
A BEHAVIORAL PERSPECTIVE IN META-MODELING 

Saïd Assar 
Institut Telecom, Telecom Business School, 9, rue C. Fourier 91011, Evry, France 

Sana Damak Mallouli, Carine Souveyet 
Université Paris 1 La Sorbonne, Centre de Recherche en Informatique 

90, Rue de Tolbiac, 75013, Paris, France 

Keywords: Meta-modeling, Method engineering, Model executability, Behavioral perspective in meta-modeling, Event-
based meta-modeling, Meta-CASE tool, CAME tool. 

Abstract: Meta-models are essential artifacts for specifying and reasoning on models and on methods. Traditionally, 
meta-modeling follows the “data” perspective and only the structural part of a model is represented. The 
“process” and “behavior” perspectives are neglected or partly represented, and for a process meta-model, 
such specifications express its enactment and execution semantics. From a Computer Aided Method 
Engineering (CAME) point of view, such specifications are necessary for enacting the process part of a 
method when specified. In this paper, we defend the position that in process meta-modeling, it is essential to 
include the behavior perspective, and that event-based meta-modeling can help in expressing, graphically 
and at high level of abstraction, the executable semantics of a process modeling notation. We illustrate this 
approach through the construction of event-based meta-models for the intention oriented Map notation. 

1 INTRODUCTION 

A meta-model is a formal specification of a model 
that helps in understanding it and in reasoning on its 
structure, its semantics and its usage. Meta-
modeling, which is the activity of constructing meta-
models, is widely used in Information Systems (IS) 
engineering and especially in model design and 
method engineering (Brinkkemper et al., 1996), 
(Rolland, 2007b). It is a powerful conceptual tool to 
analyze product and process models, and to design 
corresponding CASE tools. 

In the literature, meta-modeling is generally used 
to specify meta-models that reflect the static 
structure of models, i.e. concepts and links between 
these concepts (Jeusfeld et al., 2009), (Sprinkle et 
al., 2011). For instance, if we consider the meta-
model shown in figure 1, which is an extract of the 
SPEM meta-model represented in UML, we notice 
that this specification describes the structural 
dimension of this process model. It represents SPEM 
concepts and how they are inter-linked. How these 
elements interact during the execution is not 
explicitly expressed in the meta-model.  

 
Figure 1: A fragment of the SPEM Meta-Model, extracted 
from (OMG, 2008), p.54. 

While the "process" and the "behavior" 
perspectives are well-known in IS modeling (Olle et 
al., 1991), they are generally missing in meta-
models specified in the software engineering field. 
Depending on the nature of the studied model, the 
lack of these perspectives deprives tools designers 
and method engineers of an important knowledge 
about the models they are manipulating. In the case 
of a process meta-model, the "process" and 
"behavior" perspectives inquire in fact on the 
executable semantics of the underlying model.  

The goal of this paper  is to  present  and  discuss 

238 Assar S., Damak Mallouli S. and Souveyet C..
A BEHAVIORAL PERSPECTIVE IN META-MODELING.
DOI: 10.5220/0003612402380243
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 238-243
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

how to take into account the "process" and 
"behavior" perspectives when specifying at the 
meta-level a process model. We are particularly 
interested in process models with interactive 
behavior. Indeed, these models (such as BPMN, 
Workflow, etc.) were designed to represent 
organizational systems involving external agents to 
the system. To express these interactions and the 
underlying semantics, corresponding meta-models 
must take into account not only the structural 
perspective (concepts and relationships), but also 
dynamic and behavioral perspectives.  

This paper is organized into 5 sections. Section 2 
presents related works in specifying models 
executability. Section 3 briefly provides the basics 
of the meta-modeling notation which will be used. 
Section 4 is an illustration of our approach applied 
on the intentional Map model. Section 5 discusses 
the advantages and disadvantages of the proposed 
approach, and proceeds with the conclusion. 

2 RELATED WORKS  

In software engineering, expressing model 
executability in meta-models has been studied 
extensively, particularly since MDA (Model Driven 
Architecture) and MDE (Model Driven Engineering) 
approaches to software development have been 
introduced. Indeed, given that the MDE approach is 
fundamentally based on the extensive use of models 
at all phases of software development, the question 
of how to execute a model and how to express its 
executable semantics quickly arose. A first study on 
the relationship between a meta-model and the 
problem of expressing the executability of the 
underlying model was made on Petri nets in one of 
Bézivin works (Breton et al., 2001). The authors 
complement the static meta-model describing the 
structure of the model (arcs and transitions in a Petri 
net) by a dynamic meta-model which introduces data 
structures necessary for the execution of an instance 
of this model (tags and movement of token). 
However, the authors acknowledge that this is not 
sufficient to express the model full executability as 
the used formalism (UML class diagram) has no 
executable semantics, and the authors call for the 
creation of an executable UML. And it is probably 
the result of these preliminary thoughts on the 
problem of expressing model executability in meta-
models that the Kermeta language was proposed and 
developed (Muller et al., 2005). Kermeta is an 
object-oriented meta-programming language with a 
software environment designed for meta-model 

engineering. It provides a way to add meta-
specification to an UML meta-diagram. The 
Kermeta meta-programming language has been used 
to build a comprehensive and executable 
specification for simple models like Finite State 
Machine (Kermeta, 2011).  

Further works in the software engineering and 
the MDE communities focused on studying 
engineering processes models, because of the 
importance of describing, controlling, and 
automating procedures by which software systems 
are constructed. UML4SPM is an important work in 
this register (Bendraou et al., 2005). It defines a 
modeling language for representing and enacting 
engineering process models. It is based on UML, 
and is similar to the OMG's SPEM standard. Several 
experiments were made to specify the semantics and 
express the executability of UML4SPM using the 
BPEL processes execution language and the meta- 
specification language Kermeta (Bendraou et al., 
2007). For both approaches, the problem of 
interacting with the system environment (the user or 
other systems) is highlighted.  

In IS engineering domain and especially in 
method engineering field, few studies to our 
knowledge have addressed the question of the 
explicit expression of executability in process meta-
model. As a method definition is a combination of 
product and process meta-models, product meta-
model specifications are historically the oldest 
(Harmsen et al., 1996). In (Brinkkemper et al., 
2001), the MEL language, which is a formal 
language for specifying methods, is proposed. Apart 
the structural specification of components, the 
process aspect is described in MEL using formal 
operators whose semantics is guaranteed by the 
underlying mathematical notation. This approach by 
assembling components methodology is currently 
predominant (Henderson-Sellers et al., 2010); 
however, there are still no models to formalize the 
approach, neither to specify the methodological 
component, nor to formally express the assembly 
process (Seidita et al., 2007).  

To conclude this overview, we have to mention 
meta-modeling formalisms and languages proposed 
by CAME and meta-CASE environment. MetaEdit 
is a well known tool which allows specifying a 
meta-model using the data-oriented static notation 
GOPRR (Kelly et al., 1996), and generating a 
graphical editor for the specified model (Kelly et al., 
2008), (MetaCASE, 2011). The "process" and the 
"behavior" perspectives are relegated to the phase of 
code generation where instances of the model can be 
manipulated and corresponding instructions can be 

A BEHAVIORAL PERSPECTIVE IN META-MODELING

239



 

generated in any target language (i.e. XML, C++, 
Java) using the MERL scripting language. Whereas 
the meta-model definition is declarative using a 
graphic interface, executability is expressed in an 
operational way with a standard programming 
interface. This is the main drawback of MetaEdit.  

ConceptBase is another meta-modeling 
formalism supported by a meta-CASE environment.  
which is based on the Telos model (Mylopoulos et 
al., 1990), and is implemented using the Datalog 
logic based language. ConceptBase is a powerful 
graphical meta-modeling environment allowing to 
specify any number of abstraction levels, and to 
express constraints and queries on several of these 
levels. Regarding “process” and “behavior” 
perspectives, ConceptBase introduced Event-
Condition-Action (ECA) rules to express the 
dynamics of a meta-model. An illustration is given 
in (Jarke et al., 2010) with the rules of execution of a 
Petri net. 

3 EVENT BASED                   
META-MODELING NOTATION 

The aim of this paper is to show the importance of 
the behavioral perspective by applying it in 
specifying a process meta-model. We argue that 
such a description can improve model specification 
and consequently facilitate the implementation of a 
corresponding CASE tool. For this purpose, we will 
first use the UML class diagram to specify the data 
perspective of the meta-model. This model can be 
complemented with the UML sequence diagram to 
express the process perspective. For sake of space, 
this step will not be shown here. Finally, for 
specifying the behavior of the model, we introduce 
an event-based notation directly inspired from the 
Information System Development Framework (Olle 
et al., 1991). The behavior perspective is built upon 
the concepts of event, trigger and operation (figure 
2). An event is characterized by its name, its type 
(internal or external), and a predicate expressing the 
condition of its occurrence. An external event 
corresponds to the arrival of a message, while an 
internal event is related to a state change in an 
object. A message is issued by an agent, which can 
be a human actor or an application system. It is a set 
of structured data which is relevant and significant 
for the system. An Agent is described by its name, 
its type (human or system), a set of incoming 
messages and a set of out coming messages. 

The ascertain relationship is defined either 
between an  event  and  a  message   for  an  external 

 
Figure 2: Graphical notation for representing the behavior 
perspective in meta-models. 

event, or between an event and an object in case of 
an internal event. The trigger relationship relates an 
event to one or several operations. A trigger body is 
composed of a flow of unsorted atomic operations to 
be executed when the event occurs. This execution 
can be conditional; in this case, a specific condition 
is associated to the triggering of the operation. 

The main advantages of this notation are its 
simplicity and the availability of a graphical 
representation. An important feature is the emphasis 
on the interaction between the system application 
tool and the external environment.  

4 SPECIFYING THE MAP    
META-MODEL  

A map is a labeled directed graph with intentions as 
nodes and strategies as edges (Rolland, 2007a). An 
edge enters a node if its strategy can be used to 
achieve the intention of the node. Since there can be 
multiple edges entering a node, the map is capable 
of representing many strategies that can be used for 
achieving an intention. A map is a non deterministic 
representation of a process. We call “Section” a 
triplet composed of a source intention, a target 
intention and strategy. The Map formalism do not 
constrain the user in a sequential process consisting 
of successive steps, but allows instead a large degree 
of freedom in the scheduling of intentions and in the 
choice of the strategy to be applied at each step in 
the process. The UML class diagram in figure 3 
depicts the static structure of the Map meta-model. 

The meta-model contains on one hand 
representations for the Map concepts (“Map”, 
“Intention”, “Strategy”, “Section”, “Constraint”, 
“Situation”), and on the other hand, additional 
structures necessary for handling the enactment of a 
map (“Intention_Realisation”, “Section_Execution”, 
“Trace”, “Map_application”, “Map_User”). 

A map is enacted one section at a time. At each 
step of the enactment process, a new set of candidate 
sections (sections that can be executed in the next

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

240



 
Figure 3: Static representation of the Map meta-model. 

step) is computed. This is done by checking those 
sections that respect the scheduling constraints, and 
that match with the given current situation of the 
working products (“Situation”), and that match with 
the given history of the process execution (“Trace”). 
From this set of candidate section, a section with the 
corresponding product fragment (i.e. the situation) is 
interactively selected by the user (Assar et al., 2000).  

We have defined in the meta-model additional 
attributes such as the “state” attribute in several 
classes to track the current state of an object and its 
evolution during the enactment process. For 
example, the attribute ‘State_Section’ in the class 
“Section” takes the values (‘Selected’, ‘Executed’, 
‘Candidate’, ‘Prohibited’, ‘Running’). This 
information indicates the changing status of the class 
“Section” during the execution of a map, and thus 
plays an important role in reasoning about the 
progress of the enactment process. Finally, the 
classes “Map_User” and “Map_Application” 
represent external agents that interact during the 
enactment of a map. They contain necessary data 
about human and software users of the system. 
Without these elements of information, it is 
impossible to know when and why an operation will 
be executed. 

The class diagram in figure 3 is a partial 
representation of a procedural vision of the 
enactment process. It is insufficient for designing a 
meta-model-driven Map enactment tool because the 
way interactions are handled, is not explicitly 
represented. That’s why we propose to use the 
behavior perspective to describe the causal 
relationship between the Map enactment tool and 
environment, together with the inside event driven 

logic of the enactment process. Figure 4 corresponds 
to the dynamic schema of the Map meta-model. This 
graphic representation reflects the systemic view of 
the Map execution. For the sake of place, only some 
events will be briefly detailed in this paper (table 1). 

Table 1: Specifications for the behavioural meta-model. 

EV1 - arrival of an “Execute map” message 
- triggers the “Execute_Map” operation of the 
class “Map”  
- sets the value to ‘Selected’ in the attribute 
“State_Map” 

EV2 - the value of “State_Map” changes from 
‘Selected’ to ‘Running’ 
- triggers the computation of candidate sections 

EV3 - the value of attribute “State_Section” changes 
from ‘Prohibited’ to ‘Candidate’ 
- triggers the display of all candidate sections  

EV4 - the user selects an item among the list of 
candidate sections 
- modifies the “State_Section” attribute value 
from ‘Candidate’ to ‘Selected’ 

EV5 - attribute “State_Section” change its value 
from ‘Candidate’ to ‘Running’ 
- triggers the execution of the selected section 
and invokes an external application to perform 
the task associated with a strategy 

EV6 - the execution of a section is finished, 
“State_Section” changes from ‘Running’ to 
‘Executed’ 
- triggers the update of the trace, insert a new 
realized intention, updates the situation of the 
product and notifies the user of the end of 
execution of the selected section  

 

A BEHAVIORAL PERSPECTIVE IN META-MODELING

241



 
Figure 4: Representation of the dynamic perspective for the Map meta-model. 

5 DISCUSSION AND 
CONCLUSIONS 

We have addressed in this position paper the 
problem of specifying the enactment semantics of a 
process meta-model. By analyzing the state of the 
art, we find that the software engineering 
community has begun addressing this problem. 
Proposed solutions are based on UML and on the 
generic MOF meta-model, and they are inspired by 
the work around the implementation of the SPEM 
process meta-model. In the method engineering 
field, approaches are different and the assembly of 
components is the privileged approach to define new 
methods. However, we note that the issue of 
executability is common to both domains of 
research, in the sense that to be implemented, a 
methodological component must be specified in 
detail and its executable semantics have then to be 
clearly expressed. 

By using an adequate modeling notation which 
combines rigorous behavioral semantics and a clear 
graphical representation, we showed the contribution 
of this approach in the expression of process model 
executability. Our proposal is to be considered as a 
hybrid approach that combines the advantages of 
declarative and imperative paradigms for process 
modeling languages. It allows the construction of 
dynamic meta-models which have well defined 
semantics, and which are able to take into account 
the non-deterministic executable nature of a process 
model such as the Map. We have to notice here that 
some of the concepts of the meta-model are 

considered as object classes in the data perspective, 
but also as agents in the behavior perspective. This 
is an important aspect of the behavior perspective 
since it captures the semantic of the interaction, not 
only from the information or data point of view but 
also from the agent point of view. Compared with a 
meta-programming approach (e.i. Kermeta) or a 
purely declarative approach (e.i. ConceptBase), our 
approach highlights graphically the points of 
interaction between the running process and its 
environment.  

This paper is part of an ongoing research work 
for the design and the specification of CASE-like 
software tools to support the Map intentional model. 
We are convinced that meta-models should deal with 
concepts of the behavior perspective and not only 
concepts of data and process perspectives, especially 
if a model-driven execution tool is to be derived 
from it. We are currently studying, testing and 
comparing various meta-modeling environments 
(Kermeta, MetaEdit, ConceptBase) to assess the 
relevance of such meta-CASE approaches for 
building a software support tool. The work presented 
here suggests that the meta-modeling approaches are 
multiple and complementary, but suggest also that 
they are unable to take into account all the 
requirements of the designer in terms of graphical 
representation, in terms of expressing correctly the 
interactive semantics of process models, and in 
terms of formal and detailed expression of 
executability.  

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

242



 

REFERENCES 

Assar, S., Ben Achour, C. & Si-Said, S. 2000. 'A model 
for the specification of Information Systems analysis 
process (in French)'. In: Proc. 13th INFORSID 
conference, Lyon, France. 

Bendraou, R., Combemale, B., Cregut, X. & Gervais, M. 
P. 2007. 'Definition of an Executable SPEM 2.0'. In: 
Proceedings 14th Asia-Pacific Software Engineering 
Conference (APSEC 2007), 4-7 Dec. 2007, Nagoya, 
Japan. 

Bendraou, R., Gervais, M.-P. & Blanc, X. 2005. 
'UML4SPM: A UML2.0-Based Metamodel for 
Software Process Modelling'. In: Briand, L. & 
Williams, C. (eds.) Model Driven Engineering 
Languages and Systems. Springer. pp. 17-38. 

Breton, E. & Bézivin, J. 2001. 'Towards an understanding 
of model executability'. In: Proceedings Int. Conf. on 
Formal Ontology in Information Systems - Volume 
2001, Ogunquit, Maine, . 

Brinkkemper, S., Lyytinen, K. & Welke, R. (eds.) 1996. 
Method engineering: Principles of method 
construction and tool support: Chapman and Hall. 

Brinkkemper, S., Saeki, M. & Harmsen, F. 2001. 'A 
Method Engineering Language for the Description of 
Systems Development Methods'. In: Dittrich, K., 
Geppert, A. & Norrie, M. (eds.) Advanced Information 
Systems Engineering (CAiSE). Springer Berlin / 
Heidelberg. pp. 473-476. 

Harmsen, A. & Saeki, M. 1996. 'Comparison of four 
method engineering languages'. In: Brinkkemper, S., 
Lyytinen, K. & Welke, R. (eds.) Method engineering: 
principles of method construction and tool support. 
Chapman and Hall. 

Henderson-Sellers, B. & Ralyté, J. 2010. 'Situational 
method engineering: state-of-the-art review'. Journal 
of Universal Computer Science, 16(3), pp. 424-478. 

Jarke, M., Jeusfeld, M., Nissen, H., Quix, C. & Staudt, M. 
2010. 'Metamodelling with Datalog and Classes: 
ConceptBase at the Age of 21'. In: Norrie, M. & 
Grossniklaus, M. (eds.) Object Databases. Springer 
Berlin / Heidelberg. pp. 95-112. 

Jeusfeld, M., Jarke, M. & Mylopoulos, J. 2009. 
Metamodeling for method engineering, Cambridge, 
MA, The MIT Press. 

Kelly, S., Lyytinen, K. & Rossi, M. 1996. 'MetaEdit+ A 
fully configurable multi-user and multi-tool CASE and 
CAME environment'. In: Constantopoulos, P., 
Mylopoulos, J. & Vassiliou, Y. (eds.) Advanced 
Information Systems Engineering (CAiSE). Springer. 
pp. 1-21. 

Kelly, S. & Tolvanen, J. P. 2008. Domain-specific 
modeling: enabling full code generation, Wiley-IEEE 
Computer Society Press. 

Kermeta. http://www.kermeta.org [Online, 2011]. 
MetaCASE. http://www.metacase.com/ [Online]. 
Muller, P.-A., Fleurey, F. & Jézéquel, J.-M. 2005. 

'Weaving Executability into Object-Oriented Meta-
languages'. In: Briand, L. & Williams, C. (eds.) Model 

Driven Engineering Languages and Systems. Springer. 
pp. 264-278. 

Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis, M. 
1990. 'Telos: Representing knowledge about 
information systems'. ACM Transactions on 
Information Systems, 8(4). 

Olle, T. W., Hagelstein, J., MacDonald, I. G., Rolland, C., 
Sol, H. G., Van Assche, F. J. M. & Verrijn-Stuart, A. 
A. 1991. Information Systems Methodologies: a 
framework for understanding, Addison-Wesley. 

OMG. 2008. Software & Systems Process Engineering 
Meta-Model Specification, Version 2.0 - OMG 
document formal/2008-04-01 [Online]. Available at: 
http://www.omg.org/spec/SPEM/2.0/PDF. 

Rolland, C. 2007a. 'Capturing System Intentionality with 
Maps'. In  Krogstie, J., Opdahl, A. L. & Brinkkemper, 
S. (eds.) Conceptual Modelling in Information Systems 
Engineering. Springer Berlin Heidelberg. pp. 141-158. 

Rolland, C. 2007b. 'Method Engineering: Trends and 
Challenges (Invited talk)'. In: Ralyté, J., Brinkkemper, 
S. & Henderson-Sellers, B. (eds.) Situational Method 
Engineering: Fundamentals and Experiences. 
Springer Boston. pp. 6-6. 

Seidita, V., Ralyté, J., Henderson-Sellers, B., Cossentino, 
M. & Arni-Bloch, N. 2007. 'A comparison of deontic 
matrices, maps and activity diagrams for the 
construction of situational methods'. In Proceedings 
CAiSE Forum, 19th Int. Conf. on Advanced 
Information Systems Engineering, 11-15 June 2007, 
Trondheim, Norway. 

Sprinkle, J., Rumpe, B., Vangheluwe, H. & Karsai, G. 
2011. 'Metamodelling: State of the Art and Research 
Challenges'. In: Giese, H., Karsai, G., Lee, E., Rumpe, 
B. & Schätz, B. (eds.) Model-Based Engineering of 
Embedded Real-Time Systems. Springer Berlin / 
Heidelberg. pp. 57-76. 

A BEHAVIORAL PERSPECTIVE IN META-MODELING

243


