SVM, 
while comparable to RBF-kernel SVM. The efficient 
values of parameters have also been fixed empiri-
cally. In addition, this algorithm is highly computa-
tionally efficient and friendly to hardware imple-
mentation. Our further work will focus on the self 
adaption of the K value. 
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