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Abstract: This research shows the usefulness of fuzzy logic approaches for modelling and simulation of complex 
dynamical systems. Several hybrid soft computing methodologies based on fuzzy logic, such are neuro-
fuzzy systems, genetic-fuzzy systems and the Fuzzy Inductive Reasoning are applied to a real dynamical 
system in the ecological domain, i.e. the global temperature change. The ocean-atmosphere system is 
represented in this work by using an energy balance model that reproduces a range of temperatures increase 
that agrees with that reported by the IPCC. The results obtained by all the fuzzy approaches studied are 
good, although the Fuzzy Inductive Reasoning methodology performs clearly much better that the other 
approaches for the application studied from the prediction accuracy point of view. 

1 INTRODUCTION 

The global climate is a highly complex system in 
which take place many physical, chemical, and 
biological processes, in a wide range of space and 
time scales. These processes are simulated by global 
circulation models, which are computer models 
based on the fundamental laws of physics and they 
are the principal tool for predicting the response of 
the climate to increases in greenhouse gases. With 
the increase of computational resources, complex 
global models are frequently being used to assess the 
response of the climate system to the projected 
increase in the amount of greenhouse gases. All 
model experiments point to global warming through 
the coming centuries. These models, however, are 
not perfect representations of reality because, among 
other reasons, they do not include important physical 
processes (e.g. ocean eddies, gravity waves, 
atmospheric convection, clouds and small-scale 
turbulence) that are known to be key aspects of the 
climate system but that are too small or fast to be 
explicitly modelled (Williams, 2005). In addition, 
the high complexity of the climate system 
represents, by itself, a crucial constraint in the 
prediction of future climate change. Therefore, even 
the most complex climate models are unable to 

project  how climate will change with certainty, as it 
is reflected in the wide range of temperature increase 
reported by the IPCC 4AR (IPCC, 2007). 

Simple models of the climate system have been 
developed and used to gain physical insight into 
major features of the behaviour of the climate 
system. These simple models have also been 
frequently used to conduct sensitivity studies and to 
produce climate projections for a range of 
assumptions about emissions of carbon dioxide and 
other greenhouse gases.  

Fuzzy logic is a very powerful approach for 
managing uncertainties inherent to complex systems. 
Fuzzy systems have demonstrated their ability to 
solve different kind of problems like control (e.g. 
Watanabe et al., 2005) and have been successfully 
applied to a wide range of applications, i.e. signal 
and image processing (Bloch, 2005) and medical 
applications (Nebot et al., 2003), etc. To the authors’ 
knowledge, there are very few studies that apply 
fuzzy logic approaches to study the global 
temperature change problem.  

In the next section, we use a simple box model of 
the ocean-atmosphere to assess the response of the 
global mean temperature to changes in the thermal 
forcing and to model parameters. This model 
depends on a small number of parameters which are 
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treated directly as fuzzy logic sets. Section 3 
describes shortly the hybrid fuzzy methods studied 
and presents the results. Section 4 presents a 
comparison table of the different methodologies 
performances and discusses the results. Finally the 
conclusions of this work are given. 

2 GLOBAL TEMPERATURE 
CHANGE EXPERIMENT 

In this section, we use a box model of the ocean-
atmosphere to determine whether this simple model 
is able to reproduce the wide range of temperature 
increase reported by the IPCC, when plausible 
model parameters and surface forcing are used. 

The ocean-atmosphere system is represented by 
using a simple energy balance model consisting of 
two boxes that represent the atmosphere (one over 
the land and the other over the ocean) and two boxes 
that represent the oceanic mixed layer coupled to a 
diffusive ocean (Fig. 1). 

The analytical solution of this kind of model can 
be found in Wigley and Schlesinger (1985). The 
brief description given here follows closely that of 
McGuffie and Henderson-Sellers (2005). The 
heating rate of the mixed layer is calculated by 
assuming a constant depth in which the temperature 
difference (ΔT), associated with some perturbation, 
changes in response to: changes in the surface 
thermal forcing (ΔQ); the atmospheric feedback, 
which is expressed in terms of a climate feedback 
parameter (λ); leakage of energy from the mixed 
layer to the deeper ocean (ΔM). This energy flux is 
used as an upper boundary condition for the 
diffusive deep ocean in which the thermal diffusion 
coefficient (K) is assumed to be a constant. 

The equations describing the rates of heating in 
the two layers are: for the mixed layer, with total 
heat capacity Cm, 

MTQ
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At the interface between the surface and the deeper 
layers, there is an energy source which acts as a 
surface boundary condition (2). A simple 
parameterization is used by imposing continuity 
between the mixed-layer temperature change (ΔT) 
and the deeper-layer temperature change evaluated 
at the interface, ),0(0 tzT  , i.e. )(),0(0 tTtT  . 

 

Figure 1: Ocean-atmosphere system using a simple energy 
balance model. 

With this formulation, ΔM can be calculated from 
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and used in (1). In the last equation, γ is the 
parameter utilized to average over land and ocean 
(values between 0.72 and 0.75), ρw is the water 
density and cw is its specific heat capacity. 

Equations (1) and (2) are integrated numerically 
for a period of 100 years using a forward Euler 
scheme and a vertical grid for the deep ocean. All 
model experiments are performed using a time step 
of one day and a vertical grid with 100 points and a 
spacing of 5 m, which represents a deep ocean layer 
of 500 m. The internal model parameters and the 
change in thermal forcing vary as follows: λ varies 
from 0 to 4 Wm-2K-1, with increments of 0.25; K 
varies from  10-4 to 10-5m2s-1, with increments 
of 5105.0  ; ΔQ varies from 0 to 8 Wm-2, with 
increments of 0.5. A total of 6069 integrations (each 
one corresponding to a combination of the varying 
internal model parameters and the thermal forcing) 
are carried out over the 100-year period. This range 
of temperatures increase agrees with that reported by 
the IPCC (IPCC, 2007). 

3 FUZZY MODELING 
APPROACHES 

As Klir stated in his book (Klir and Elias, 2002), the 
view of the concept of uncertainty has been changed 
in science over the years. The traditional view looks 
to uncertainty as undesirable in science and should 
be avoided by all possible means. The modern view 
is tolerant of uncertainty and considers that science 
should deal with it because it is part of the real 
world. This is especially relevant when the goal is to 
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construct models. The fuzzy set theory, introduced 
in (Zadeh, 1965), allow dealing with uncertainty in a 
natural way, by means of the concept of objects that 
have not precise boundaries (fuzzy sets). In this 
paper three hybrid approaches of fuzzy systems are 
used to model the global temperature change in the 
earth, i.e. neuro-fuzzy systems, genetic-fuzzy 
systems and the Fuzzy Inductive Reasoning 
methodology.  

3.1 Neuro-fuzzy Systems 

A neuro-fuzzy system is a fuzzy system that uses 
learning methods derived from neural networks to 
find its own parameters, as the membership 
functions of the input variables. In this work the 
Adaptive Network based Fuzzy Inference System 
(ANFIS) is used since is one of the more popular 
neuro-fuzzy system reported in the literature (Jang, 
1993). ANFIS is a function of the Fuzzy toolbox of 
Matlab 

ANFIS represents a Sugeno-type neuro-fuzzy 
system in a five-layer feedforward network 
architecture (see Fig. 2). The rule base must be 
known in advance and ANFIS adjusts the 
membership functions of the antecedents and the 
consequence parameters applying a mixture of 
backpropagation and least mean squares procedure. 
The main characteristic of the Sugeno inference 
system is that the consequent or output of the fuzzy 
rules is not a fuzzy variable but a function, as shown 
in equation (4). 

 

(4)

This has the advantage that the fuzzy system 
functions are differentiable and learning algorithms 
based on gradient descendent methods are 
applicable. Fig. 2 shows the Sugeno type fuzzy 
reasoning model (plot (a)) and its equivalent ANFIS 
network structure (plot (b)).   

In the application at hand the ANFIS model is 
composed of 27 Sugeno rules, as the ones described 
in equation (4), due to the fact that 3 membership 
functions were used to represent the three input 
variables. The ANFIS parameters are optimized by 
using a set of 5395 data points obtained from the 
experiment explained in section 2. 

 

Figure 2: (a) Sugeno type fuzzy reasoning model. (b) 
Equivalent ANFIS model. Figure extracted from (Jang, 
1993). 

The ANFIS model is validated by predicting the 
temperature change of 674 data points not used for 
training the model (also obtained from section 2.2). 
ANFIS is able to predict very accurately the 
temperature change test values, with a very low 
normalized mean square error in percentage (MSE) 
of 2.38%. The MSE is computed by means of 
equation (5). 
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where ŷ (t) is the predicted output, y(t) the system 
output and VAR denotes variance. The real vs. the 
predicted test data is shown in Fig. 3.  
 

 

Figure 3: Real (‘+’) vs. Predicted (‘o’) test values when 
using the ANFIS model to predict the temperature increase 
at year 2100. 

3.2 Genetic-fuzzy Systems 

A Genetic Fuzzy System (GFS) is basically a fuzzy 
system augmented by a learning process based on 
evolutionary computation, which includes genetic 
algorithms, genetic programming, and evolutionary 

Rule1:   If X is A1 and Y is B1 then f1 = p1*x + q1*y + r1 

Rule2:   If X is A2 and Y is B2 then f2 = p2*x + q2*y + r2 
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strategies, among other evolutionary algorithms 
(Cordon et al., 2001). In this study three different 
GFS based on iterative rule learning are analyzed, 
i.e. TSK-IRL-R, MOGUL-TSK-R and MOGUL-
IRLHC-R. All of them are functions of the Keel 
software (Keel, 2004).  

In the iterative rule learning approach each 
chromosome in the population represents a single 
fuzzy rule, but only the best individual is considered 
to form part of the final rule base. Therefore, it is 
runed several times to obtain the complete 
knowledge base. The advantage is that it reduces 
substantially the search space, because in each 
iteration only a fuzzy rule is searched. A 
postprocessing stage is needed to force the 
cooperation among the fuzzy rules generated in the 
first stage. 

3.2.1 TSK-IRL-R 

The Iterative Rule Learning of Takagi–Sugeno-Kang 
Rules (TSK-IRL-R) approach is a two-stage 
evolutionary process to automatically learn 
knowledge bases from examples (Cordon and 
Herrera, 1999). The learning process is divided into 
the generation and the refinement stages. The 
generation stage allows to automatically deriving a 
preliminary Sugeno knowledge base from the 
training data set. It decides the number of rules and 
determines their consequent parameters, generating 
a locally optimal knowledge base. The refinement 
stage takes the preliminary knowledge base obtained 
in the previous stage and globally refines it by 
tuning the antecedent membership function and 
consequent parameter definition.  

The generation process is based on a (μ, λ)-
evolution strategy, in which the fuzzy rules with 
different consequents compete among themselves to 
form part of the preliminary knowledge base. The 
refinement process adapts the antecedents and 
consequents of the fuzzy rules by means of a hybrid 
evolutionary approach composed of a genetic 
algorithm and an evolution strategy to obtain a set of 
rules that cooperate in the best possible way.    

The same training and data sets described before 
are used for the TSK-IRL-R algorithm to obtain a 
fuzzy model of the system under study. The mean 
square error in percentage (MSE, described in 
equation (5)), obtained when this model is used to 
predict the test data set is 3.03%. This error, 
although is slightly higher than the one obtained by 
ANFIS, is quite low and the plot of the real vs. the 
predicted test data looks really similar to the one of 
ANFIS, presented in Fig. 3. 

3.2.2 MOGUL-TSK-R  

MOGUL is a Methodology to Obtain Genetic fuzzy 
rule-based systems Under the iterative rule Learning 
approach. This methodology is composed of some 
design guidelines that will allow us to obtain genetic 
fuzzy rule base systems (GFRBS) to design different 
types of fuzzy rule bases, i.e. descriptive and 
approximate Mamdani-type and Sugeno-type. 

The MOGUL-IRLHC-R is a MOGUL approach 
base in the Sugeno type of rules (Alcalá et al., 2007). 
The main differences respect the TSK-IRL-R is that 
in the first stage it performs a local identification of 
prototypes to obtain a set of initial local semantics-
based Sugeno rules.  On the other hand the 
cooperation between rules is accomplished in the 
second stage by means of a genetic niching-based 
selection process to remove redundant rules and a 
genetic tuning process to refine the fuzzy 
parameters. The MOGUL-TSK-R approach 
proposes to use Mamdani fuzzy rules as fuzzy 
prototypes to identify a set of fuzzy subspaces 
grouping data with similar behaviour. The 
prototypes are then use to identify Sugeno fuzzy 
consequences.  

The same data sets used before are used to obtain 
a MOGUL-TSK-R model of the global warming 
problem. In this case the MSE (see equation (5)) 
obtained is 3.09%, equivalent that the one reached 
with the TSK-IRL-R model.  

3.2.3 MOGUL- IRLHC-R  

The MOGUL-IRLHC-R algorithm is also an 
iterative rule learning approach that uses the 
MOGUL paradigm, but in this case the goal is to 
learn constrained approximate Mamdani-type 
knowledge bases from examples (Cordón and 
Herrera, 2001). It consists of three stages: an 
evolutionary generation process, a genetic 
multisimplification process and a genetic tuning 
process. The first stage generates a set of fuzzy rules 
with constrained free semantics covering the training 
set in an adequate form. The second stage performs 
a selection of rules using a binary coded genetic 
algorithm with a genotypic sharing function and a 
measure of the fuzzy rule base system performance. 
The idea is to remove redundant rules while 
maximizing the cooperation among the staying rules. 
The third stage performs a tuning based on a real 
coded genetic algorithm and the previous 
performance measure. It adjusts the membership 
functions of each rule in each possible fuzzy rule 
base derived from the multisimplification process. 
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Then, the more accurate fuzzy rule based obtained is 
the final output of the MOGUL-IRLHC-R 
algorithm. 

When applied to the problem at hand we obtain a 
MSE of 10.08%. It is clear that the performance 
decreases with respect the results obtained by the 
approaches presented so far, i.e the genetic-fuzzy 
systems and ANFIS. 

3.3 Fuzzy Inductive Reasoning (FIR) 

FIR methodology emerged from the general systems 
problem solving (GSPS) architecture developed by 
Klir (Klir and Elias, 2002). It is able to perform a 
selection of the system relevant variables and to 
obtain the causal and temporal relations between 
them in order to infer the future behavior of that 
system. It offers a model-based approach to 
predicting either univariate or multi-variate time 
series. A FIR model is a qualitative, non-parametric, 
shallow model based on fuzzy logic. FIR is executed 
under the Visual-FIR platform that runs under the 
Matlab environment (Escobet et al., 2007).  

The model identification function is responsible 
for finding causal spatial and temporal relations 
between variables that offer the best likelihood for 
being able to predict the future system behavior 
from its own past, thereby obtaining the best model. 
The FIR model is composed by its structure or set of 
relevant variables (called mask) and a set of 
input/output rules that represent the systems’ history 
behavior (called pattern rule base). A mask denotes a 
dynamic relationship among qualitative variables. 
The optimality of the mask is evaluated with respect 
to the maximization of its forecasting power that is 
quantified by means of a quality measure, based 
mainly on the Shannon entropy. Once the best mask 
has been identified, it can be applied to the 
qualitative data matrices that were previously 
obtained in the discretization process, resulting in a 
pattern rule base. 

Once the FIR model is available, a prediction of 
future output states of the system can take place 
using the FIR inference engine that is based on a 
variant of the k-nearest neighbor rule, i.e., the 5-NN 
pattern matching algorithm. The forecast of the 
output variable is obtained by means of the 
composition of the potential conclusion that results 
from firing the five rules, whose antecedents best 
match the actual state. The contribution of each 
neighbor to the estimation of the prediction of the 
new output state is a function of its proximity. A 
detailed description of FIR methodology and Visual-

FIR platform can be found in (Nebot et al., 2003; 
Escobet et al., 2007). 

The same training and test data sets described in 
the ANFIS section have been used for training and 
test the FIR model. As explained before, in order to 
obtain a FIR model it is first necessary to convert the 
quantitative data into qualitative data by means of 
the discretization function. In this case, all the 3 
input variables are discretized into 3 classes, i.e. 
low, medium and high, whereas the output variable, 
is discretized into 5 classes, i.e. very low, low, 
medium, high and very high, following the experts 
knowledge. The optimal mask obtained is composed 
of all the system input variables. Therefore, FIR 
finds that all three input variables are important and 
that there is not redundancy in them.  

The FIR model obtained is very precise when it 
is used to predict a test data set of 674 values, not 
used in the training set. As can be seen in Fig. 4, the 
real and the predicted values are almost 
undistinguishable one from each other, being the 
MSE extremely low, i.e. of 0.25%. 

 

 

Figure 4: Real (‘+’) vs. Predicted (‘o’) test values when 
using the FIR model to predict the temperature increase at 
year 2100. 

4 RESULTS AND DISCUSION 

Table 1 summarizes the results obtained for each of 
the fuzzy approaches presented in this paper when 
applied to the global temperature change problem.  

If we focus in the prediction performance it is 
clear that the FIR methodology is the best one, much 
better than the neuro-fuzzy and genetic-fuzzy 
systems approaches. However, if we center in the 
number of rules, ANFIS is the best choice because is 
the one that captures the behavior of the system with 
the lower number of rules. 

It is also interesting to confirm that genetic 
approaches need considerably much time than 
ANFIS and FIR to learn de fuzzy rule bases. 
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Table 1: Results of all fuzzy approaches to the global 
temperature change problem. 

Method MSE #Rules Time 
ANFIS 2.38% 27 15sec. 
TSK-IRL-R 3.03% 50 50min. 
MOGUL-TSK-R 3.09% 121 >60min. 
MOGUL-IRLHC-R 10.08% 34 28min. 
FIR 0.25% 56 5sec. 

 

Therefore, it can be concluded that the different 
fuzzy approaches used to model the global 
temperature change problem are useful for the task 
at hand, because all of them have a high level of 
prediction accuracy. Depending on the users 
interests it can be more desirable to choose a 
methodology with high precision in the prediction, 
like FIR, or a less precise model but with a small 
number of rules in it, like ANFIS, MOGUL-IRLHC-
R or TSK-IRL-R. 

This work is an initial attempt to compare 
different types of fuzzy modeling approaches when 
dealing with ecological systems. It does not pretend, 
at this point, to be an exhaustive and rigorous 
comparison, but to give a first inside into hybrid 
fuzzy modeling of ecological problems. The next 
step is to incorporate other fuzzy-based 
methodologies, such is the LR-FIR, which is an 
attempt to reduce the number of FIR rules obtained 
while minimizing the loss of precision in the 
prediction. Finally, we plan to study other ecological 
problems mainly focused in climate systems. 

5 CONCLUSIONS 

This paper studies the usefulness of hybrid fuzzy 
modelling approaches when dealing with a real 
ecological system, i.e. the global temperature 
change. A box model of the ocean-atmosphere, that 
reproduces satisfactorily the wide range of 
temperature increase reported by the IPCC, is used. 

From the temperature increase calculated with 
the box model, different hybrid fuzzy models are 
built. Concretely, the ANFIS that is a neuro-fuzzy 
system, the TSK-IRL-R, MOGUL-TSK-R and 
MOGUL-IRLHC-R that are genetic-fuzzy systems 
based on the iterative rule learning approach, and the 
FIR methodology. All the models are able to predict 
accurately the global temperature increase in the 
year 2100. The fuzzy models presented in this paper 
are simpler than the box model and are much more 
understandable from a policy maker point of view. 

REFERENCES 

Alcalá, R, Alcalá-Fdez. J., Casillas, J., Cordón, O., 
Herrera, F., 2007. Local identification of prototypes 
for genetic learning of accurate TSK fuzzy rule-based 
systems. International Journal of Intelligent Systems, 
22, 909-941. 

Bloch, I., 2005. Fuzzy spatial relationships for image 
processing and interpretation: a review. Image and 
Vision Computing, 23(2), 89-110. 

Cordon, O., Herrera, F., 1999. A Two-Stage Evolutionary 
Process for Designing TSK Fuzzy Rule-Based 
Systems. IEEE Transactions On Systems, Man, And 
Cybernetics—Part B: Cybernetics, 29 (6). 

Cordon, O., Herrera, F., 2001. Hybridizing genetic 
algorithms with sharing scheme and evolution 
strategies for designing approximate fuzzy rule-based 
systems. Fuzzy sets and systems, 118, 235-255. 

Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L., 
2001. Genetic Fuzzy Systems. Evolutionary Tuning 
and Learning of Fuzzy Knowledge Bases. Vol. 19 of 
Advances in Fuzzy Systems - Applications and 
Theory. World Scientific. 

Escobet, A., Nebot, A., Cellier, F. E., 2008. Visual-FIR: A 
tool for model identification and prediction of 
dynamical complex systems. Simulation Practice and 
Theory, 16, 76-92. 

IPCC, 2007. Climate Change. Cambridge University 
Press.  

Jang, J.R., 1993. ANFIS: Adaptive-Network-Based Fuzzy 
Inference System. IEEE Transactions on systems, man 
and cybernetics, 23 (3). 

Keel Platform,2004. http://sci2s.ugr.es/keel/developpment. 
php. 
Klir, G. J., Elias, D., 2002. Architecture of Systems 

Problem Solving,Plenum Press. New York, 2nd edition. 
McGuffie, K., Henderson-Sellers, A., 2005. A Climate 

Modelling Primer. Third Edition. Wiley. 
Nebot, A., Mugica, F., Cellier, F. E., Vallverdu, M., 2003. 

Modeling and Simulation of the Central Nervous 
System Control with Genetic Fuzzy Models. 
Simulation: Society for Modeling and Simulation 
International, 79(11), 648-669. 

Watanabe, K., Izumi, K., Maki, J., Fujimoto, K., 2005. A 
Fuzzy Behavior-Based Control for Mobile Robots 
Using Adaptive Fusion Units. Journal of Intelligent 
and Robotic Systems, 42(1), 27-49. 

Wigley, T. M. L., Schlesinger, M. E., 1985. Analytical 
solution for the effect of increasing CO2 on global 
mean temperature.  Nature, 315, 649-652. 

Williams, P. D., 2005. Modelling climate change: The role 
of unresolved processes. Phil. Trans. R. Soc. A, 363, 
2931-2946. 

Zadeh, L. A., 1965. Fuzzy Sets. Information and Control. 
8(3), 338-353. 

FUZZY APPROACHES FOR MODELING DYNAMICAL ECOLOGICAL SYSTEMS

379


