
USING SIMULATION TRAINING GAMES TO CREATE MORE
ACTIVE AND STUDENT CENTERED LEARNING

ENVIRONMENTS FOR SOFTWARE AND SYSTEMS
ENGINEERING EDUCATION

Tucker Smith, Aaron Tull
The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, U.S.A.

Kendra Cooper, Shaun Longstreet
The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, U.S.A.

Keywords: Education, Games, Simulation training, Software and systems engineering.

Abstract: This paper contends that many of the bottlenecks and difficulties facing faculty and students in traditional
lecture and textbook approaches to classrooms can be effectively addressed through the creation and
application of simulation based games. In addition to augmenting an active, student-centered learning
environment, simulation games can also cultivate soft skills such as communication, teamwork and self-
reflection. From a software engineering perspective, an AOP-based architecture approach to developing a
simulation game allows for greater flexibility and an increased ability to tailor the simulation for particular
institutional and pedagogical needs.

1 INTRODUCTION

Software engineering (SE) and Systems Engineering
(Sys) education have critical roles in preparing the
future CISE workforce for careers in an increasingly
technical, interconnected, and changing world. The
specialized knowledge required to prepare students
for a career in SE and Sys is rapidly changing with
the advent of new techniques and technologies; their
educational infrastructure faces significant
challenges including the need to rapidly, widely, and
cost effectively introduce new or revised course
material; encourage the broad participation of
students; address changing student motivations and
attitudes; support undergraduate, graduate and
lifelong learning; and incorporate the skills needed
by industry. E-learning, as part of this infrastructure,
has the potential to address many of these challenges
and have a significant impact. In SE/Sys, current e-
learning options include non-interactive slide-based
or video/webinar courses and, very recently, a small
number of research education games.

There is a growing use sophisticated simulation
games in higher education. For example, in the field

of supply chain management, there has been growth
in simulation games (Horn and Cleaves, 1980; Riis
1995; Chen and Samroengraja, 2000; Anderson and
Morrice, 2000; and Mustafee and Katsialiki). With
respect to software engineering, two groups have
initiated games to teach SE concepts: SimSE (Wang
2004) and SESAM, Software Engineering
Simulation by Animated Models (Ludewig, 1992).

We believe the following SE curriculum
guidelines (Diaz Herrera 2004) could be better met
using a simulation game approach, rather than
traditional, lecture based approach:

 Software engineering must be taught as a
problem-solving discipline.

 The curriculum should have a significant real-
world basis.

 To ensure that students embrace key ideas, care
must be taken to motivate students by using
interesting, concrete and convincing examples.

 Software engineering education in the 21st
century needs to move beyond the lecture
format: It is therefore important to encourage
consideration of a variety of teaching and
learning approaches.

386

Smith T., Tull A., Cooper K. and Longstreet S..
USING SIMULATION TRAINING GAMES TO CREATE MORE ACTIVE AND STUDENT CENTERED LEARNING ENVIRONMENTS FOR SOFTWARE
AND SYSTEMS ENGINEERING EDUCATION.
DOI: 10.5220/0003621603860392
In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2011), pages
386-392
ISBN: 978-989-8425-78-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Games have been recognized as a tool to
promote deep, reflective learning (Gee, 2003). An
extensible, web-enabled, freely available, engaging,
problem-based game platform that provides students
with an interactive simulated experience closely
resembling the activities performed in a (real)
industry development project would transform the
SE/Sys education infrastructure. Pedagogical
improvements include more active, student centred
learning that stresses higher levels of critical thought
and real-world applications.

Literature is available that reports the issues with
more traditional (lecture based) pedagogical
methodology and the benefits of simulation game
learning. Therefore, the need for SE/Sys simulation
games has been established; however there is a
limited body of work available on games to fill this
need (refer to Section 5). Our research addresses a
key concern that has received little attention to date:
how to systematically integrate “good” game design
concepts to make the game fun and engaging and
embody a collection of well defined SE/Sys learning
objectives in the game play. We believe games that
accomplish both of these requirements are necessary
to successfully shift the educational paradigm
towards a more effective pedagogy.

This short paper is organized as follows. We
review the issues of traditional (lecture based)
courses and the benefits of simulation games based
learning reported in the literature in Section 2, which
reiterates the need for SE/Sys simulation games. In
Section 3, two collections of requirements for the
SE/Sys games are described: “good” game design
and the learning objectives. An overview of our
proposed framework, SimSYS, is described in
Section 4. Related work on SE/Sys game literature is
presented in Section 5; conclusions and future work
are in Section 6.

2 TRADITIONAL VS.
SIMULATION GAME BASED
SE/SYS EDUCATION

Here we review the reported issues with the
traditional (lecture based) pedagogy and the reported
benefits of more interactive approaches, including
the use of simulation games.

2.1 Traditional Pedagogy

The majority of introductory courses on software
engineering are textbook and lecture based.

Textbooks are static, representational pieces of SE
knowledge – they do not actively engage student
learning, let alone instil life-long learning skills.
Traditional approaches are almost entirely dependent
on physical classrooms and synchronous meeting
time with faculty present; this limits the
opportunities that students have for sustained
practice and immediate, useful feedback. Moreover,
in traditional teaching methods, faculty and students
are often outside of a feedback loop – that is, faculty
do not know if students understand key concepts
until after summative assessments (such as midterms
or final projects), and students are not aware of their
mastery of course content until after an assessment
occurs and long after said content was first presented
to them. Finally, in the text and lecture style of
teaching, one of the biggest issues that faculty face,
even with successful students, is the limited ability
that these higher-performing students have with
taking their knowledge from text and/or lecture
materials and later applying it to real-world software
management scenarios. Text and lecture curricula
depend on plugging in numbers or regurgitating
formulaic examples; they provide few opportunities
to learn transference skills, where variables in
problems strengthen student abilities to apply
learning to similar but different situations.

2.2 Simulation Game based Pedagogy

The simulation game approach allows students to
create a personalized learning experience,
progressively incorporating new knowledge and
scaffolding it into what they already know
(Alvermann, 1985, Weinstein, 2000). The variability
within this interactive environment permits students
to work on lower-level tasks repeatedly as they
begin to develop broader analytical skills and make
progress towards completing the game objectives.
At the same time, each student can engage course-
based material at his or her own pace; he or she is
able to explore a variety of actions to progress
towards completing the game. Feedback is frequent
and immediate, thereby reinforcing mastery of
fundamental skills required for advancing further
into the game.

Because a simulation game is task-oriented, it
encourages practice and mastery rather than rote
memorization. It encourages students to use higher
orders of thinking because not only do student
players need to track fundamental concepts and
resources, they must also weigh appropriate
applications (Walker, 2008, Westera, 2008,
Nadolski, 2010). A game encourages strategic

USING SIMULATION TRAINING GAMES TO CREATE MORE ACTIVE AND STUDENT CENTERED LEARNING
ENVIRONMENTS FOR SOFTWARE AND SYSTEMS ENGINEERING EDUCATION

387

learning where students practice transference skills
to more complex scenarios that, while related in
practice, are dissimilar in appearance to examples
presented in class (Alexander, 1998, Blessing,
1996).

Creating a playable simulation for use within the
SE curriculum establishes a more motivating
learning environment since the game appeals to a
student’s sense of fantasy and amusement; it is also
self-directed, appealing to a student’s curiosity; and
it is a continuous challenge where existing tasks or
knowledge appear incomplete, inconsistent or
incorrect, thereby pushing a student to continue and
foster deeper levels of learning (Malone, 1980).

3 SE/SYS SIMULATION GAME
PLAY REQUIREMENTS

3.1 What makes a “Good” Game?

Game researchers have established many
characteristics that make a “good” game. We
categorize established characteristics of “Good”
Game Design around two key QoS attributes:
Usability and Playability.

• Interactive Embedded Tutorials. To help the
player learn how to play the game, this
approach provides a fast and intuitive means.
It removes the burden of the player working
through a separate tutorial or user manual.
(primarily Usability)

• Multiple Real-time Strategy Scenarios. To
keep the game fresh and interesting to players
over time, the game needs to present different
“twists” each time. The graphic interface and
underlying engine need to support the
generation of scenarios and the player’s
interactions in real-time. (primarily
Playability)

• Self-assessing Framework. To provide
immediate feedback to the player regarding
their performance, or success, the game needs
to keep track of this and present it to the
player. (Usability and Playability)

• Graphical Sophistication. To appeal to a
broader audience, the game needs to have a
high-end graphical interface. (primarily
Playability)

• Multiple Levels of Difficulty. The game
should be multi-level in order to continue to
challenge the player and retain their interest

over time. A player will become bored if the
game only has one level of difficulty.
(primarily Playability)

• Multiple Players. The game should be multi-
player to allow players to compete against
one another, rather than against a program.
Recently, for example, new popular games
are being launched using the Google-game-
platform. (primarily Playability)

For educational games, we propose adding the
following three characteristics:

• External-assessing Framework. To
anonymously measure the learning outcomes
achieved by the player and record progress in
the game.

• Clearly Identifying In-game Objectives with
Course Learning Outcomes. To make the
learning explicit and cultivate better self-
awareness within the student players.

• Curriculum Guide for Faculty. Because the
game will be designed to be used at other
campuses, a ‘game-master’ guide will be
developed. This will be a template that other
faculty can use to consider how to best utilize
the game for their curricula.

3.2 What are we Teaching?

We envision a Game Development Platform (GDP)
that supports developing a collection of games, each
with their own learning objectives. The Software
Engineering Education Knowledge (SEEK) standard
of SE2004 will be used as one part of the foundation
in our research: we use it to identify, prioritize, and
select game scenarios. Another source of learning
objectives is our industrial advisory board members.
Representatives from companies with local offices
are involved with research, senior design projects,
and provide feedback on curriculum content. Our
position is that learning objectives can be considered
as high level requirements that can be systematically
elicited, specified, analysed, and managed using
established best practices in requirements
engineering.

For prioritization, SEEK assigns to each topic
one of three Bloom taxonomy levels: knowledge
(Remembering previously learned material)
comprehension (Understanding information and the
meaning of material presented) and application
(Ability to use learned material in new and concrete
situations). Furthermore, the topics are categorized
as Essential, Desirable, or Optional. SE2004
categorizes application level topics as Essential. For
the learning objectives traced back to specific SEEK

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

388

topics, the prioritization of adopting the topics is that
Essential, Application level topics have the highest
priority.

4 SimSYS GDP

In order to achieve the highest impact with game
based pedagogy, we contend that the simulation has
a strong core with flexibility for tailoring to specific
institutional needs in mind. The architecture for the
SimSYS GDP we propose is illustrated at a high
level in Figure 1. It is intended to support the
development of collections of simulation training
games and their execution, where each game
embodies a specific set of learning objectives. As a
game is played, the game play events are logged;
they are analyzed to automatically assess a player’s
accomplishments and automatically adapt the game
play script.

4.1 Architecture

Each component is briefly described below in terms
of its purpose and capabilities it provides.
Game Play Integrated Development Environment
(IDE). The IDE provides a What You See and Hear
is What You Get (WYSHIWYG) UI that abstracts
the XML specification of a game and a text editor to
modify the XML directly. One concern with XML
game scripts is their potential size and complexity;
game designers need to be able to modularize the
game specification. Designers can structure their
game play specifications into scenes. They can work
on one scene at a time, considering the characters,
dialog, graphics, sound, and possible game play
alternatives. The IDE allows the game designer to
execute the game script from within the IDE for
convenience. The Game Play scripts are stored in the
Game Play Data Repository; they can be saved,
loaded, copied, or deleted.

Figure 1: Overview of the Game Development Platform.

Sidebar 1: The Agent-Oriented Paradigm.

Game Play Framework. The framework executes
the game play script. Many commercial and open
source game frameworks are currently available; our
framework is novel in that we propose an agent-
oriented solution. We believe AOP is an excellent
match for the SE and Sys education GDP; our
position on this is presented in (Tull, 2011). See
Sidebar 1 for more information about AOP.
Game Play Data Repository. This repository logs
all game play events that occur while the game is
being played.
Player Assessment. This component uses the Game
Play Data Repository to automatically analyse a
player’s accomplishments with respect to the
learning objectives. For example, consider a game
that has project management learning objective(s)
related to scheduling. If the player makes choices in
the game that consistently lead to delivering a
product late, then this pattern should be identified
and reported. In order to do this during the execution
of the game (i.e., dynamic) to provide effective
feedback, then efficient algorithms to identify and
rank the areas for improvement are needed.
Game Play Adaptation. This component uses the
Game Play Data Repository to automatically adapt
the game play script to the behaviour of the player.

The Agent-oriented Paradigm (AOP) is an
alternative approach for constructing software
systems that is well-suited for modelling human
interaction such as collaboration, negotiation, and
conflicts. AOP is based on the concept of an agent,
which are software entities that are situated,
autonomous, flexible, and social (Wooldridge, 2009).
Agents sense the environment and perform actions
that change the environment. They have control over
their own actions and internal states; they can act
without direct intervention from humans. Agents are
responsive to changes in the environment, goal-
oriented, opportunistic, and take initiatives. They
interact with other agents (software, human) to
complete their tasks. The agent-oriented approach is
beneficial in systems that (per O’Malley, 2001):
require complex/diverse types of communication;
have behaviour that is not practical/possible to specify
on a case-by case basis; involve negotiation,
cooperation and competition among different entities;
must act autonomously; and is expected to expand or
change. Recently, the agent-oriented paradigm has
been applied to games. Agent-oriented design
solutions have been proposed for intelligent
gameplay, behaviour adaptation, and computer human
interaction (Dignum, 2009, Goschnick, 2008, Shukri,
2008).

USING SIMULATION TRAINING GAMES TO CREATE MORE ACTIVE AND STUDENT CENTERED LEARNING
ENVIRONMENTS FOR SOFTWARE AND SYSTEMS ENGINEERING EDUCATION

389

There are a number of cases that could be
considered. For example, if a collection of players
(e.g., a class) consistently score very highly in one
part of the game, then this part of the game could be
replaced with a more difficult challenge related to
the same learning objectives (static replacement, for
future players). Parts of the game related to its
learning objective that have not yet been played
could be replaced before the player gets to them
(dynamic replacement, for the current player).

4.2 Use of the GDP

The use of the GDP is envisioned as follows. The
requirements for a specific game (e.g., a game
covering learning objectives related to the agile
method Scrum, requirements engineering, or
software architecture) are captured using the Game
Play IDE. This is a manual step, in which the game
designer instantiates a template for the specific
simulation training game; the game designer can
tailor the template.

The template has a collection of questions to
assist the designer (helping to improve the
consistency and completeness of the game play
requirements). For our project, the template is
represented in XML; however alternative
representations are possible. Each question helps to
specify the behaviour of GDP components.

Template questions begin at high-level, non-
functional learning objectives. Questions like, “Will
the player learn about human resources?”

Answers open new, more functional and more
specific questions, “What personality qualities do
non-player characters (NPC’s) have?”

At their most specific, the questions transition to
strictly functional, “Which of the following 3
random interactions are possible between NPC’s
during a project meeting?”

Other requirements that make up the “what,
when and where” of the scenario are configured by a
similar vein of questions. For example:
 “What is the setting?”

o “What is the building floor plan?”
 “Which office is the player’s?”
 “How big is the office?”

o “When is it?”
 “What time of day?”
 “What day of week?”

o “What is the narrative background?”
 “What is the player’s history?”
 “What is the player’s job?”

 “Who are the NPC’s involved?”
o “How many are there?”

o “What do they look like?”
o “What are their names?”

Answers will shape the scenario. Specifying the
size of the player’s office tells the Game Play
Framework to graphically display an office of that
size, and constrains how the player can move in this
space. Choosing “Human Resources” as a learning
objective configures new assessment criteria in the
Game Play Assessment component, which will now
monitor how the player interacts with NPC’s, and
how NPC’s interact with each other. Selecting which
random events are possible during the scenario
configures new possibilities and strategies in the
Game Play Adaptation component, which now has
new actions at its disposal.

4.3 Discussion

The GDP we are proposing has a number of unique,
novel contributions:

 Educational Game Specification Template.
Templates capture expertise, improve
consistency and completeness, and support the
modularization of game specifications. They can
be tailored to provide flexibility. The use of
templates is an established best practice in
SE/Sys engineering processes. Game designers
can instantiate the templates using a
WYSHIWYG UI.

 Agent-oriented game engine. Agents are well
suited to embody intelligent gameplay,
behaviour adaptation, and computer human
interaction properties; these support the
development of fun and engaging games for
SE/Sys education.

 Automated assessment of the player’s
accomplishments.

 Automated, self-adaptation of the game play
script.

Furthermore, the SimSys GDP provides many of the
facilities necessary to support “good” game
characteristics:

 Interactive Embedded Tutorials. Game scripts
provide the capacity to create in-game tutorials.

 Multiple Real-time Strategy Scenarios. The
Game Adaptation component supplies the
necessary functionality for scenarios that change
and modify themselves dynamically, creating
novel experiences for the player.

 Self-assessing Framework. The Game
Assessment component is designed to provide
all the facilities necessary to identify player
progress and generate immediate feedback.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

390

 Graphical Sophistication. The Game
Framework provides capabilities for 2D
graphics and animation, and can support a wide
range of interfaces (simpler to more complex).

 Multiple Levels of Difficulty. Game
Adaptation provides one mechanism for
changing difficulty. Other mechanisms are
planned.

 Multiple Players. SimSys does not currently
support multiplayer games. This is planned as an
avenue of future research.

 External-assessing Framework. Game
Assessment also has the facilities to identify
player progress, and report assessment metrics
to an instructor or teacher.

 Clearly Identifying In-game Objectives with
Course Learning Outcomes. Game IDE
Templates straightforwardly ask which learning
outcomes the scenario designer is seeking.
Armed with this knowledge, scenarios are in a
better position to inform the player of
pedagogical context.

 Curriculum Guide for Faculty. The Game
IDE provides a simple, structured method which
guides scenario designers in the construction of
particular lessons.

5 RELATED WORK

The related work presented here is narrowly
restricted to SE Education Game literature, due to
space restrictions. SimSE is a game designed to
simulate the software development process from a
project management perspective. The game major
components are the Model Builder, the Model
Generator, and the Simulation Environment. The
Model Builder allows the instructor to create a
model according to specific characteristics that
he/she want the students to learn. The Model Builder
allows the instructor to specify the life cycle and the
specifics of the project. The Generator uses the
model specifications to create the scenarios for the
game and the player (student) acts as a project
manager, making decisions for tasking available
employees, acquire new tools or use available tools,
etc. The player can then advance the clock and
observe the consequences of the decisions, which
are made by the Simulation Environment. The
overall goal of the game is to finish a project with
good quality and within the available budget and
schedule. A final score from 0 to 100 (100 means all
the goals have been achieved) determines the level
of success of the student. From a game design

perspective there are also some major issues with
SimSE. First, the game is not very interactive and
after making some decisions the player advances the
clock and analyzes the results; the interface design is
quite static (the characters do not move). While
these may be viewed as small issues in terms of
research, they have a significant impact on game
usability and adoption.

SESAM is also a simulation tool for the
management of the software development process. It
has the same goals as SimSE but lacks a graphical
interface. SESAM uses a new defined language that
allows the users to give commands as they play and
also to create new models/projects. The drawbacks
related to SimSE are also present in the SESAM
project.

6 CONCLUSIONS AND FUTURE
WORK

We contend that creating a game that simulates
specific, key elements in software engineering
education within an interactive student-centred
environment rather than a passive content-centred
environment will lead to higher success for SE
students. The paradigm shift to which this game
contributes will augment faculty resources so that
more course time can be spent reflecting on issues
that players had while working towards the course
goals instead of faculty providing content delivery.
This will help students become life-long learners,
practice deeper problem-solving skills, and enhance
their ability to communicate about SE in a
professional context (Longstreet, 2011). Because the
game environment will better motivate students to
repeatedly practice outside of class time and
challenges them to improve where they specifically
have a need, higher-risk students will have better
chances of success in SE courses.

Our simulation based game offers a concrete,
effective and efficient way to implement the
curriculum guidelines mandated in SE2004. It is an
opportunity to augment a classroom experience by
adding a dynamic, student-centred and thought-
provoking approach to SE education. As the game
can be made freely available for universal adoption,
it could be used to supplement the curricula at
smaller institutions or schools with more limited
access to broad SE expertise such as community
colleges, rural schools and institutions that serve
under-represented communities.

We see future work in this project with the
continued development of the GDP and an example

USING SIMULATION TRAINING GAMES TO CREATE MORE ACTIVE AND STUDENT CENTERED LEARNING
ENVIRONMENTS FOR SOFTWARE AND SYSTEMS ENGINEERING EDUCATION

391

scripted game. The GDP needs to be extended to
support more sophisticated games that are
multiplayer, have multiple roles (e.g. tester), and
multiple levels of difficulty. Finally, assessing
student progress in courses that use the game will be
key to identify the specific strengths and limitations
of a simulation based game approach.

REFERENCES

Alexander, P. A. and Judy, J. E., 1998. The interaction of
domain-specific and strategic knowledge in academic
performance. Review of Educational Research.

Alvermann, D., Smith, I. C. and Readance, J. E., 1985.
Prior knowledge activation and the comprehension of
compatible and incompatible text. Reading Research
Quarterly.

Anderson Jr., E. G., and D. J. Morrice. 2000. Simulation
game for teaching service-oriented supply chain mana-
gement: Does Information Sharing Help Managers
with Service Capacity Decisions? Production and
Operations Management 9: 40-55.

Blessing, S. B. and Anderson, J. R., 1996. How people
learn to skip steps. Journal of Experimental
Psychology: Learning Memory and Cognition.

Chen, F. and R. Samroengraja. 2000. The stationary beer
game. Production and Operations Management 9:19-
30.

Díaz-Herrera J. and Hilburn, T. (editors), Software
Engineering 2004 Curriculum Guidelines for
Undergraduate Degree Programs in Software
Engineering, A Volume of the Computing Curricula
Series, August 23, 2004, The Joint Task Force on
Computing Curricula, IEEE Computer Society and the
Association for Computing Machinery.

Dignum, F., Westra, J., van Doesburg,W. A., and Harbers,
M., 2009. Games and Agents: Designing Intelligent
Gameplay. International Journal of Computer Games
Technology.

Gee, J. P., 2003. What video games have to teach us about
learning and literacy, Macmillan, USA.

Goschnick, S., Balbo, S. and Sonenberg, L, 2008.
ShaMAN: An Agent Meta-model for Computer
Games, in Proceedings 2nd Conference on Human-
Centered Software Engineering.

Horn, R. E., and A. Cleaves. 1980. The Guide to
Simulation/Games for Education and Training.
NewburyPark, CA: Sage Publications

Longstreet, C. S. and Cooper, K., 2011. Using Games in
Software Engineering Education to Increase Student
Success and Retention. In Proceedings 2011
Conference on Software Engineering Education and
Training.

Ludewig, J., Bassler, T., Deininger, M., Schneider, K.,
Schwille, J., 1992. SESAM-simulating software
projects. In Proceedings Fourth International
Conference on Software Engineering and Knowledge
Engineering.

Malone, T., 1980. What makes things fun to learn?
Heuristics for Designing Instructional Computer
Games. In Proceedings of the 3rd ACM SIG SMALL
Symposium and the First SIGPC Symposium Small
Systems.

Mustafee, N. and Katsaliaki, K. The Blood Supply Game.
In B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan,
and E. Yücesan, (Eds), Proceedings of the 2010
Winter Simulation Conference. 327-38.

Nadolski, R. J., Hummel, H. G. K., van den Brink, H. J.,
Hoefakker, R. E., Slootmaker, A., Wu, B., and
Bakken, S. K., 2010. Experiences from Implementing
a Face-to-Face Educational Game for iPhone/iPod
Touch. In Proceedings 2nd International IEEE
Consumer Electronics Society's Games Innovation
Conference.

O’Malley, S. and DeLoach, S, 2001. Determining When to
Use an Agent-Oriented Software Engineering
Paradigm. In Proceedings of the Second International
Workshop On Agent-Oriented Software Engineering.

Riis, J. O., 1995. Simulation Games and Learning in
Production Management. International Federation for
Information Processing. Springer.

Shukri S. and Shaukhi, M., 2008. A Study on Multi-Agent
Behavior in a Soccer Game Domain. World Academy
of Science, Engineering and Technology.

Tull, A., Smith, T., and Cooper, K., 2011. Towards an
Agent-oriented Framework for Serious Game Engines:
Architecting with Behavioural Software Agents,
SimulTech 2011 (to appear).

Walker, A. and Shelton, B.E., 2008. Problem-based
educational games: connections, prescriptions, and
assessment. J. of Inter. Learning Research.

Wang, A., and André van der Hoek, 2004. SimSE:an
educational simulation game for teaching the Software
engineering process. In Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in
computer science education.

Weinstein, C. E., Husman, J. and Dierking, D. R., 2000.
Self-regulation interventions with a focus on learning
strategies. In M. Boekaerts, P. Pintrich and M.
Zeidner, (Eds), Handbook of self-regulation.
Academic Press.

Westera, W., Nadolski, R., Hummel, H. and Wopereis, I.,
2008. Serious games for higher education: a
framework for reducing design complexity. J. of
Computer Assisted Learning.

Wooldridge, M. 2009. Introduction to MultiAgent Systems,
John Wiley & Sons, 2nd edition.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

392

