
A MODEL TRANSFORMATION APPROACH FOR THE
DEVELOPMENT OF HLA-BASED DISTRIBUTED

SIMULATION SYSTEMS

Andrea D’Ambrogio, Giuseppe Iazeolla, Alessandra Pieroni
University of Roma TorVergata, Rome, Italy

Daniele Gianni
European Space Agency, Noordwijk, The Netherlands

Keywords: Distributed simulation system, High level architecture, HLA, Model driven development, MDA, Model
transformation.

Abstract: The development of HLA-based distributed simulation systems requires a significant expertise and a
considerable effort for the inherent complexity of the HLA standard. This paper introduces an automated
approach for the development of HLA-based simulation systems of higher quality at largely reduced time,
effort and cost. The proposed approach is founded on the use of model transformation techniques and relies
on standards introduced by the Model Driven Architecture (MDA). The proposed approach takes as input a
UML model of the system to be simulated and yields as output both an intermediate UML model and the
final code of the HLA-based distributed simulation system.

1 INTRODUCTION

The most prominent standard for distributed
simulation, High Level Architecture (HLA) (IEEE
1516, 2000), has been initially proposed to increase
the reuse and the interoperability of simulation
software, as a way of reducing the development
effort of complex distributed simulation systems.
After the release, however, HLA has failed to fulfill
and anticipate the community needs in terms of
semantic interoperability (Tolk & Muguira, 2003)
and effortless development (Gianni, D’Ambrogio &
Iazeolla, 2008)). A generalization of this latter
concept can be envisioned by reducing the technical
coding effort with the introduction of an automated
approach to the development of HLA-based
software systems.

Automating the derivation of software code from
a high-level model specification has proven
effective to cope with the increasing complexity of
modern software systems. Asides from shortening
software production time, an automated approach to
software development brings other advantages.

These are related to the model abstraction level for
the system design, and to the increased reuse of
software products. Providing a model abstraction
level for the design and implementation of software
eliminates the pure technical effort that the final
implementation would require. In addition, this
approach fosters the reuse of software products,
such as software model patterns and software
components, and thus also increases the quality of
the final product. As a consequence of both these
advantages, the software code can be obtained for
various platforms with no extra effort.

Commercial software industries have fully
embraced these considerations and have introduced
standard technologies that support the automation of
the entire development process. In particular, the
Object Management Group has introduced MDA
(Model-Driven Architecture) (OMG, 2003), a set of
specifications addressing the issues of automating
software production from UML (Unified Modeling
Language) model descriptions of software systems
(OMG, 2009). MDA supports the model-driven
development of software-intensive systems through
the transformation of platform independent models

155
D’Ambrogio A., Iazeolla G., Pieroni A. and Gianni D..
A MODEL TRANSFORMATION APPROACH FOR THE DEVELOPMENT OF HLA-BASED DISTRIBUTED SIMULATION SYSTEMS.
DOI: 10.5220/0003599001550160
In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2011), pages
155-160
ISBN: 978-989-8425-78-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

(PIMs) to platform specific models (PSMs),
executable components and applications.

As aforementioned, the HLA standard promotes
interoperability and reusability of simulation
components in different contexts and is based on the
following concepts: federate, federation and RTI
(Run Time Infrastructure). A federate is a
simulation program and represents the unit of reuse
within HLA. Federates communicate through shared
object instances (i.e., permanent entities) and by
interactions (i.e., messages). A federation is a
distributed simulation execution composed of a set
of federates. Finally, the RTI is a simulation-oriented
middleware that coordinates the execution of
federates. An HLA-based simulation system is
described by use of a set of Simulation Object
Models (SOMs) and a Federation Object Model
(FOM). Each SOM documents a single federate,
while the FOM documents the entire federation.

Similarly to general purpose software, HLA-
based distributed simulation systems are becoming
increasingly more complex, and therefore a MDA-
based approach for the production of such systems
can be seen as an effective solution for supporting
the development of distributed simulation systems of
higher quality at largely reduced time and effort.

This paper introduces a model transformation
approach that exploits MDA standards and
techniques to automate the production of HLA-
based distributed simulation systems.

The approach takes as input a UML model of a
system to be simulated and produces as output the
code of the corresponding HLA-based simulation
system. To achieve such an objective, the model
transformation approach introduces two
transformation steps, the former to obtain an
intermediate HLA-specific UML model from the
initial UML model and the latter to yield the
software code — ready for execution — of the
HLA-based simulation system from the HLA-
specific UML model.

In addition, the approach also introduces a HLA-
based UML profile, i.e., a standard UML extension
mechanism to specify the intermediate HLA-specific
UML model by use of HLA-specific annotations.

The paper is organized as follows. Section 2
remarks this paper contribution compared to other
state-of-the-art works. Section 3 presents the details
of the proposed two-steps model transformation
approach. Finally, Section 4 concludes the paper by
illustrating the automatic derivation of the HLA
code for the distributed simulation of a mobile SIM
card management system.

2 RELATED WORK

Model specification technologies based on model-
driven approaches are used to reduce the gap
between the model specification and the distributed
system implementation. These technologies do not
impose any constraints on system modeling, and
similarly obtain a reduction of development effort
by automating the production of simulation code
from a formal model specification. In this field, the
contribution proposed in this paper can be compared
to contributions introduced in (Tolk & Muguira,
2004), (Parr & Keith, 2003), (Jiménez, Galan &
Gariía, 2006) and (El Haouzi, 2006).

The contribution in (Tolk & Muguira, 2004),
differs from this paper approach in terms of the
application strategy, the UML diagrams adopted and
the state of implementation. Concerning the
application strategy, the contribution proposes the
creation of a specific domain for Modeling and
Simulation (M&S) within MDA. Differently, this
paper focuses on the application of MDA techniques
to the production of simulation systems treated as
general-purpose software systems. This means that,
in case of simulation of a software system, the same
approach can be adopted to eventually generate both
the operational system and the simulation system
from the same model specification. The set of UML
diagrams adopted in (Tolk & Muguira, 2004) is
wider and includes implementation diagrams.
Conversely, this paper focuses on a narrower set of
diagrams, including class diagrams and interaction
diagrams. The state of the implementation of
contribution in (Tolk & Muguira, 2004), however, is
not complete in terms of both MDA compliance and
software. Differently, this paper approach
implements a MDA compliant process by
introducing an HLA-specific UML profile and two
transformations for deriving the simulation code
from a UML model specification.

Similarly, the approach in (Parr & Keith, 2003)
differs from this paper contribution in three ways:
visual representation of specification model, MDA
compliance and software technologies for code
derivation. A visualization tool for representing
HLA objects and for deriving the corresponding
FOM and SOMs is introduced. Differently, this
paper’s approach relies on general-purpose
visualization tools, which also prove to be more
reliable and open to extensions. The MDA
compliance achieved in (Parr & Keith, 2003) is
lower because it does not provide either an HLA-
based UML profile or the transformations

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

156

introduced in this paper. As regards software
technologies for code derivation, the contribution in
(Parr & Keith, 2003) adopts proprietary
technologies, while this paper contribution is
founded on standard languages for model
transformation.

The contribution in (Jiménez, Galan & Gariía,
2006) also proposes a MDA-based development of
HLA simulation systems. However, this contribution
is limited to the definition of an initial UML profile
for HLA.

Finally, the contribution in (El Haouzi, 2006)
only outlines the main concepts behind the
application of MDA techniques to the development
of HLA systems.

3 MODEL TRANSFORMATION
APPROACH

The development of HLA-based distributed
simulation systems is defined by three phases:
development of the federation conceptual model,
design of the federation, and development of the
federation. The development of the federation
conceptual model cannot be automated because
requires understanding and creativity. Differently,
the design and the development of the federation
from the conceptual model require only technical
and mechanical skills, and therefore such phases can
be automated. As a consequence, a model-driven
design with an increased reuse of simulation
components can be successfully applied. The former
enables developers to cope with the increasing
complexity of simulation model. The latter
contributes to reduce the time required by validation
and verification sessions, as simulation components
yield increased reliability and accuracy. In addition,
the adoption of a standard methodology, such as
MDA, brings two other advantages. First,
developers produce model specifications in standard
UML, and therefore they need not be concerned

with either the HLA modeling paradigm or any
other non standard paradigm. Second, design and
development phases can be carried out by use of
standard tools for model definition and
transformation (e.g., the many commercially
available or freeware UML-based software
development environments).

Figure 1 describes the model transformation
approach, which is based on two steps. The first step
consists of the PIM-to-PSM transformation that
maps the PIM of the system to be simulated into the
PSM of the HLA-based distributed simulation
system. This step takes as input the UML profile of
the HLA platform, HLA profile, which allows
annotating standard UML elements with HLA-
specific features. The second step takes as input the
PSM obtained from the first step and yields as
output the final code of the HLA-based distributed
simulation system. This step requires the choice of a
specific HLA implementation (e.g., Pitch, Portico,
etc.) that provides the HLA services in a given
programming language (e.g. Java or C++).

The following subsections describe the PIM-to-
PSM transformation and the PSM-to-Code
transformation, respectively. The details of the HLA
profile can be found in (D’Ambrogio, Loprieno &
Tiberia, 2009).

3.1 From PIM to PSM

The first step of the model transformation approach
consists of the PIM-to-PSM transformation. The
transformation rules are here presented informally,
using natural language. Their formal specification
has been specified in the QVT model transformation
language (OMG, 2008).

To simplify the implementation of the
transformation it is assumed that the input PIM is a
UML model that consists of a use case diagram, a
set of sequence diagrams for each use case and a
class diagram built according to the MVC (Model-
View-Controller) architectural pattern. This pattern
structures the model description into entity classes

Figure 1: The two-step model transformation approach for the development of HLA-based systems.

A MODEL TRANSFORMATION APPROACH FOR THE DEVELOPMENT OF HLA-BASED DISTRIBUTED
SIMULATION SYSTEMS

157

(i.e., domain-specific data), control classes (i.e.,
business logic) and boundary classes (i.e., interfaces
between system and actors).

This section illustrates a subset of the
transformation rules that map the input UML model
into the output HLA-based UML model stereotyped
by use of the HLA profile. The subset includes the
six rules described below.

Rule 1: Actor-Boundary to Federate
Each PIM actor-boundary couple of classes must be
mapped into a PSM federate.

Within a PIM, a boundary class represents the
communication interface between system and
outside world. Similarly, the actor entity models the
user submitting requests to the system. Differently,
within the HLA-based PSM, the boundary concept
is not present because actor entities are modeled
within the distributed simulation system. Each actor
entity in the PIM is always provided with a
boundary interface, and therefore the actor–
boundary couple is mapped into the smallest
independent unit (i.e., Federate) within the HLA-
based PSM.

Rule 2: Control to Federate
The control units of the set of use cases in the PIM
must be mapped into a single federate in the PSM.

A PIM control unit represents a class that manages
the flow of execution within a use case. Thus, in a
PIM there are as many control classes as the number
of use cases. Such PIM classes are mapped into a
single HLA federate that manages the requests of all
federates. Therefore, the set of PIM control classes
is to be mapped into a single PSM class stereotyped
as Federate.

Rule 3: Entity to ObjectClass
Each PIM entity class must be mapped into a PSM
object class.

A PIM entity models a persistent object used to
exchange data between two or more actors. Such a
concept is naturally mapped into the HLA Object
class concept, and thus each PIM entity class is
mapped to a PSM class stereotyped as ObjectClass.

Rule 4: Associated Entities to Federate
A set of associated PIM entities must be mapped
into a single PSM federate.

PIM entities can be grouped to form a set of entities
with a main entity (e.g., an entity that models a DB
table with a set of foreign keys) and a number of
associated entities (e.g., the set of tables referenced
by the foreign keys). In such a case, the set of
entities is mapped into a single PSM class

stereotyped as Federate, by applying Rule 3 to the
main entity grouping all the entities (e.g., a single
database table rather than a set of database tables
associated by use of foreign keys).

Rule 5: Actor-Boundary Messages to Self Messages
Each sequence diagram message exchanged
between a PIM actor object and a PIM boundary
object must be mapped to a self message of the
corresponding PSM federate.

This rule is applied to PIM sequence diagrams to
obtain the corresponding PSM sequence diagram
and takes into account the transformation specified
by the forenamed Rule 1.

Rule 6: Boundary-Control messages to RTI
messages
Each sequence diagram message exchanged
between a PIM boundary object and a control object
must be mapped to a message between the
corresponding PSM federate and the RTI executive,
and vice versa.

This rule is applied to PIM sequence diagrams to
obtain the corresponding PSM sequence diagram
and takes into account both the transformation
specified by the forenamed Rule 1 and the use of the
RTI middleware for carrying out the interactions
between the federates of a HLA-based distributed
simulation system.

3.2 From PSM to Code

The second, and last, step of the proposed model
transformation approach for the development of
HLA-based systems consists of the PSM-to-Code
transformation.

The transformation rules are here presented
informally, using natural language. Their formal
specification has been specified in the Xpand model-
to-text transformation language (EMF, n.d.).

This section illustrates the three rules that map
the PSM model, consisting of class and sequence
diagrams, into the corresponding code of the HLA-
based distributed simulation system.

Rule 1: PSM Federate to Java Federate and Federate
Ambassador Classes
Each Federate PSM entity is mapped into two Java
classes, one for the Federate code and one for the
Federate Ambassador code.

The implementation of a HLA federate typically
consists of three portions of statements: internal
processing statements, RTI service statements, and
RTI-initiated statements, because the RTI operates
in an asynchronous multi-threading manner.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

158

Therefore, each Federate PSM entity is mapped into
a Java class that contains the internal and RTI
service statements and a FederateAmbassador class
that contains the RTI-initiated statements.

Rule 2: PSM Object Class to FOM Object Class
Each PSM Object Class entity is mapped into a
FOM Object Class.

In the PSM, an Object Class represents a system
persistent entity that does not incorporate any
behavioral logic. Moreover, a persistent entity is
also used to carry out a data exchange mean among
different PSM Federates entities. The analogy with
FOM Objects is thus immediate.

Rule 3: PSM Interaction Class to FOM Interaction
Class
Each PSM Interaction Class entity is transformed in
a FOM Interaction Class.

A PSM Interaction Class models an instantaneous
communication between two or more Federate
entities. Similarly to the PSM Object Class, the
Interaction Class does not incorporate any
behavioral logic. As a consequence, mapping a PSM
Interaction class into a corresponding FOM class is
immediate.

4 EXAMPLE APPLICATION

This section describes the application of the model
transformation approach to the production of a
simulation program for a prepaid SIM card
management system (D’Ambrogio, Loprieno &
Tiberia, 2009). The considered scenarios include
three actors: User, Operator, and Bank. The User
interacts with the system to recharge the SIM credit
through a Bank operation, to update the SIM plan, to
buy new offers, and to enquire for assistance by
sending a request to an Operator of the phone
company. From this summary of use cases, the PIM
of the card management system is first derived in
terms of an UML class diagram and a set of UML
sequence diagrams for each of the above described
use cases, as shown in Figure 2.

Figure 2: Entity classes for the example application.

The diagram consists of five classes stereotyped

as <<entity>>: CallCenter, Operator, Prepaid Card,
TelephoneRecharge, UserInfo, Promotion.

A CallCenter instance represents a phone
company customer service and is associated to the
set of OperatorInfo instances that describe the
details of the phone company operators. A
PrepaidCard instance describes a user SIM card. A
TelephoneRecharge instance models the SIM card
credit recharge and is associated to a UserInfo
instance. A UserInfo instance might also be
associated to the set of promotions subscribed by the
user, as modeled by use of Promotion instances.

Sequence diagrams describing the interactions
between class instances are defined for each use
case.

The PIM-to-PSM transformation of Section 4.2
can be applied to the above PIM to obtain the HLA-
based PSM for the SIM card management system.

The PSM is extended by use of the HLA profile
and thus its elements are grouped in the following
main packages: Federates, Interactions, Object
Classes, Publish and Subscribe Diagrams and
Behaviour Diagrams.

The Federates package includes the components
stereotyped as <<Federate>>. Such components
represent the federates of the HLA-based distributed
simulation system, i.e.: CallCenterServer,
CustomersServer, NetworkServicesServer,
Operator, PrepaidCardsServer and User.

The Interactions package includes the
components stereotyped as <<InteractionClass>>
and the attributes stereotyped as
<<InteractionParameter>>, which represent the
interaction among federates and the interaction
parameters, respectively. The package contains the
following interaction classes: Message,
Message_usr_srv, Message_usr_operator,
Message_usr_disk.

The Message interaction class defines the
generic interaction in terms of interaction parameters
as type, sender, destination, timestamp, and so forth.
The Message_usr_srv interaction class specializes
the generic interaction for the communication
between the User and the NetworkServiceServer
federates. The Message_usr_operator interaction
class specializes the generic interaction for the
communication between the User and the Operator
federates, while the Message_srv_disk interaction
class specializes the generic interaction for the
communication between the NetworkServiceServer
federate and the PrepaidCardsServer, the
CustomersServer and the CallCenterServer
federates.

A MODEL TRANSFORMATION APPROACH FOR THE DEVELOPMENT OF HLA-BASED DISTRIBUTED
SIMULATION SYSTEMS

159

The Object Classes package includes the set of
elements that represent the data exchanged by
federates, i.e., classes stereotyped as
<<ObjectClass>> and attributes stereotyped as
<<ObjectAttribute>>. Figure 3 illustrates the
hierarchy of object classes for the example
application.

The Publish/Subscribe Diagrams package
includes the set of diagrams representing the
publish/subscribe specification of federates. Such
specification enables the communication among
federates within a federation.

Figure 3: Hierarchy of PSM object classes.

The Behavior Diagrams package describes the
federate behavior by use of a sequence diagram for
each federate in the Federates package. The set of
sequence diagrams is obtained by applying Rule 5
and Rule 6 of Section 3.1, plus a set of initialization
and termination interactions that are automatically
included for each federate.

The obtained PSM is finally used to derive the
code of the HLA-based distributed simulation
system, by applying to the PSM the set of rules
described in Section 3.2. The transformation rules
generate both the Java code of federates and the
XML representation of the FOM. The Java code of
federates is compliant to the Portico Open Source
HLA implementation, while the FOM is coded
according to the standard DTD for HLA FOMs.

The so obtained Java classes include the
implementation of both initialization/termination
methods and the run() method for each federate.
Then, the set of federates can be allocated onto a set
of possibly remote hosts for the distributed
execution of the simulation system. This last activity
may in turn be automated by introducing at PSM
level a UML deployment diagram that describes the

allocation of federate components onto the
processing nodes of the execution infrastructure.

5 CONCLUSIONS

This paper has proposed a model transformation
approach that derives the code of an HLA-based
simulation system from a model specification of the
system to be simulated. The approach has
introduced a UML profile for HLA modeling and
two transformations that automatically map the
source UML system model into a HLA-specific
model and eventually into the source code.

REFERENCES

IEEE 1516, 2000. Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) - Framework
and Rules.

Tolk, A., and Muguira, J. A., 2003. The Levels of
Conceptual Interoperability Model (LCIM), Proc. of
the 2003 Fall Simulation Interoperability Workshop.

Gianni, D., D’Ambrogio, A., and Iazeolla, G., 2008. A
Layered Architecture for the Model-driven
Development of Distributed Simulators, Proc.
SIMUTOOLS08, Marseille, France, March, 2008.

OMG, 2003. MDA Guide, version 1.0.1.
OMG, 2009. Unified Modelling Language, version 2.2.
OMG, 2008. MOF 2.0 QVT Specification, version 1.0.
Tolk, A., and Muguira J. A., 2004. M&S within the model

driven architecture, Proc. of the Interservice/Industry
Training, Simulation, and Education (I/ITSEC)
Conference, 2004.

Parr, S., and Keith, R., 2003. The Next Step – Applying
the Model Driven Architecture to HLA, Proceedings
of the 2003 Spring Simulation Interoperability
Workshop.

Jiménez, P., Galan, S., Gariía, D., 2006. Spanish HLA
abstraction layer: towards a higher interoperability
model for national, Proc. of the European Simulation
Interoperability Workshop.

El Haouzi, H., 2006. Models Simulation and
Interoperability using MDA and HLA, IFAC/IFIP
International conference on Interoperability for
Enterprise Applications and Software (I-ESA'2006).

EMF, N. D., Eclipse Modeling Framework Project,
<http://www.eclipse.org/modeling/emf>.

A. D'Ambrogio, S. Loprieno, G. Tiberia, 2009. A Model-
driven Approach for the Development of HLA-based
Distributed Simulation Systems, Technical Report
RI.01.09, Software Engineering Lab, University of
Roma TorVergata, Roma, Italy.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

160

