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Abstract: We present a new algorithm suitable for retrieving and monitoring Saharan dusts from satellite ocean-color 
multi-spectral observations. This algorithm comprises two steps. The first step consists in classifying the 
TOA spectra using a neuronal classifier, which provides the aerosol type and a first guess value of the 
aerosol parameters. The second step retrieves accurate aerosol parameters by using a variational 
optimization method. We have analyzed 13 years of SeaWiFS images (September 1997-December 2009) in 
an Atlantic Ocean area off the coast of West Africa. As the method takes into account Saharan dusts, the 
number of pixels processed is an order of magnitude higher than that processed by the standard SeaWiFS 
algorithm. We note a strong seasonal variability. The Saharan dust concentration is maximal in summer 
during the rainy season and minimal in autumn when the vegetation bloom due to the rainy season prevents 
soil erosion by the wind. 

1 INTRODUCTION 

Aerosols are an important component of the Earth 
climate system. They reflect the downwelling solar 
radiations and thus contribute to cooling the 
atmosphere on the one hand and on the other hand, 
they may also absorb infrared radiation emitted by 
Earth, thus contributing to warming the atmosphere 
depending on their quality. A good knowledge of 
aerosol properties is therefore necessary for 
understanding climate variability and modeling it. 
The mass concentration of aerosols is closely related 
to the optical thickness τ, which is a measure of the 
light attenuation. Aerosols are also characterized by 
their type (dust, maritime, soot ...). 

A major source of aerosols is the Sahara desert, 
which seeds the tropical Atlantic atmosphere with  

Saharan dusts, which are absorbing aerosols. 
These aerosols cross the Atlantic Ocean transported 
by the trades winds and may be detected as far away 
as the Caribbean Island and South America (Moulin 
et al, 1997). 

During the last 15 years, several satellites 
carrying multi-spectral radiometers dedicated to 
ocean-color observation have been launched. They 
provide a daily global coverage of Earth at a scale of 

some kilometers. These ocean-color radiometers 
also provide information about aerosol parameters, 
since the atmosphere is located between the ocean 
and the satellite. Ocean color radiometer signals 
have been intensively used to monitor aerosol 
parameters over the ocean (Gordon and Wang, 
1994); (Tanré et al., 1997) and to retrieve their most 
significant parameters. 

The standard aerosol products provided by Space 
Agencies such as the SeaWiFS products distributed 
by NASA are limited to a quite low optical thickness 
(less than 0.35). Moreover, the algorithms used for 
SeaWiFS products are not able to deal with 
absorbing aerosols nor to retrieve the aerosol 
typology. 

This paper presents a new method for deriving 
aerosol characteristics including those of absorbing 
aerosols, from satellite ocean-color data. 

2 DATA SETS 

2.1 The SeaWiFS Data Set 

For this study we use daily luminance measurements 
made by the SeaWiFS sensor off the West Africa 

297
Diouf D., Thiria S., Niang A., Brajard J. and Crepon M..
RETRIEVING AEROSOL CHARACTERISTICS FROM SATELLITE OCEAN COLOR MULTI-SPECTRAL SENSORS USING A NEURAL-VARIATIONAL
METHOD.
DOI: 10.5220/0003638802970303
In Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2011), pages 297-303
ISBN: 978-989-8425-84-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

coast in an area between 8°-24°N and 14°-30°W. 
These measures extend the period of 1997-2009. 
Luminances are at wavelengths 412nm, 443nm, 
490nm, 510nm, 555nm, 670nm.765nm and 865nm. 
For each wavelength λ, the TOA reflectance ρ is 
computed. 

According to Gordon and Wang (1994) the Top 
Of the Atmosphere (TOA) reflectance ρ is the sum 
of several components that can be computed 
separately: the Rayleigh multiple scattering (air 
molecules) in the absence of aerosols, can be 
accurately computed by using the atmospheric 
pressure, and the whitecap contribution by taking 
into account the wind speed. We removed pixels 
contaminated by the sun glitter, using a geometrical 
mask. The signal that was finally used in our 
classification method was therefore: 

ρused = ρa + ρra + tρw  (1)

where ρa is the reflectance resulting from multiple 
scattering of aerosols in the absence of the air, ρra is 
the interaction term between molecular and aerosol 
scattering, ρw, is the contribution of the water and t 
is the transmittance of the atmosphere at a given 
wavelength (λ).  

In equation (1), ρw  is small in the red and near-

infrared, so that ρused  mainly depends on the 

aerosol term raa ρρ +  at 670, 765 and 865 nm. For 

the other visible bands, it is expected that the aerosol 
term remains large enough in most situations to 
allow us to retrieve pertinent information (in 
particular absorption capability) about the particles 
at these wavelengths.  

We used satellite data sets comprising ten 
dimensional vectors, whose components are eight 
wavelengths measured by the radiometer and two 
viewing angles since the reflectance spectra depend 
on the geometry of the measurement. These angles 
are the sun zenith angle θs and the scattering angle γ  
defined as: 

( )ΔΦ+−= cossinsincoscosarccos svsv θθθθγ (2)

where ΔΦ =φo-φv is the azimuth angle difference 
between the satellite and the sun, and θv is the 
viewing zenith angle. 

Each vector, whose components correspond to 
the SeaWiFS wavelengths, represents a usedρ  

spectrum. 

2.2 The Learning Data Set 

The  learning data set consists of observed obs
usedρ  ex- 

tracted from pixels of SeaWiFS images off the West 
Africa coast during the year 2003 and two associated 
viewing angles (i.e., the sun zenith angle θs and the 
scattering angle γ). All the available daily SeaWiFS 
images were homogeneously sampled (one pixel-
line over 10) providing 426,117 clear-sky spectra 
of obs

usedρ . The learning dataset Dataobs is thus 

composed of ten component vectors i.e. the eight 
wavelengths measured by the radiometer and the 
two viewing angles. 

2.3 The Labeling Data Set 

The second data set, Dataexpert consists of the 
ρ used

expert computed at eight wavelengths with a 2-layer 
radiative transfer model (Gordon & Wang, 1994) for 
various optical thickness values, chlorophyll content 
and geometry of the measurement and for five 
aerosol models. Each Dataexpert vector comprises 
eight spectral components ( ρ used

expert ) and two 
geometry components which are the sun zenith angle 

sθ  and the scattering angle γ. To these ten 

components which were used for the labeling the 
referent vectors provided by the unsupervised 
classification, we added the aerosol type and the 
optical thickness τ at 865 nm. Dataexpert comprises 
6,000,000 simulated vectors using four aerosol 
models and one absorbing aerosol (Moulin et al, 
2001). The five aerosol models were computed at 
four different relative humidity (70%, 80%, 90%, 
99%). Dataexpert was used in order to introduce the 
expertise and to retrieve the aerosol type and the 
optical thickness values. 

3 THE METHOD 

In this study, we used two successive statistical 
models for analyzing the Dataobs images; the Self 
Organizing Map (SOM, Kohonen, 2001) model and 
the NeuroVaria method (Jamet et al., 2005); (Brajard 
et al., 2006). We first processed the images with a 
SOM model, which is well suited for visualizing and 
clustering a high-dimensional data set. We denoted 
this topological map as SOM-A-S (SOM-Angle-
Spectrum). In the light of the results obtained by 
Niang et al., (2006), we chose a similar architecture 
for SOM-A-S: a two-dimensional array with a large 
number of neurons (20 x 30 = 600). SOM-A-S was 
learned on the Dataobs of the year 2003. The vectors 
of the learning data set were thus clustered into 600 
groups, allowing a highly discriminative 
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representation of Dataobs. The second dataset, 
Dataexpert, representing the expertise, was used to 
decode the SeaWiFS images. The principle of the 
method is to compare the ten-component vectors of 
Dataexpert whose associated parameters are known, 
with those of the neurons of SOM-A-S according to 
a distance. At the end of the labeling, each neuron of 
SOM-A-S map has captured a set of ertexpρ  and 

takes a label, which is extracted from that set 
according to the procedure described in Niang et al., 
(2006). The only difference between the two 
versions being that the old one uses a first map to 
determine 10 different classes of angles, each one 
giving rise to a dedicated SOM map for the 
classification of the reflectance spectra, while SOM-
A-S uses a unique map doing a data fusion between 
the viewing angles and the spectra. By using a 
unique map, we avoided the threshold effect that is 
induced by the two steps classification (angle and 
then reflectance) and the eleven SOM maps 
described in Niang et al., (2003). 

Each neuron is therefore associated with an 
atmospheric and ocean physical parameters (τ, C) 
and an aerosol type. The SOM-A-S map being 
labelled, we are able to analyze a satellite image by 
projecting the ten component vector (reflectances 
and viewing angles) associated with each pixel on 
the SOM-A-S map. Pixels captured by a neuron are 
assigned to the aerosol type and optical thickness 
associated with this neuron. For monthly 
climatology images, the aerosol type is estimated as 
the median of the types of the images considered. 

The second statistical model improves the 
retrieval of the optical thickness. We used a neuro-
variational algorithm, called NeuroVaria, that is able 
to provide accurate atmospheric corrections for 
inverting satellite ocean-colour measurements. The 
algorithm minimizes a weighted quadratic cost 
function, J, by adjusting control parameters 
(atmospheric and oceanic) such as τ and C (Brajard 
et al., 2008). J describes the difference between the 
satellite measurement ρobs and a simulated 
reflectance ρ sim computed using radiative transfer 

codes modelled by supervised neural networks (the 
so called Multi-Layer-Perceptrons, MLP). The 
minimization implies the computation of the 
gradient of J with respect to the control parameters 
and consequently of the derivatives of the MLPs, 
which is done by the classical gradient back-
propagation algorithm (Bishop, 1995). The novelty 
of the version of NeuroVaria developed in this work 
is that the MLPs modelling the radiative transfer 
codes were specially designed to take African dusts 

into account. Moreover we used the atmospheric 
parameter values given by SOM-A-S and validated 
using in situ data (see section 4), as first guesses of 
the NeuroVaria algorithm minimization. Since the 
efficiency of a minimizing procedure depends on the 
first guesses of the control parameters, we expect to 
improve the accuracy of the retrieved parameters.  

Using these two statistical models sequentially is 
indeed a mixed neuro variational method. We 
denoted it in the following by SOM-NV. 

4 VALIDATIONS OF THE 
AEROSOL PARAMETERS 
USING SOM-A-S 

As SOM-A-S takes into account Saharan dusts, the 
number of pixels processed is an order of magnitude 
higher than that processed by the standard SeaWiFS 
algorithm. As an example, on October 07 2003, 
SOM-A-S processed 29,083 pixels while SeaWiFS 
processed 16,193 pixels only; on October 12 SOM-
A-S processed 30,300 pixels and SeaWiFS 3,338 
only. Besides a statistical comparison between the 
SOM-A-S and SeaWiFS algorithms was made for 
values of τ <0.35. The Mean Relative Error (MRE) 
remains low (22.88% for October 07 2003 and 
16.16% for October 12 2003) and the Root Mean 
Square Error (RMSE) was less than 0.04 for both 
days. As a preliminary conclusion, the values 
retrieved by SOM-A-S seem consistent with and 
very close to those retrieved by the classical 
algorithm of SeaWiFS for τ <0.35. 

The Angström exponent α (500,870) provided by 
AERONET, allows us to attempt to validate the dust 
aerosol type provided by SOM-A-S. Since the sun 
photometer does not give the aerosol type, it is 
thought possible to validate the dusts by studying the 
behavior of α (500,870). The low α (500,870) 
values (α<0.5) result from the presence of large 
particles typical of desert dusts (Nobileau et al., 
2005). In Figure 1 we show the distribution of the 
α(500,870) of the Dakar-M’Bour AERONET 
measurements for the dusty and the non-dusty days 
determined by SOM-A-S on the SeaWiFs collocated 
pixels. The confidence interval of the average value 
of α (500,870) calculated by SOM-A-S from 
SeaWiFs measurements for the dusty days was 
between 0.40 and 0.47, whereas it was between 
0.61-0.79 for non-dusty days. This means that the 
dust classification provided by SOM-A-S is in 
agreement with the AERONET measurements, 
which permits us to distinguish the dust absorbing-
aerosols  from the non-absorbing ones by processing  
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the SeaWiFs observations with SOM-A-S. 

 

Figure 1: Comparison of the α (500, 870) values measured 
at the Dakar AERONET station for dusty days (left) and 
for non-dusty days (right). For dusty days, most of the 
α (500, 870) values are less than 0.5. 

5 IMPROVING ATMOSPHERIC 
RESTITUTION WITH SOM-NV 

We processed the 13 year data set of SeaWiFS 
imagery with SOM-NV. This data set presents a 
well-marked seasonal variability. Figure 2 shows, as 
an example, the monthly situations during winter 
(January), spring (March), summer (July) and 
autumn (November) of the year 2006 decoded with 
SOM-NV for the aerosol optical thickness and with 
SOM-A-S for the aerosol type. In winter (January), 
the northern part of the studied domain was free of 
dusts and the optical thickness was almost zero; in 
the southern part, we observed the presence of 
Saharan dusts with a small concentration (small 
optical thickness). In spring, the Saharan dusts 
moved northward and their concentration (optical 
thickness) increased. In summer, the Saharan dusts 
invaded the entire domain and their concentration 
was maximal. In autumn, the Saharan dusts 
disappeared but we noted a low optical thickness in 
the whole domain due to the presence of non-
absorbing aerosols. The year 2006 represents a 
typical year of the data set concerning the seasonal 
variability, which is observed every year. 

During winter, spring and summer, the presence 
of Saharan dusts is linked to the westward wind, 
eroding the Sahara ground and transporting dusts 
over the Atlantic, as seen in Figure 2. The extent of 
Saharan dust is maximal in summer when the Inter 
Tropical Convergence Zone (ITCZ) is at its 
maximum latitude. The situation in autumn is 
puzzling. The wind is still blowing westward in the 
southern part of the domain but we do not detect any 
Saharan dust. A possible explanation might be due 
to the fact that in autumn, the vegetation has 

developed following the summer rain, (summer is 
the rainy season). The vegetation and soil humidity 
inhibit the erosion of the ground in the southern 
region of the Sahara, which might explain the 
absence of dust south of 20°N in autumn. 

A validation can therefore be made by 
comparing the optical thickness values retrieved by 
SOM-NV and the SeaWiFS algorithm and those 
measured at the AERONET stations of Dakar and 
Cabo Verde, respectively denoted τSOM-NV, τSeaWiFS 
and τAERO. 

We determine τ , by taking the mean value of 
the five SeaWiFS measurements surrounding the 
AERONET ground stations. 

We ended up, at the two ground stations, with 
1,288 measurements collocated for SOM-NV 
retrievals and 623 measurements collocated for the 
standard SeaWiFS algorithm (fewer because of the 
dust mask). We compared the RMSE and the MRE 
of τSOM-NV and τSeaWiFS with respect to the observed 
τAERO. 

The results for the AERONET measurements 
collocated with those of SeaWiFS and the SOM-NV 
for which the SeaWiFS optical thickness value was 
less than 0.35 (SeaWiFS critical value) are presented 
in Table 1. Table 2 shows comparisons for the 
AERONET measurements collocated with those of 
the available SOM-NV, which only include 
measurements for which the optical thickness value 
was higher than 0.35. 

The correlation coefficient between τSOM-NV and 
τAERO is higher than that between τSeaWiFS and τAERO 
showing the good performances of the SOM-NV 
method. This is confirmed by the scatter plot of 

τSOM-NV and τAERO , and τSeaW and τAERO (Figure 3 for 
Dakar, Figure 4 for Cabo Verde). But it is also 
important to note that the SOM-NV neural decoding 
allows the retrieval of high optical thickness values 
(i.e., greater than 0.35, above which the SeaWiFS 
algorithm does not work) with a good accuracy. 

6 CONCLUSIONS 

We have developed an original and efficient two-
step method for retrieving optical properties (type 
and optical thickness) from TOA reflectance 
measured by satellite-borne multi-spectral ocean-
color sensors. The method is based on a combination 
of a neural network classification and a variational 
optimization. It makes use of the full spectrum and 
two viewing angles of measurements to perform the 
aerosol identification. 
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Figure 2: Monthly map of optical thickness (left panels) computed with SOM-NV and extent of Saharan dust (right panels) 
for (from top to bottom) January, March, July and November 2006 computed with SOM-A-S. 
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Table 1: Comparison of the performances (RMSE and MRE) obtained on the optical thickness (< 0.35) computed by the 
SOM-NV and the SeaWiFS product with respect to the concomitant AERONET measurements at  Dakar (M’Bour) and 
Cabo Verde (Sal Island) averaged for the 12 years from 1997 to 2009. 

Station Number of 
Collocated data 

RMSE MRE (%) Correlation coefficient  
SOM-NV SeaW. SOM-NV SeaW. SOM-NV SeaW. 

Dakar 232 0.023 0.025 33.8 32.6 0.83 0.69 
Cap-Vert 391 0.017 0.018 42.2  40.8 0.79 0.70 

Table 2: Performances (RMSE and MRE) obtained on the optical thickness computed by the SOM-NV for τ >0.35 only, 
with respect to AERONET measurements at Dakar (M’Bour) and Cabo Verde averaged for the 12 years. 

Station Number of Collocated data RMSE MRE (%) Correlation coefficient 

Dakar 338 0.025 21.9 0.88 
Cap-Vert 327 0.024 25.2 0.91 

 
Figure 3: Scatter plot of the optical thickness 
measurements computed by SOM-NV (Δ) and the 
SeaWiFS product (*) with respect to the AERONET 
measurements at Dakar. 

This new method allows retrieval of the aerosol 
optical properties from the statistical properties of 
the data and for the first time the identification of the 
aerosol type. Besides, it gives accurate results for 
optical thickness values greater than 0.35, which is 
not the case for the standard SeaWiFS product. This 
allowed  us  to  substantially  increase the number of 
pixels processed with respect to the standard 
SeaWiFS algorithm by an order of magnitude as 
shown in Table 1 and Table 2. Moreover, the 
method permits detection of absorbing aerosols, 
such as Saharan dusts, which is still a challenge. 

The monthly mean optical thickness measured by 
the SeaWiFS sensor is strongly correlated with the 
ground based measurements (AERONET stations), 
which validates the pertinence of the method. 
Analysis of the 13 years of observation show an 
important seasonal variability associated with the 
wind  direction and intensity.  The Saharan dust con- 

 
Figure 4: Scatter plot of the optical thickness 
measurements computed by SOM-NV (Δ) and the 
SeaWiFS product (*) with respect to the AERONET 
measurements at Cabo Verde.  

centration is maximal in summer when the ITCZ is 
at its maximum latitude and minimum in autumn 
when the vegetation bloom reduces the soil erosion 
by the wind. This 13 year climatological data set 
available at http://www.locean-ipsl.upmc.fr/ 
~POACC/ may be used to assess the seasonal 
variability of the mass of Saharan dust transported 
by the wind over the Atlantic Ocean. This new 
method can be easily implemented. Climatologists 
will get a better estimate of the aerosol concentration 
over the ocean and will have access to the aerosol 
type, which is important to understand their impact 
on climate. 

ACKNOWLEDGEMENTS 

We are grateful for the support we received from 
CNES and IRD. We thank Dr. H. R. Gordon and C. 

NCTA 2011 - International Conference on Neural Computation Theory and Applications

302



 

Moulin for providing the synthetic database. We 
thank the AERONET team and Dr. Tanré from LOA 
(Lille) for kindly providing the sun-photometer data 
at Dakar and Cabo Verde. 

REFERENCES 

Bishop, C. (1995). Neural networks for pattern 
recognition. Oxford University Press. 

Brajard, J., Jamet, C., Moulin, C. and Thiria, S. (2006). 
Use of a neuro-variational inversion for retrieving 
oceanic and atmospheric constituents from satellite 
ocean colour sensor: Application to absorbing 
aerosols. Neural Networks 19, 178-185.  

Brajard, J., Niang, A., Sawadogo, S., Fell, F., Santer, R 
and Thiria, S. (2007). Estimating Aerosol parameters 
from MERIS ocean colour sensor observations by 
using topological maps. Intern. J. Remote Sensing , 
Vol28, N° 3-4 pp 781-795. 

Gordon, H. R. & Wang, M. (1994). Retrieval of water-
leaving radiances and aerosol optical thickness over 
the oceans with SeaWiFS: A preliminary algorithm. 
Applied Optics, 33(3), 443-453. 

Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J. P., 
Setzer, A., et al. (1998). AERONET. A federated 
instrument network and data archive for aerosol 
characterization. Remote Sensing of Environment, 
Vol. 66, no1, p. 1-16. 

Husar, R., Stowe, L. and Prospero, J. (1997). 
Characterization of tropospheric aerosols over the 
oceans with NOAA advanced very high resolution 
radiometer optical thickness operational product. 
Journal of Geophysical  Research, 102(16), 889-909. 

Jamet, C., Thiria, S., Moulin, C., and Crepon, M. (2005). 
Use of a neuro-variational inversio for retrieving 
oceanic and atmospheric constituents from ocean color 
imagery. A feasibility study. Journal of Atmospheric 
and Oceanic Technology, 22(4), 460-475. 
Doi:10.1175/JTECH1688.1 

Kohonen, T. (2001). Self organizing maps (3rd ed.). Berlin 
Heidelberg: Springer Verlag. p. 501. Moulin, C., 
Lambert, C. E., Dulac, F. and  Dayan, U. (1997). 
Control of atmospheric  export of dust from North 
Africa by the North Atlantic Oscillation. Nature,  387, 
691-694.   

Moulin, C., Gordon, H. R., Banzon, V. F., and  Evans, R. 
H. (2001). Assessment of Saharian dust absorption in 
the visible from SeaWiFS imagery. Journal of 
Geophysical Research, 106, 18239-18250. 

Niang, A., Badran, F., Moulin, C., Crépon, M. & Thiria, S. 
(2006). Retrivial of aérosol type and optical thickness 
over the Mediterranean from SeaWiFS images using 
an automatic neural classification method. Remote 
Sensing of Environment, Vol. 100, no1, p. 82-94. 

Nobileau, D. and Antoine, D. (2005). Detection of blue-
absorbing aerosols using near-infrared and visible 
(ocean color) remote sensing observations. Remote 
Sensing of Environment, Vol. 95, no3, p. 368-387.  

Tanre, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, 
J., Perbos, J. and Deschamps, P. Y. (1997). 
Description of a computer code to simulate the 
satellite signal in the solar spectrum: 5s code. 
International Journal of Remote Sensing, 11 : 659-
668. 

RETRIEVING AEROSOL CHARACTERISTICS FROM SATELLITE OCEAN COLOR MULTI-SPECTRAL SENSORS
USING A NEURAL-VARIATIONAL METHOD

303


