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Abstract: This paper studies a discrete particle swarm optimizer for multi-solution problems. The algorithm consists of
two stages. The first stage is global search: the whole search space is discretized into the local sub-regions
each of which has one approximate solution. The sub-region consists of subsets of lattice points in relatively
rough resolution. The second stage is local search. Each subregion is re-discretized into finer lattice points
and the algorithm operates in all the subregions in parallel to find all approximate solutions. Performing basic
numerical experiment, the algorithm efficiency is investigated.

1 INTRODUCTION

The particle swarm optimizer (PSO) is a simple
population-based optimization algorithm and has
been applied to various systems (Wachowiak et al.,
2004) (Garro et al., 2009) (Valle et al., 2008): signal
processors, artificial neural networks, power systems,
etc. The PSO has been improved and evolved in or-
der to expand the search function for various prob-
lems (Engelbrecht, 2005): multi-objective problems,
multi-solution problems (MSP), discrete PSO, hard-
ware implementation, etc. The MSP is inevitable in
real systems and several methods have been studied
(Parsopoulos and Vrahatis, 2004). The discrete PSO
operates in discrete-valued search space (Engelbrecht,
2005), (Sevkli and Sevilgen, 2010) and has several ad-
vantages on reliable operation, reproducible results,
robust hardware implementation, etc. However, there
exist not many works of digital PSO for the MSP.

This paper presents the nesting discrete parti-
cle swarm optimizers (NDPSO) for the MSP. The
NDPSO consists of two stages. The first stage is
the global search. The whole search space is dis-
cretized into the local subregions (LSRs) that consist
of subsets of lattice points in relatively rough resolu-
tion. Applying the particles with ring topology, the
NDPSO tries to find the LSRs each of which includes
the first approximate solution (AS1) that is a solu-
tion candidate. The second stage is the local search
where each LSR is discretized into finer lattice points.
The NDPSO operates in all the LSRs in parallel and
tries to find all the approximate solutions (AS2). The

roughness in the global search is a key to find all AS2s
and the parallel processing in the local search is basic
for effective computation. Since the NDPSO adopts
subdivision, we have used the word ”nesting”. The
NDPSO may be regarded as a discrete version of the
multi-population method (Yang and Li, 2010) with an
eagle strategy (Yang and Deb, 2010). Performing ba-
sic numerical experiments, the algorithm capability is
investigated.

2 NESTING DISCRETE PSO

For simplicity, we consider the MSP in 2-dimensional
objective functionsF(x)≥ 0,x≡ (x1,x2)∈R2 where
the minimum (optimal) value is normalized as 0.F
has multiple solutionsxi

s, i = 1 ∼ M: F(xi
s) = 0,

x
i
s = (xi

s1,x
i
s2) ∈ S0. The search space is normal-

ized as the center at the original with widthA: S0 ≡
{x| |x1| ≤ A, |x2| ≤ A}. As a preparation, we define
several objects. The particleαi is described by its po-
sitionxi and velocityvi: αi = (xi,vi), xi ≡ (xi1,xi2),
vi ≡ (vi1,vi2)) and i = 1 ∼ N. The positionxi is a
potential solution. The personal best of thei-th par-
ticle, pbesti = F(xpbesti), is the best ofF(xi) in the
past history, The local best,lbesti = F(xlbesti), is the
best of the personal bestpbesti for thei-th particle and
its neighbors. For example, the neighbor means thei-
th and both sides particles in the ring topology. The
global bestgbest is the best of the personal bests and
is the solution of the present state. In the complete
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graph, thelbesti is consistent withgbest.
First, the search spaceS0 is discretized intom1×

m1 lattice points as shown in Fig. 1 (a):L0 ≡
{011, l02, · · · , l0m1}, l0k = −A+ kd− d/2, d = 2A/m1
wherek = 1∼ m1, F(x) is sampled on the discretized
search spaceD0. The target is the AS1 defined by

F(p)<C1, p≡ (p1, p2) ∈ D0 (1)

whereC1 is the criterion. The AS1 is used to make the
LSRs each of which includes either solution. Lett1
denote the discrete time in this stage and letk1 denote
the counter of AS1.
Step 1. Let t1 = 1 and letk1 = 0. Let N1 particles
form ring topology. The particle positionsxi, i = 1∼
N, are assigned onD0 randomly following uniform
distribution onD0 (Fig. 1 (a)). vi, pbesti and lbesti
are all initialized.
Step 2. The position and velocity are updated.

vi(t1+1) = ωvi(t1)+ r1(xpbesti −xi(t1))
+ r2(xlbesti −xi(t1))

xi(t1+1) = xi(t1)+vi(t1+1)
(2)

wherer1 andr2 are random parameters in[0,c1] and
[0,c2], respectively. Ifxi(t1 + 1) exceedsD0 then it
is re-assigned intoD0. The parametersω, r1, r2, c1
andc2 are selected from lattice points to satisfy the
conditionx(t1)inD0.
Step 3. The personal and local bests are updated:

xpbesti = xi(t1) if F1(xi(t1))< F1(xpbesti)
xlbesti = xpbesti if F1(xpbesti)< F1(xlbesti)

(3)

Step 4. If F(xi) < C1 for somei (Fig. 1(b)) thenxi
is declared as thek1-th AS1 and the counter number
is increased:pk1 = xi andk1 = k1+1. The position
xi is declared as a tabu lattice point and is prohibited
to revisit. xi is reset to a lattice point (Fig. 1(c)).vi,
pbesti andlbesti are all reset.
Step 5. Let t1 = t1+1, go to Step 2 and repeat until
the maximum time steptmax1.

In order to make the LSRs each of which is desired
to include the target solution, we select topK of the
AS1sp1, · · · ,pK such thatF(p1) ≤, · · · ,≤ F(pK) ≤
C1. (If k1 < K then the topk1 is used). Using the
AS1s, we construct subsets (LSR candidates) succes-
sively for i = 1 to K: the i-th subsetSi is centered at
p

1 with area(2mad)2: Si = {x | |x1− pi
1|< a1, |x2−

pi
2|< a1}, a1 =mad, i = 1∼K wherepi = (pi

1, pi
2) is

the i-th AS1 andma is an integer smaller sufficiently
than m1. The ma determines area ofSi in square
shape. Although this paper uses square-shaped sub-
spaces for simplicity, a variety of shapes should be
tried depending on objective problems. If two or more
subsets overlaps then the subset centered at the small-
est AS1 is survived and the other subsets are removed.
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Figure 1: Particles movement for two solutions. (a) Initial-
ization, (b) the first AS1, (c) position reset, (d) two LSRs.
(e) initialization for local search, (f) AS2.

If we obtain more thanM survived subsets, we select
subsets centered at topM of AS1s. We then obtainM
pieces of LSRs and reassign the notationp

i ≡ (p1
1, pi

2)
to the AS1 in thei-th LSR.If the LSRs include the tar-
get solutions xi

s, i = 1∼ M then the global search is
said to be successful.

Next, we discretize each LSR ontom2 ×m2 lat-
tice points: Di = {x | x1 − pi

1 ∈ Li, x2 − pi
2 ∈ Li},

Li = {li1, · · · , lim2}, lik = −(ma + 1/2)d + kd1, d1 ≡
2mad/m2 This Di is thei-th discretized LSR.F(x) is
sampled onDi. The target is the AS2 defined by

F(qi)<C2, q
i ≡ (qi

1,q
i
2) ∈ Di (4)

whereC2 (< C1) is the criterion. The local search
operates in parallel inDi (Fig. 1 (e) (f)).
Step 1. Let t2 denote the discrete time and lett2 = 1.
Positions ofN2 particles in complete graph are as-
signed randomly onDi (Fig. 1 (e)). vi, pbesti and
gbest are all initialized.
Step 2. The position and velocity are updated.

vi(t2+1) = ωvi(t2)+ r1(xpbesti −xi(t2))
+ r2(xgbest −xi(t2))

xi(t2+1) = xi(t2)+vi(t2+1)
(5)

wherer1 andr2 are random parameter in[0,c1] and
[0,c2], respectively. Ifxi exceedsDi then it is re-
assigned intoDi. The parametersω, c1 and c2 are
selected to satisfyxi ∈ Di.
Step 3. The personal and global best are updated:

xpbesti = xi(t2) if F1(xi(t2))< F1(xpbesti)
xgbest = xpbesti if F1(xpbesti)< F1(xgbest)

(6)
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Step 4. If F(xgbest) < C2 for somei then we obtain
one AS2 and the algorithm is terminated.
Step 5. Let t2 = t2+1, go to Step 2 and repeat until
the maximum time steptmax2.

If the object is the AS2 only, the particles are of-
ten trapped into either solution or local minima and
are hard to solve the MSP. Our NDPSO tries to sup-
press the trapping by global search for the AS1 with
discretization (sampling) of the objective function.

3 NUMERICAL EXPERIMENTS

In order to investigate the algorithm capability, we
have performed basic numerical experiments for the
Himmelblau function with four solutions as illus-
trated in Fig. 2 (a):

FH(x) = (x2
1+ x2−11)2+(x1+ x2

2−7)2

min(FH(x
i
s)) = 0, i = 1∼ 4,

(7)

x
1
s = (−2.805118,3.131312)≡ Sol1,

x
2
s = (3,2)≡ Sol2,

x
3
s = (−3.779310,−3.283185)≡ Sol3,

x
4
s = (3.584428,−1.848126)≡ Sol4

S0 = {x | |x1| ≤ 6, |x2| ≤ 6 }.

We have selectedm1, C1 andtmax1 as control param-
eters and other parameters are fixed after trial-and-
errors:N1 = N2 = 20,ω = 0.7, c1 = c2 = 1.4,K = 30,
m1/(2ma) = 8, m2 = 32, tmax2 = 50 andC2 = 0.04.
Fig. 2 (b) to (f) and Fig. 3 show a typical example
of the global search process form1 = 64,C1 = 5 and
tmax1 = 50. The NDPSO find the first AS1 att = 4
and find the other AS1s successively. At time limit
tmax1, the NDPSO can construct all the four LSRs suc-
cessfully. Each LSR has 82 (8= 2ma = m1/8) lattice
points. Fig. 2 (g), (h) and Fig. 4 show the local search
process where the NDPSO can find all the approxi-
mate solutions.

We evaluate the global search by success rate (SR)
that means rate of finding all the LSRs in 100 trials for
different initial states. Table 1 shows the SR of global
search form1 andC1. For m1 = 32, 64 and 128, the
LSR has 42, 82 and 162 lattice points, respectively in
the global search. The LSR is divided intom2 ×m2
lattice points for the local search. We can see that
C1 is important for finding LSRs. AsC1 increases
the SR increases and tends to saturate. For smaller
C1, the NDPSO operates like standard analog PSO in
principle and tends to trap local solution/minimum.
For largerC1, the NDPSO has possibility to find a
suitable AS1 before the trapping. Asm1 increases,
the resolution becomes higher and the SR tends to in-
crease; however, the computation cost also increases

(c) t1=4

2x

1x
6−
6−

6

6

(f) t1=tmax1

AS1

Sol1

Sol2

Sol3

Sol4

(a)

(b) t1=0

(d) t1=7

(e) t1=9

(g) t2=0

(h) t2=4

2x

1x

Sol3

AS1

AS1

(c) t1=4

2x

1x
6−
6−

6

6

(f) t1=tmax1

AS1

Sol1

Sol2

Sol3

Sol4

(a)

(b) t1=0

(d) t1=7

(e) t1=9

(g) t2=0

(h) t2=4

2x

1x

Sol3

AS1

AS1

Figure 2: Particles movement ofFH . (a) contour map, (b)
initialization, (c) to (e) global search process, (f) four LSRs
(g) initialization for local search, (h) AS2.
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Figure 3: Global search process ofFH . mim(FH(xi)) means
the minimum ofFH at timet1.

of course: there exists a trade-off between the SR and
computation cost.

We evaluate the local search by the SR and the
average number of iteration (#ITE) of finding all the
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Figure 4: Local search process ofFH .

AS2s in 100 trials for different initial states. Table 2
shows the SR/#ITE of local search after the successful
global search. We can see that the NDPSO can find
all the AS2 speedily.

Table 1: SR of global search ofFH for tmax1 = 50.

C1 = 3 C1 = 5 C1 = 10 C1 = 20 C1 = 30

m1 = 32 20 36 59 79 84

m1 = 64 32 53 74 92 94

m1 = 128 46 61 80 91 95

Table 2: SR/#ITE of local search ofFH for tmax1 = 50.

C1 = 3 C1 = 5 C1 = 10 C1 = 20 C1 = 30

m1 = 32 100/5.30 100/5.60 100/5.46 100/5.55 100/5.57

m1 = 64 100/5.01 100/5.34 100/5.41 100/5.43 100/5.49

m1 = 128 100/5.08 100/5.20 100/5.36 100/5.42 100/5.55

Table 3: SR of global search ofFH for C1 = 5.

m1 = 32 m1 = 64 m1 = 128

tmax1 = 10 8 8 8

tmax1 = 30 31 40 47

tmax1 = 50 36 53 61

tmax1 = 100 - 57 70

tmax1 = 200 - 60 71

tmax1 = 400 - - 71

tmax1 = 800 - - 72

Table 3 shows the SR in global search fortmax1 and
m1. The SR increases astmax1 increases. Form1 = 64
and 128, the SR saturates andtmax1 = 50 (or 100) is
sufficient for reasonable results. The parametertmax1
can control the SR and computation costs.

4 CONCLUSIONS

The NDPSO is presented and its capability is investi-
gated in this paper. Basic numerical experiments are

performed and the results suggest the following.
1. The parametersm1 andC1 can control rough-

ness in the global search that is important to find all
the LSRs successfully. Higher resolution encourages
trapping and suitable roughness seems to exist.

2. Parallel processing of the local search in LSRs
is basic for efficient search. If LSRs can be con-
structed, the AS2s can be found speedily and steadily.

3. The discretization is basic to realize reliable
and robust search in both software and hardware.

Future problems are many, including analysis
of search process, analysis of role of parameters,
comparison with various PSOs (Engelbrecht, 2005)
(Miyagawa and Saito, 2009) and application to prac-
tical problems (Valle et al., 2008) (Kawamura and
Saito, 2010).
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