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Abstract: A three-scale model is presented and analysed using the multi-scale methodology of complex systems. The 
micro-scale model is formulated as a set of stochastic differential equations for the individual disperse 
objects and it is shown that the population balance equation, containing also terms describing collision 
interchange of extensive quantities between the disperse elements is a meso-scale model of disperse 
systems. The macro-scale model is formulated by means of the moments of internal quantities. As an 
example a two-population model, governing the coupled behaviour of crystals and fluid elements is 
presented for describing micromixing in solution crystallization.  

1 INTRODUCTION 

Disperse systems of chemical engineering, contain-
ing large numbers of individual interacting dispersed 
objects such as solid particles, liquid droplets or gas 
bubbles, or often combinations of those are nonequi-
librium and (usually) nonlinear multi-phase systems. 
Their characteristic property is that, not depending 
on the nature of disperse elements, a number of in-
teracting size and time scales can be distinguished 
and identified therefore these systems, in principle, 
belong to the class of complex multi-scale systems . 

The multi-scale structure of disperse systems has 
been considered relating to different modelling and 
computational problems (Eberard et al., 2005; Ing-
ram and Cameron, 2002; Li et al., 2004; Wei, 2007), 
and also in context of population balance models. 
(Mazzotti, 2010; Lakatos, 2010). However, the mul-
tiscale nature of the population balance models of 
disperse systems has not been analysed in details 
yet.  

In this paper the population balance models of 
disperse systems are analysed applying the multi-
scale methodology of complex systems. The micro-
scale model is formulated as a set of stochastic dif-
ferential equations for the individual disperse objects 
with collision interactions and it is shown that the 
population balance equation, containing also terms 
describing interchange of extensive quantities bet-
ween the disperse elements is a meso-scale model of 
disperse systems. The macro-scale model is for-

mulated using the moments of internal quantities. As 
an example a two-population model, governing the 
coupled behaviour of crystals and fluid elements is 
presented for describing micromixing in reaction 
crystallization. 

2 MICRO-SCALE MODEL 

Consider a large population of interacting disperse 
objects, solid or fluid particles moving stochastically 
in a continuous carrier phase. Let us assume that 1) 
the extensive quantities carried by the disperse ele-
ments, such as mass of chemical species and heat are 
distributed homogeneously inside those, or internal 
motion of those is irrelevant regarding the behaviour 
of system; 2) the continuous phase is modelled on 
kinetic scale, i.e. by means of concentrations of che-
mical species; 3) collision interactions of disperse 
elements may cause their coalescence, aggregation, 
breakup as well as interchange of extensive quanti-
ties between the colliding elements. Therefore the 
micro-scale of the disperse system can be assigned 
by the individual disperse elements. 

Assuming that px  and pu  denote, respectively, 
the space coordinates and velocities along those of a 
disperse element, vp denotes its volume, pc  stands 
for the vector of concentrations of K≥0 relevant 
chemical species inside the disperse elements and Tp 
denotes its temperature. Then the state of a disperse 
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element at time t is given by the vector ( ) 8,,,, +∈ K
ppppp Tv Rcux , and, introducing the sim-

plified notation ( )pppp Tv ,,cχ = , the micro-scale 
model of disperse system, completed with the model 
equations of the continuous phase is given by the 
following set of stochastic differential equations  
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where ∑ f  are deterministic forces, ( )tW  is a 
multivariable Wiener process, α and β are determin-
istic functions, σu,p and σχ,p are the diffusion mat-
rices, function N  determines the conditions of col-
lisions between the disperse elements while func-
tions ( ),Ξ  describe the velocity, volume, concentra-
tion and temperature changes induced by collisions.  

The set of differential equations (1)-(3) describes 
the behaviour of the population of disperse elements 
entirely by tracking the time evolution of the state of 
each disperse object individually. The first terms on 
the right sides of Eqs (2) and (3) describe the 
deterministic and stochastic disperse element-con-
tinuous environment interactions, i.e. motion of the 
disperse elements induced by the continuous carrier 
as well as the mass and heat exchange between the 
disperse elements and continuous environment. The 
integral terms in Eqs (1)-(3) represent jump-like sto-
chastic changes of the internal properties induced by 
collisions, i.e. jump-like changes of the velocities, 
volumes, concentrations and temperatures of the 
disperse elements.  

The system of stochastic equations (1)-(3) in-
duces a Markov process ( ) ( ) ( ){ }

0
,,

≥tppp ttt χux  with 
continuous sample paths and finite jumps (Gardiner, 
1983, Sobczyk, 1991). Taking it into consideration, 
a multidimensional population density function 
( )→t,,, χux ( )tn ,,,ˆ χux  is defined where the vari-
ables ( )ppp χux ,,  are measured on the ( )χux ,,  co-
ordinates, and ( ) χuxχux dddtn ,,,ˆ  provides the num-
ber of disperse elements at time t in the domain 
( )χχuuxxχux ddd +++ ,,;,, . The population 
density function ( )tn .,ˆ  provides the state function of 
population.  

Then, in analogy with the transition probability, 
a transition measure and, in turn, the conditional 

transition measure ( ).,.,.;ˆ tsPc  can be derived (Laka-
tos, 2010) by means of which variation of the state 
function of population of disperse elements is de-
scribed by the transformation  
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where  

( ) ( )∫=
X̂

,,,ˆ χuxχux dddsnsN  (5)

denotes the number of disperse elements in the given 
domain at time s. 

In Eq.(4), expression 

( ) ( ) """,",","ˆ1 χuxχux dddsn
sN

 (6)

is interpreted as the probability that there exists a 
disperse element in the state domain ( ,","," χux  

)"","","" χχuuxx ddd +++  possibly interacting with a 
disperse element of state ( )',',' χux  and the result of 
this interaction event is expressed by the conditional 
transition measure cP̂ .  

Eq.(4) is an integral equation formulation of the 
population balance equation of interacting disperse 
elements. It provides a global description of the 
population of disperse elements but appears to be 
unpractical in computations since identification of 
the multivariate conditional transition measure 
( ).,.,.;ˆ tsPc  is a crucial problem. However, Eq.(4) is 

an important intermediate state in developing the 
integral-differential equation form of the population 
balance equation.  

3 MESO-SCALE MODEL 

Let us now define an ε-environment around the 
position vector x in the physical space as  

{ }εε <= ),(:)( yxyx dU  (7)

where ε>0 and d(x,y) denotes t he distance of two 
vectors.  

Assuming that  

1) The ε-environment contains sufficient number of 
disperse elements for defining a population density 
function as 
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( ) ( )
( )
∫ ∫=

x

yuχuyχx
εU

ddtntn
U

,,,ˆ,,  (8)

by means of which 

( ) ( ) χχx
x

dtn
t

,,
,

1
N

 (9)

is interpreted as the probability that there exists a 
disperse element in the ε-environment in the domain 
(χ,χ+dχ) where ( )t,xN  provides the total number 
of these elements in the ε-environment at time t. 

2) The transport of the populations of disperse 
elements is governed by the convection-dispersion 
model, then  
the system is governed by the spatially distributed 
multi-dimensional population balance equation  
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The first term on the right hand side of Eq.(10) 
represents the source of the disperse elements born 
in the continuous phase. The next two terms de-
scribe the transport of the population density func-
tion in the physical phase while the fourth term 
represents the rate of change of population density 
function due to continuous phase-disperse elements 
interactions  

( )[ ] ( )⎥⎦
⎤

⎢⎣
⎡∇=∇ tn

dt
dtn ,,,, χxχχxG χχχ

 (11)

The next terms, in turn, represent the rates of change 
of the population density function because of the 
direct mass and/or heat exchange between the dis-
perse elements, breakage and aggregation/coales-
cence of disperse elements induced by collision 
events.  

The second integral in the expression  
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(12)

( ) ( ) "',",,,',,)( χχχxχxωω dddtntvndF υυυ×  

provides the rate of increase of the number of dis-
perse elements having internal variables χ due mass 
and heat interchange between colliding disperse 

elements with volumes v and υ having internal 
variables χ’ and χ” while the first integral describes 
the rate of the number of decrease due to similar 
events. In Eq.(12) ω denotes a random vector with 
conditional probability distribution function (.)υωF  

describing the extent of equalization of intensive 
variables under the condition that a disperse element 
of volume υ is colliding with one of volume υ, ( )υπ ,v  
is the frequency of collisions of such disperse ele-
ments, while )(tN  expresses the total number of dis-
perse elements in the ε-environment of x. In Eq.(12), 
the components of parameter vector υp  take the 
form ( )υυ += vvp . 

The rate of increase of the number of disperse 
elements because of breakage is expressed by the 
second integral of the term 
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where ( )"'υυbS  is the probability of breakage of dis-
perse element of volume υ’ collided with one of vol-
ume υ”, and ( )',υφ vb  denotes the ratio of disperse 
elements of volume v resulted from breakage of 
disperse elements of volume υ’. The first integral 
provides the rate of decrease due to similar events. 
Here it was assumed that the effect of a breakage 
event on the extensive quantities carried by the 
disperse elements is negligible. Note that writing Eq. 
(13) the notation ( )χχ ˆ,v=  was used. 

When the breakage of disperse elements occurs 
because of their collisions with some solid surface 
or, as in the case of fluid droplets and bubbles in-
duced by turbulence then Eq.(13) can be written in  
the form 

( )[ ] ( ) ( ) ( )∫ ∫ ×−=
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v
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m
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where θ is a random variable with the probability 
distribution function Fθ(.) characterizing the fre-
quency of random events inducing breakage of the 
disperse elements. 
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In the case of aggregation or coalescence, the 
rate of increase of the number of disperse elements 
is given by the second integral of the term 
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where ( )υυ,−vSa  denotes the probability of agglo-
meration or coalescence of the colliding elements 
having volumes v-υ and υ. Here it is assumed that 
agglomeration or coalescence of two disperse ele-
ments leads to full equalization of their intensive 
quantities therefore ω=1.  

4 MACRO-SCALE MODEL 

A mathematical model of a disperse system, not 
depending on the method of development must 
satisfy the requirements of the first principle models, 
i.e. the balances of conservative extensive quantities 
have to be fulfilled as concerns the whole system. 
From one side this requirement provides strong lim-
itations on the forms of the constitutive expressions 
of Eqs (10)-(15). From the other side, the population 
density function playing a centred role in the meso-
scale model (10)-(15) is not an extensive quantity by 
itself. Extensive quantities for the population of dis-
perse elements needed for the balances are formu-
lated only by the multivariate joint moments of 
internal variables defined as  

( ) ( )∫=
X

χχxx dtnTcct mk
K

kl
mkkl

K
K

,,..., 1
1 1,..., υμ  (16)

As a consequence, for instance, the total mass in-
volved in the population of disperse elements is 
given as  

( ) ( )tvtm ,, xx ρ=  (17)

where ( )tv ,x  denotes the mean volume of the po-
pulation expressed as 

( ) ( )∫=
X

χχxx dtn
t

tv ,,
)(

1, υ
N

 (18)

while ρ is the density of the disperse elements. 
Similarly, the total heat involved in the popu-

lation is expressed as 

( ) ( )∫=
X

χχxx dtTn
t

CtTC ,,
)(

,
N
ρ

ρ  (19)

while C is the heat capacity of the disperse elements. 
Finally, the mean value of kth species is given as 

( ) ( ) ( )∫=
X

χχx
x

x dtnc
t

tc kk ,,
,

1,
N

 (20)

As an example the heat balance from Eq.(10) 
takes the form 

( ) ( ) ( )[ ]

( ) ( )[ ]∫∫ +

∇−∇∇=
∂
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XX
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xuxDx
xxxxx
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Where 

( ) ( )tTCttQ ,)(, xx ρN=  (22)

The third term on the right hand side represents 
the population-continuous phase interaction, while 
the last term describes the heat effect of source of 
disperse elements. 

5 TWO-POPULATION MODEL 

The multidimensional population balance equation 
(10)-(15) is cognitive-type model of populations of 
disperse elements. When modelling real processes 
appropriate reductions of this cognitive-type model, 
the so called purpose-oriented models are applied. 
These models contain necessary and sufficient infor-
mation to provide an adequate description of the 
process to be modelled. Here as an example a two-
population model is presented aimed to describe 
micromixing in reaction crystallization. 

Crystallization from solution is an important 
fluid-solid disperse system in which the disperse 
phase is formed by solid particles. Let us assume 
that the crystallizer is isothermal and the 
supersatura-tion is generated by the chemical reac-
tion ↓→+ CBA . When the continuous phase can 
be treated in the ε-environment of x as a homo-
geneous continuum with respect to scalar quantities 
then the composition and temperature environment 
is the same for all crystals. Consequently, crystals 
born and growth in the same composition and tem-
perature environment hence the behaviour of crys-
tals can be modelled adequately by using the popula-
tion balance equation (10). This crystallizer is con-
sidered perfectly mixed on micro-scale. 

When, however, solution exhibits varying in time 
spatial inhomogeneites of scalars even on micro-
scale then these changes modulate not only the pro-
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cesses in solution (mixing, reaction, nucleation) but 
also the crystal-solution and crystal-crystal interact-
tions since crystals moving randomly in the fluid 
phase meet diverse composition and temperature re-
gions even inside the ε-environment of x. This phe-
nomenon can be modelled making use of the gener-
alized coalescence/re-dispersion (gCR) model de-
veloped in the context of multi-scale structure of 
(Lakatos, 2008; Lakatos et al., 2011). 

In the gCR model, the Kolmogorov-scale eddies 
of solution are treated as a large population of fluid 
elements having identical volume vη. Then, two dif-
ferent interacting populations are identified in the 
crystallizer, i.e. the population of crystals and that of 
fluid elements. Since, however, kinetic processes are 
also determined by micro-scale phenomena, the rate 
expressions of crystallization kinetics may be in-
fluenced significantly by stochastic interactions of 
these two populations. Therefore, the mathematical 
model of the crystallizer consists of two population 
balance equations and of averaged kinetic and cons-
titutive equations describing their interactions. 

Since the concentration of species in crystals is 
negligible then the population density function of 
crystals is given as  

( ) ( ) ( ) ( )∫ −=
X

χχc dtxnTTdvtvxn ,,,, δδ  (23)

while that of fluid elements is defined as 

( ) ( ) ( ) ( )∫ −−=
X

χχcc dtxnTTvvdtxp ,,,, δδ η
 (24)

where T  denotes the temperature of process. 
Assuming that 1) the motion of populations in 

the vessel is described by the 1D axial dispersion 
model, 2) no breakage of crystals occurs then the 
population balance equation for crystals is given as 
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while that for fluid elements takes the form 
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(26)

where Lx=ξ  is the dimensionless axial coordi- 

nate scaled with the length of vessel L while 
tt=τ  denotes the dimensionless time scaled with 

the mean residence time t . In Eqs (25)-(26), R  
denotes the mean rate of consumption of solute in 
solution due to nucleation and growth of crystals, 

G , nB  and aB  denote, respectively, the 
rates of crystal growth, nucleation and agglomera-
tion, all averaged over the ensemble of fluid ele-
ments in the εξ-environment of ξ. These kinetic 
equations take the forms as follows. 

( ) ( )∫= mc
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0
dpvccGG ec

p

τξ ,,,,1
N

 (27)

where cc and ce denote the solute and the equilibrium 
saturation concentrations, 
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where Np and Nn stand for the total numbers of fluid 
elements and crystals in the εξ-environment of ξ. 

The rate of agglomeration is given by a simpli-
fied form of Eq.(15) since the system is assumed to 
be isothermal, and there is no mass exchange bet-
ween the crystals:  
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(29)

In general case, the model equations of the two-
population model (25)-(29) can be solved only by 
numerical method, but when the exponents b and g 
are positive integers and the agglomeration kernel 
provides closed moment terms then, since the mo-
ment terms of micromixing operation are always 
closed (Lakatos, 2011), a closed finite set of moment 
equations can be obtained. Indeed, assuming the fol-
lowing forms for the intrinsic kinetic rates 1≡aS ,  

( ) 1
3 μecbb cckB −= , ( ) ( )'0', vvbvv +=π  and apply- 

ing the cumulant-neglect closure (Lakatos, 2010) a 
set of 13 ODE’s was generated for the joint mo-
ments of concentrations ca, cb and cc and for the raw 
moments of crystal volume v up to the second order.  

Figure 1 presents the time evolution of axial dis-
tribution of the number of crystals for the case of 
small seeding and micromixing intensity 0.15. In 
this case the feed of species A and B was segregated. 
Figure 1 shows well the effects of increasing nuclea- 
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Figure 1: Time evolution of the axial distribution of popu-
lation density function of crystals for Pe=10 and 1=t . 

tion rate as the state of mixing was increased along 
the axial coordinate. At the same time, the number 
of crystals is decreased due to crystal agglomeration. 

Figure 2 shows the effects of micromixing in-
tensity on the steady state axial distribution of crys-
tals illustrating the strong influence of micromixing 
on the number of crystals produced in the process. 

 
Figure 2: Effects of micromixing intensity on the steady 
state axial distribution of population density function of 
crystals for Pe=10 and 1=t . 

6 CONCLUSIONS 

The population balance approach was applied to de- 
velop a three-scale model for disperse systems using 
the multi-scale methodology of complex systems. It 
was shown that marking out the individual disperse 
objects for microlevel of the system the population 
balance equation, containing also terms describing 
collision interchange of extensive quantities between 
the disperse elements and motion in the physical 
space is a meso-scale model. In this interpretation, 
the macro-scale model is formulated by means of the 
moments of internal quantities of disperse elements. 
As an example, a two-population model, governing 

the coupled behaviour of crystal and fluid element 
populations is presented for describing micromixing 
in reaction crystallization.  
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