
AGST - AUTONOMIC GRID SIMULATION TOOL
A Simulator of Autonomic Functions based on the MAPE-K Model

Berto de Tácio Pereira Gomes1 and Francisco José da Silva e Silva2
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Abstract: This paper describes AGST, a simulator tool for autonomic grids based on discrete events. The simulator pro-
vides, among others, tools for modeling grid resources and their network interconnections, grid applications
and their submissions, the occurrence of resource faults, resources local workload, and the use of workload
and fault traces following the SWF and FTA standards. AGST major contribution is the definition of a sim-
ulation model of the autonomic management cycle MAPE-K, which allows the simulation and evaluation of
autonomic grid middleware behavior, providing support for the monitoring, analysis, planning, and dynamic
execution of reconfiguration actions to be applied to the simulated grid components.

1 INTRODUCTION

A computer grid is a system that coordinates dis-
tributed resources, using standard protocols and inter-
faces in order to allow the integration and sharing of
computing resources, such as computing power, soft-
ware, data, and peripherals in cooperate networks and
among institutions. The key component of a grid ar-
chitecture is its middleware, which is used to hide the
heterogeneous nature and the complexity generated
by the distribution of its resources. The middleware
provides to its users and applications an homogeneous
vision of the environment, through standardized inter-
faces for its several services.

The high scalability and heterogeneity of modern
computer grid environments and the dynamism of its
applications and infrastructure makes infeasible ap-
proaches based exclusively on the intervention of hu-
man agents to perform tasks such as configuration,
maintenance, and recovery in case of failures. For
these reasons, it should be provided automated mech-
anisms that could facilitate the computer grid man-
agement. The term autonomic computing has been
used to denote computer systems capable of dynam-
ically adapting their behavior in response to varia-
tions in their execution environment according to es-
tablished policies and objectives, similar to the self-
regulatory behavior of biological systems.

Recent research efforts seek to apply autonomic
computing techniques to grid computing, providing

more autonomy and reducing the need for human
intervention in the maintenance and management of
these computing environments, thus creating the con-
cept an autonomic grid. Some of the investigated
subjects include the development of autonomic mech-
anisms for self-protection, such as detecting over-
loads that could potentially lead to disruption of ser-
vices; self-optimization, through parameter settings
and algorithms to detect performance degradations;
self-healing, to overcome possible partial system fail-
ures; and self-configuration, by providing configured
virtual machines on demand and their dynamic al-
location to physical resources (Germain-Renaud and
Rana, 2009) (Jha et al., 2009) (Collet et al., 2010)
(Abraham et al., 2010).

During the development of a grid middleware, re-
searchers often use simulation tools to validate new
concepts and implementations. Simulation tools play
a key role in the development of grid middleware,
since: (a) researchers often do not have access to
large grid environments for testing, limiting the abil-
ity to evaluate situations that require a large amount
resources, (b) it is difficult to explore large-scale ap-
plication scenarios that involve multiple resources and
users in a repetitive and controlled way, due to the dy-
namic nature of grid environments, and (c) real-world
grid applications are usually time consuming and can
run for several weeks.

Over the last few years, several grid simulators
were developed, usually based on discrete events,
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such as: GridSim (Buyya and Murshed, 2002), Sim-
Grid (Howell and McNab, 1998), Alea (Klusáček
et al., 2008), GSSIM (Kurowski et al., 2007), DSiDE
(Chtepen et al., 2009), and OGST (Cunha Filho and
da Silva e Silva, 2008). None of them focused on
the development of a simulation model tailored to the
evaluation of autonomic grid features, such as moni-
toring the grid environment, analysis of context infor-
mation, reconfiguration planning and the implementa-
tion of strategies that would allow the dynamic adap-
tation of the grid environment. Therefore, grid sim-
ulators do not have native support for the evaluation
of autonomic computing techniques to be applied on
computers grids.

The aim of this paper is to present AGST, an auto-
nomic grid simulator based on discrete events. AGST
major contribution is the definition of a simulation
model for evaluating autonomic grid behavior based
on the MAPE-K autonomic architecture (Kephart and
Chess, 2003), providing support for monitoring, anal-
ysis, planning, and dynamic execution of reconfigura-
tion actions to be applied to the simulated grid com-
ponents. This article is divided as follows: Section
2 provides a brief theoretical background on MAPE-
K autonomic architecture; Section 3 describes the
AGST simulator, its principles, motivations and grid
simulation model; Section 4 describes some related
work, while in Section 5 we draw our conclusions and
describe some future research directions.

2 MAPE-K ARCHITECTURE

The MAPE-K autonomic model, proposed by IBM
(Kephart and Chess, 2003) and illustrated in Figure
1, is a general architecture for the development of au-
tonomic software components. This model is being
increasingly used to interrelate the architectural com-
ponents of autonomic systems. It is divided into two
main software components: the autonomic manager
and the managed resource.

The managed resource corresponds to the system
or component providing the business logic that will
be dynamically adapted as the computing environ-
ment changes. The managed resource can be, for in-
stance, a Web server, a database, a software compo-
nent in a given application (e.g. the query optimizer
in a database), an operating system, etc. In an auto-
nomic grid, the task scheduler can be, for instance,
a managed resource. The autonomic manager per-
forms the functions comprising the adaptation logic
of the managed resource: monitoring, analysis, plan-
ning, and adaptation execution.

The MAPE-K model requires two types of touch-

Figure 1: MAPE-K: Autonomic Management Loop.

points within and outside the managed resource: sen-
sors and effectors. Only they have direct access to
the managed resource. Sensors are responsible for
collecting information from the managed resource,
which can be, for instance, the customers requests
response time, if the managed resource is a Web
server. The information collected by the sensors are
sent to the monitors where they are interpreted, pre-
processed and placed in a higher level of abstraction.
They are then sent to the next step of the cycle, the
analysis and planning phase. This stage produces an
action plan, which consists of a set of adaptation ac-
tions to be performed by the executor. The effectors
are the components that allow the autonomic man-
agers to perform adjustments in managed resources.
The decision of which adaptation actions must be ap-
plied in a given situation requires knowledge repre-
sentation of the computing system and its environ-
ment.

3 AGST

The AGST (Autonomic Grid Simulation Tool) main
goal is to easy the development of autonomic grid
middleware by providing a set of tools that allows the
evaluation of new autonomic concepts and their im-
plementations. In this way, the primary motivation for
the AGST development was to provide a tool that sup-
ports simulation and evaluation of autonomic comput-
ing techniques applied to computer grids. AGST ma-
jor innovation considering other well known grid sim-
ulators is the ability to simulate the functions defined
in the MAPE-K autonomic management cycle, allow-
ing the simulation of autonomic grid mechanisms.

ASGT1 was built based on OGST (Cunha Filho

1www.lsd.ufma.br/˜agst

AGST - AUTONOMIC GRID SIMULATION TOOL - A Simulator of Autonomic Functions based on the MAPE-K Model

355



and da Silva e Silva, 2008), the GridSim (Buyya and
Murshed, 2002) toolkit and the SimJava framework
(Howell and McNab, 1998). SimJava is a discrete
event driven simulation framework that that mod-
els the system as a set of entities that communicate
among themselves through events. The (discrete)
simulation time steps increases based on the occur-
rence of these events. GridSim is a software platform
that allows users to model and simulate the charac-
teristics of grid resources and networks with different
settings. All tools were developed with the Java plat-
form.

3.1 Grid Simulation Model

The AGST allows an easy and flexible modeling of
entities that comprise the grid computing environ-
ment, such as users, resources, applications, routers,
and so on. Typical grid environments events can also
be easily generated, such as the occurrence of re-
sources failures and their recovery events. The en-
tities that are part of the grid simulation model are
described in the following subsections.

3.1.1 Grid Resources and Network Links

GridSim provides the necessary entities for modeling
grid resources (GridResource), such as machinery
(Machine) and processors (EP). AGST extensions to
GridSim allows the automatic generation of grid re-
sources through the use of probability distributions.
For this end, users must provide some parameters,
such as the number of nodes to be generated, the
probability distribution that best models the hetero-
geneity of the required resources, and the medium or
maximum and minimum processing power (defined
in MIPS - Millions of Instructions Per Second), de-
pending on the probability distribution used.

TheGridResourcesGenerator component is re-
sponsible for the grid resources generation, while
theResourceDataStorage entity stores information
about the resources availability. The generated re-
sources can be of two types: dedicated (without hav-
ing local users applications running on background)
or non-dedicated (with a defined workload simulating
the execution of local user applications).

The simulation model allows the automatic gener-
ation of a grid environment in which the resources are
spread across several administrative domains (sites).
The simulator user must provide parameters used for
defining the sites interconnection network, such as
bandwidth, latency and the number of routers (entity
Router).

3.1.2 Failures

Resources fault events (entityFailureEvent) and
their recovery (entityRecoveryResource) can be
synthetically generated or extracted from fault traces
databases collected from real environments using the
FTA (Failure Trace Archive) standard2 (Kondo et al.,
2010). In the latter case, the user must provide
the database trace URL. The synthetic generation of
faults is based on probability distributions, such as ex-
ponential, Weibull and hyperexponential (Chwif and
Medina, 2007). The user must provide parameters ac-
cording to the distribution used. For example, when
using an exponential distribution, she/he must supply
the MTBF (Mean Time Between Failures) and MTTR
(Mean Time To Restore) values.

In AGST, applications execution recovery due to
node failures can be based on the restarting tech-
nique (tasks running on the failed node are re-
executed from start on other grid nodes) or on the
use of checkpoints. It is also possible to simulate
the applications execution using replication, another
technique commonly used in grid computing. The
ApplicationReplicationManager entity is respon-
sible for managing the replicas execution.

3.1.3 Applications and Task Scheduling

Extensions to GridSim provided by AGST allow the
automatic generation of two types of applications:
regulars (consisting of a single task) and bag-of-
tasks (consisting of several independent tasks, run-
ning the same code in parallel using different input
data). GridSim does not embody an explicit applica-
tion model, providing only a basic entity representing
a task calledGridlet. Thus, on GridSim, applica-
tions generation is not automatic. The arrival time of
each application (entityApplication) is set in sec-
onds, while their size is defined in Million of Instruc-
tions.

In AGST, the automatic generation of applications
may occur in three ways: (1) synthetically, through
the use of probability distributions (uniform, Poisson,
exponential, hyperexponetial) to generate the tasks
size and the applications arrival time. The user must
choose the appropriate distributions considering the
desired simulation scenario; (2) from workload traces
following the GWF (Grid Workload Format)3 and
SWF (Standard Workload Format)4 standards; or (3),
through the Lublin model, a detailed model for appli-

2http://fta.inria.fr/
3http://gwa.ewi.tudelft.nl/pmwiki/
4http://www.cs.huji.ac.il/labs/parallel/workload/swf.
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cations generation that was based on the analysis of
real grid environments traces.

The GridSim simulation model does not pro-
vide grid scheduling algorithms. AGST imple-
ments a library of widely used scheduling algo-
rithms in grids environments, such as: InteGrade,
Min-Min, MCT, and WQR (Gomes et al., 2010).
New strategies can also be easily added to the
available library. GridScheduler (GS) is the en-
tity responsible for mapping tasks to grid nodes
and running the scheduling algorithm (encapsulated
into a SchedulingStrategy (SS) entity). Each
GridResource runs aResource Controller (RC)
entity, responsible for the instantiation and execution
of tasks scheduled to the node, keeping a list of tasks
waiting to be executed.

3.2 MAPE-K Simulation Model

In order to allow the simulation of autonomic grid
mechanisms, we developed in AGST a model in-
spired by the MAPE-K autonomic management cycle,
shown in Figure 1. The autonomic simulation model
contains the following entities:Sensor, Monitor,
Analyzer, Executor, andEffector. These entities
are responsible for the autonomic management func-
tions of monitoring, analysis and planning, adaptation
control and execution. The autonomic entities com-
municate among themselves through events. Each en-
tity performs a well defined function of the MAPE-K
loop, forming the autonomic manager. Any grid en-
tity can be implemented as a managed resource.

3.2.1 Monitoring

AGST monitoring entities aims to obtain data that re-
flect changes in the behavior of the managed resource
or collect information from the simulated grid envi-
ronment that are relevant to the self-adaptation pro-
cess. For example, one may be interest in performing
some kind of adaptation if the CPU usage of a grid
node becomes less than 10%. During a simulation,
the monitoring function is performed by two entities
classes:Sensor andMonitor. TheSensor collects
data from the simulated grid environment and sends
them to theMonitor, responsible for data filtering
before notifying theAnalyzer entity of a given sit-
uation. The latter is responsible for the analysis and
planning functions.

The AGST was implemented in a way that the
simulated system knows about itself, its components
and interrelationships, their state and behavior (self-
awareness). In order to achieve this, AGST exten-
sively uses the resources defined in the Java reflec-
tion API. Computational reflection refers to a soft-

ware ability to provide structures for its own repre-
sentation in a way that its behavior and the structures
that describes it are causally connected. This con-
nection determines the behavior of the system, that is
controlled through the manipulation of its representa-
tion. Sensors use computational reflection to acquire
knowledge concerning the structure of the managed
resource (variables, methods, constructors, interfaces,
relationships, hierarchy) and to get access to the vari-
ables that determine its state, even if their access are
defined as protected and thus perform the sensing.

The knowledge necessary for analyzing the mon-
itored data and for deciding the set of adaptation ac-
tions that must be performed in a given situation is ex-
pressed by rules. Each rule is represented by aRule
entity. TheMonitor notifies theAnalyzer of changes
on the monitored resource or the environment by gen-
erating a monitoring event (MonitoringEvent). Al-
though the simulation is oriented by discrete events,
the simulated monitoring function is time-oriented,
ie, the monitor is set with a simulated time interval
used for periodically collecting the environment data,
searching for the occurrence of significant changes.

3.2.2 Analysis and Planning

The analysis phase occurs after the monitoring and
before planning. In the MAPE-K simulation model,
the two phases are represented together, since in
practice they are commonly implemented in a single
place. The analysis and planning process is essen-
tial to achieve grid autonomy, since they decide what
adaptations will be held in the managed resource. The
MAPE-K simulation model provides an entity called
Analyzer to examine the data collected by the moni-
tors and to determine if changes should be made con-
cerning the current policies or strategies used in the
simulated grid environment. For example, if the CPU
use of aGridResource is greater than 70%, it can
be advantageous to migrate its tasks to a less busy
GridResource, with the aim of minimizing the tasks
response time.

The Analyser receives the monitored data al-
ready filtered out by theMonitor and then uses
knowledge-based rules to decide whether some kind
of adaptation must occur on the grid environment.
The analysis and planning phase produces a set of ac-
tions (implemented by theAction entity), called the
action plan (ActionPlan). These actions correspond
to the reconfiguration operations that, according to the
decision-making mechanism, should be implemented
in the system in order to achieve a given purpose (self-
optimization, self-healing, or self-protection). The
action plan is sent to theExecutor, the entity respon-
sible for actually performing the changes in the simu-
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lated system, by sending anActionPlanEvent.

3.2.3 Control and Execution

The control and execution entities allow to simulate
the execution of reconfiguration actions identified as
necessary by the analysis and planning functions. The
purpose of the reconfiguration actions is to allow the
simulated grid system to evolve incrementally from
one configuration to another at runtime, introduc-
ing little impact on the grid execution. In this way,
the grid components do not need to be finalized and
restarted in order to change them.

The self-configuring feature allows the au-
tonomous system to automatically adjust to chang-
ing circumstances perceived on its own functioning
and its execution environment. The reconfiguration
process in the MAPE-K simulation model is executed
by theExecutor entities, using effectors (Effector).
As the sensors, effectors also use computational re-
flection to acquire knowledge concerning the struc-
ture of the managed resource, as well as to get ac-
cess and alter the variables that determine its state.
The reconfiguration execution is the final stage of the
MAPE-K autonomic lifecycle management, taking as
input anActionPlan generated by the analysis and
planning process.

The AGST MAPE-K simulation model allows the
execution of two adaptation approaches: parametric
and compositional. Parametric adaptation concerns
the modification of variables that determine the sys-
tem behavior. For instance, one can adjust the amount
of task replicas generated by the a scheduling algo-
rithm. The parametric adaptation implements param-
eter variability, maintaining a current used strategy.
On the other hand, compositional adaptation concerns
the exchange of algorithms or structural parts of a
managed resource, allowing it to adopt a new strat-
egy in order to respond to a new environmental state.
Examples of compositional adaptation include the ad-
dition of a new behavior to the system, or replacing
parts of its components in order to circumvent even-
tual failures.

A component calledExchangeComponent is pro-
vided to support the effectors in the process of adapt-
ing a component through the use of computational re-
flexion. This component is responsible for perform-
ing a component or attribute value substitution. The
ExchangeComponent public methods have thesyn-
chronizedaccess modifier to ensure that once a pro-
cess of replacing a component or attribute value is
started, it is not interrupted by another, and thus pre-
vent the concurrent execution of two or more adapta-
tion processes of a given component, preserving the
component state consistency.

4 RELATED WORK

There are several related work concerning the field of
grid computing simulation. The majority of grid sim-
ulation tools are discrete event oriented and various
of them are based on the GridSim and SimJava sim-
ulators, such as Alea (Klusáček et al., 2008), GSSIM
(Kurowski et al., 2007), and OGST (Cunha Filho and
da Silva e Silva, 2008). Other examples of grid sim-
ulators found in the literature are SimGrid (Casanova
et al., 2008) and DSiDE (Chtepen et al., 2009).

GridSim is a simulation tool that allows the mod-
eling and simulation of parallel and distributed com-
puting systems entities. GSSIM and Alea are simu-
lators that extend GridSim providing functionalities
for the automatic generation of applications, com-
puting resources, and failures in a synthetic form or
through the use of trace files. SimGrid is a simula-
tor tool that provides the basic functionality for simu-
lating applications executions over an heterogeneous
distributed environment. DSiDE is a simulator that
was used in (Chtepen et al., 2009) to evaluate auto-
nomic approaches to fault tolerance concerning grid
applications execution. The aim of this work was to
investigate the dynamic replacement of fault tolerance
strategies according to the grid execution environment
context.

Despite the great diversity of works related to grid
computing simulation, for the best of our knowledge
none of them address the problem of assisting the
middleware developer in the design and evaluation
of grid autonomic mechanisms by providing the sup-
port for the most used autonomic architecture: the
MAPE-K loop. This was the main motivation for the
AGST development, which has been used by our re-
search group at the Federal University of Maranhão,
Brazil to evaluate autonomic self-optimizing and self-
healing strategies focused on grid environments.

5 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

Recent research efforts seek to apply autonomic com-
puting techniques to computer grids, providing more
autonomy and reducing the need for human inter-
vention in the maintenance and management of these
computing environments, thus creating the concept of
an autonomic grid. In spite of the fact that provi-
sioning a greater degree of autonomy to grid middle-
ware currently constitute one of the most active and
challenging research theme for grid computing, cur-
rent simulation tools lack an adequate support to as-
sist developers in designing and evaluating autonomic
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mechanisms for these environments.
In this work we described AGST, a new simulator

tool for assisting the development and evaluation of
autonomic grid mechanisms. The simulator provides,
among others, tools for modeling grid resources and
their network interconnections, grid applications and
their submissions, the occurrence of resource faults,
resources local workload, the use of workload and
fault traces following the SWF and FTA standards.
Nevertheless, AGST major contribution is the defini-
tion and implementation of a simulation model based
on the MAPE-K autonomic architecture, that can be
used to simulate the monitoring, analysis and plan-
ning, control and execution functions, allowing the
simulation of an autonomic grid.

Our research group is currently using AGST to as-
sist the development and evaluation of self-optimizing
and self-healing strategies focused on grid computing
environments. The AGST simulations results were
consistent with the ones found on the autonomic grid
literature. In AGST evaluation meetings, middleware
developers reported a good effectiveness of the sim-
ulation tool in assisting the design and evaluation of
the autonomic mechanisms, highlighting the simplic-
ity of porting the developed code to a real environ-
ment, since all MAPE-K components are represented
in AGST.

As future work, we intend to perform experiments
in a real grid environment using the InteGrade mid-
dleware in order to compare the results with AGST
simulated ones. We are also investigating the use of
aspect oriented programming for simplifying cross-
cutting aspects of the AGST code.
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grid scheduling simulation environment. InProceed-
ings of the 7th international conference on Paral-
lel processing and applied mathematics, PPAM’07,
pages 1029–1038, Berlin, Heidelberg. Springer-
Verlag.

Kondo, D., Javadi, B., Iosup, A., and Epema, D. (2010).
The failure trace archive: Enabling comparative anal-
ysis of failures in diverse distributed systems. InPro-
ceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
CCGRID ’10, pages 398–407, Washington, DC, USA.
IEEE Computer Society.

Kurowski, K., Nabrzyski, J., Oleksiak, A., and Weglarz, J.
(2007). Grid scheduling simulations with gssim. In
Proceedings of the 13th International Conference on
Parallel and Distributed Systems - Volume 02, pages
1–8, Washington, DC, USA. IEEE Computer Society.

AGST - AUTONOMIC GRID SIMULATION TOOL - A Simulator of Autonomic Functions based on the MAPE-K Model

359


