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Abstract: In this paper, we present a new approach for creating workflow. The workflow is represented as sequence of 
tasks with explicitly defined input/output data. Parallelism between tasks is implicitly defined by the data 
dependence. The workflows described in our approach are easily converted to other format. Nested and 
parameterized workflows are also supported. 

1 INTRODUCTION 

With the advance of computational technologies, the 
scientific applications running on modern distributed 
systems became more and more complex. Each 
execution of the applications is usually a workflow 
of several connected steps, where the output of the 
previous steps are the input of the next steps. 
Therefore, the tasks have to be executed in the 
correct order and the data need to be transferred 
between tasks in order to get the correct results. 

At the moment, there are many existing 
workflow management systems, each system has its 
own language for describing the workflows. The 
way how the workflows are described in current 
systems are rather complex and inflexible. Some 
systems come also with graphical editors for 
creating the workflows easier. 

In this paper, we present a new approach for 
creating workflows for scientific applications. Also 
our approach is applicable elsewhere, we primarily 
focus on distributed systems, where each task is an 
execution of a program (script, binary executable) 
on target hardware platforms. Most of grid workflow 
management systems have the same characteristics, 
so we will compare our approach with these 
workflow managers. 

2 OVERVIEW OF WORKFLOW 
DESCRIPTION APPROACHES 

Each workflow description consists from two parts: 
description of tasks and description of dependences 

between tasks. Each task may have several 
properties like execution code, input/output data, 
command-line arguments, requirements on hardware 
and so on. There are two main approaches to 
describe these properties of tasks: in a plain text 
form as pairs of property name and value (e.g. 
CPUNumber = 4), or in XML language where task 
properties are elements or attributes. 

Beside the task description, the dependence 
between tasks in the workflows must be also 
described in the workflow languages. There are two 
main ways to describe dependence between tasks in 
workflows: using parallel/sequence instructions and 
using directed acyclic graphs. 

In the first approach, a workflow is consisted of 
(nested) parallel or sequential blocks of tasks. Tasks 
that can be executed in parallel are placed in blocks 
with parallel instruction, otherwise, in a block with 
sequential instruction; the tasks must be executed in 
the order as they are defined in the block. An 
example of workflow described in this way is as 
follows: 
SEQ 
 Task1 
 PAR 
  Task2 
  Task3 
 Task4 

In this example, the workflow has four tasks named 
Task1, ..., Task4. The first task Task1 must finish 
before Task2 and Task3 can start.  Task2 and Task3 
can be executed in parallel (or in any order), and 
Task4 must wait until both tasks finish. For example 
Karajan (Gregor, et al., 2007) in Cog Kit (Gregor, 
et al.,   2001)   uses   this  approach  for   describing  
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workflows. 
In the second approach, the dependences 

between tasks are described as by parent-child pair. 
Children tasks must wait until all parent tasks finish 
before starting. The workflow above can be 
described in this approach as follows: 
PARENT Task1 CHILD Task2, Task3 
PARENT Task2, Task3 CHILD Task4 

Majority of scientific workflows use this approach 
for describing dependence. Typical examples are 
JDL (Job Description Language) (E. Laure, et al., 
2006) which are used by gLite (gLite, 2011), 
DAGMan (J. Frey, 2002) in Condor (Condor 
project, 2011), SCULF (Kostas, et al., 2004) in 
Taverna (D. Hull, et al., 2006), Pegasus (K. Lee, et 
al., 2008). The main advantage of this approach is 
that it can describe more complex workflows than 
the first approach. The dependences can be 
visualized as directed acyclic graphs (DAG), where 
tasks are represented by nodes of the graphs and the 
directed edges show the parent-child relationships. 

3 PROGRAMABLE WORKFLOW 
DESCRIPTION 

In this section we will describe our approach for 
describing workflow. We will start with basic ideas 
and gradually to more complex cases. 

3.1 Basic Ideas 

Therefore, we use a simpler way to describe 
workflows as follows: 
 A task in a workflow is described by triple: its 
code, a set of input data and a set of output data. 
 A workflow is described as a sequence of tasks. 
 Dependence and parallelism among tasks are 
implicitly defined by the input/output of tasks. 

An example of a workflow is follows: 
My_workflow(input, result) 

Task(code1, input, data1) 
Task(code2, data1, data2) 
Task(code3, data1, data3) 
Task(code4,[data2,data3],result) 

In the code above, input and result are the lists of 
input and output data of the workflow. The items in 
the lists are usually the names of files containing 
corresponding data. The first task uses code in file 
code1 for processing data from input and produces 
data stored in files in data1. Similarly, second and 
third tasks use data1 as input and generate data2, or 

data3 respectively. Finally the last task use data 
from data2 and data3 for create result, which is also 
the output of whole workflow. 

As it is shown in the example above, we only 
describe tasks, not the dependences among tasks. 
The dependence is implicitly defined by the 
input/output data of tasks. For example, second task 
use data produced by first task, so it must wait until 
the first task finishes. 

We can prove the equivalence of workflows in 
our approach and workflows described by directed 
acyclic graphs by following statements: 
 Every workflow represented in DAG can be 
described in our approach. 

 Every workflow described in our approach can be 
converted to DAG with linear complexity O(N). 

So, in our approach, we can omit the part describing 
dependence between tasks and save cost of creating 
workflows. However, the main advantages of our 
approach are in the following sections. 

3.2 Nested Workflows 

In the example above, the workflow has the same 
structure as the task: the code (the body of the 
workflow), input and output data. Therefore, we can 
define sub-workflows and use them in the way like 
tasks. 
My_sub_workflow(input,output) 

Task(code5, input, data1) 
.... 

My_workflow(input, result) 
Task(code1, input, data1) 
Workflow(My_sub_workflow, data1, 

data2) 
Task(code3, data1, data3) 
Task(code4,[data2,data3],result) 

In the example above, the second task is replaced by 
a sub-workflow. The syntax is similar to calling sub-
programs/functions in high-level programming 
language: the sub-workflow command in the main 
workflow will replace the formal input/output 
parameters of the sub-workflow by actual data in the 
main workflows. 

Nested workflows are very useful for defining 
workflows with repeated patterns (a group of tasks 
doing the same actions with different input/output 
data). Like functions/subprograms in classical 
languages, they also make abstractions of task 
groups and make the workflows more readable. 
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Figure 1: Graphical presentation of workflow. 

3.3 Scripting a Parameterized 
Workflows 

In some cases, workflows have parameters and the 
final forms of the workflows are known only after 
giving values to the parameters. The typical example 
is fork-join workflows, where the number of forks is 
a parameter given at runtime. Fork-join workflows 
are widely used in application with Monte-Carlo 
simulations or parametric studies. 

We allow users to define workflows as scripts 
with loops and other control constructions. An 
example of fork-join workflows is as follows: 
Myworkflow(input, output, N) 
 Task(preprocess, input, local) 
 for i = 1 to N 
        Task(simulation, local, 
result[i]) 

Task(postprocess, result, output) 

In the example above, we expand the workflow 
definition by adding other literal parameters beside 
the lists of input and output data. Unlike data in the 
input/output list, the values of the parameters must 
be known at the time the workflows are created. 

3.4 Task Properties 

As it was said in Section 2, tasks may have several 
properties like command-line arguments, hardware 
and software requirements, virtual organizations and 
so on. Some properties are usually common for all 
tasks in the workflows, other are specific for every 
task. 

Users can define common properties of tasks by 
setting default values for these properties. Users can 
set  values  for  properties of specific task using refe- 

rence to the task. An example is as follows 
My_workflow(input, result) 

default. set(“VO”, “egee”) 
Task(code1, input, data1) 
Workflow(My_sub_workflow, data1, 

data2) 
Task(code3, data1, data3) 
t = Task(code4,[data2,data3],result) 
t.set(“CPU”, “4”) 

In the example above, we set default virtual 
organization for all tasks to “egee” and special 
hardware requirements for the last task to 4 CPUs. 
The list of all valid properties is dependent to the 
execution backend of the workflows. 

Preprocess 

Simulation Simulation  Simulation 

Postprocess 

 

Figure 2: Graphical presentation of workflow in DAG. 

3.5 Visualization 

Workflow described in our approach can be 
visualized as graph of tasks and data. Each task has 
directed edges from/to their input/output data. Figure 
1 shows the graphical representation of the fork-join 
example in Section 3.3 with N=3. In comparison 
with the classical DAGs (Figure 2), the graph in 
Figure 1 is more informative. If we remove nodes 
representing data items by connecting edges to them 
with edges from them, the graph in Figure 1 is 
identical with the DAG in Figure 2. 
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Figure 3: Internal structure of workflow. 

It is worth to note that the graph in Figure 1 can 
be generated with linear complexity. We don’t have 
to analyze every pair of tasks to know if they have 
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data dependence, but just read the task description 
and make connection to the its data. As every task is 
read only once, the complete graph can be generated 
with linear complexity. As the graph in Figure 1 is 
easily converted to DAG like in Figure 2, we can 
prove the statement in Section 3.1 that the workflow 
description in our approach can be converted to 
DAG with linear complexity. 

4 IMPLEMENTATION DETAILS 

We use Python scripting language for implementing 
a workflow composition tool for processing 
workflow description in our approach. With Python, 
we can easily write define workflows with loops 
and/other control instructions. 

Internally, the workflow internally consists of 
two lists: list of tasks and list of data. Each task in 
the workflow is an object in memory with references 
to its data. Figure 3 shows the internal memory 
structures of workflows: the list of tasks on the left 
side, the list of data on the right side, and references 
between tasks and data.  

It is interesting to see that the internal data 
structure of the workflow in Figure 3 is exactly the 
graphical representation of the workflow like in 
Figure 1. It means that, once the workflow 
description is processed, we have already graphical 
representation of the workflow in DAG form in 
memory. Therefore, it is easy to export the workflow 
description to any other formats compatible with 
DAG. 

The workflow composition tool can execute the 
workflow in three ways: 
 Execute the workflow locally: The aim of this 
mode is for experimentation, verification and 
debugging of the composed workflow. 
 Use other workflow manager as backend: For 
executing workflows in Grid, we have implemented 
the export of our workflow description to JDL 
format. 
 Use native workflow manager: a native 
workflow manager is still in development. It would 
exploit the explicit data declaration for performing 
direct data transfer among tasks. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we have presented our approach for 
flexible workflow description. Workflows are 

described as a list of tasks with input/output data 
explicitly defined. This approach supports nested 
workflows, loops and other control instructions in 
Python scripting language, which is used in our 
implementation. The workflows then can be easily 
exported to other formats with low complexity. 

In the near future, we are developing a 
distributed workflow management system natively 
based on our approach of workflow description. The 
native workflow manager would allow direct data 
transfer among tasks according to the input/output 
data, without use of storage elements, what would 
minimize data transfer and increase performance. 
The workflow management system is designed, 
implementation is going on. 
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