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Abstract: We are at a point in time where healthcare (in USA) is getting more attention from law makers, government 
agencies, doctors, hospitals, pharmaceutical companies, and population at large. The costs for healthcare 
have been steadily growing. The healthcare system offers challenging and interesting opportunities for 
operations researchers from both theoretical and practical points of view. This paper is an attempt to use 
simulation as a tool to study a healthcare system at a macroscopic level. 

1 INTRODUCTION 

With baby-boomers growing at a faster rate and the 
required workforce (to support the existing older 
people and the boomers) dwindling in size, the 
United States healthcare system (HCS) is receiving 
attention at every level. The country is facing multi-
dimensional problems with regards to HCS. On one 
hand the worry is to make sure that everyone living 
in this country has an affordable health insurance. 
For way too long this has been largely ignored in 
spite of the constant exposure of this problem. 
Obviously, one of the main reasons is the cost 
associated with making everyone insured. Hence, 
insured people as well as the governmental (both 
local and federal) agencies have been putting up the 
bill on the uninsured. While some are uninsured due 
to their own choice, majority of them cannot afford 
to pay for their insurance. With the current economic 
condition the problem is even more exacerbated. On 
the other hand, HCS has so much waste (Thomson 
Reuters, 2009, Washington Post, 2009) that a small 
percentage of the savings will pay for the costs 
associated with the uninsured patients. In fact, if 
done properly the overall costs can be significantly 
brought down. For example, identifying the areas of 
wastage, underutilized resources, and needing 
significant improvement, will help this cause. 

According to a white paper published by 
Thomson Reuters, 2009, the U.S. HCS wastes 
between $600 billion and $850 billion annually. This 
is about one-third of the nation’s healthcare bill. 
This report identifies a number of categories (in 

broader terms) where wastage occurs (see Figure 1 
below). About 40% of the wastage is estimated 
under the “unnecessary care” category.  

This is defined as “Unwarranted treatment, such 
as the over-use of antibiotics and the use of 
diagnostic lab tests to protect against malpractice 
exposure, accounts for $250 billion to $325 billion 
in annual healthcare spending.” 

 
Figure 1: Percentage of waste in US HCS. 

One of the items mentioned in the 40% category 
is the “use of diagnostic lab tests”. Diagnostic labs 
cover a wide range of labs such as blood test, X-
rays, MRI, and Cardio. In an ideal world a patient 
requiring any type of lab test should be able to get it 
without having to wait for excessively long period of 
time. But as we all know this is not the case for a 
variety of reasons. These (not necessarily in any 
order) are: (a) lack of resources; (b) improper 
allocation of resources; (c) scheduling of patients; 
and (d) queuing delays due to unexpected arrivals. 
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We are in an era where the competition is so strong. 
As technology grows exponentially, both the 
patients and the doctors would like to use the 
technology to cure the patients efficiently and in a 
short period of time. Hence, a HCS would like to 
attract and enrol more patients and the doctors to its 
organization. One of the ways of doing this is to 
provide “quality” service at an affordable price and 
still make profit. Note that a typical HCS consists of 
many (major) groups such as (a) administrative; (b) 
doctors who serve the patients insured through the 
system; (c) hospitals that serve the patients covered 
by the system and (d) laboratories that serve the 
hospitals, doctors, and patients. It should be noted 
that there may be interactions between these groups. 
For example, some hospitals have their own 
laboratories which serve the patients admitted to the 
hospital either as in-patients or out-patients. Most 
doctors visit hospitals to take care of not only their 
own patients but also other patients who have been 
admitted. We will not model that aspect in this 
paper.  

The study of such systems in which most of the 
underlying variables are random falls in the area of 
stochastic modelling and one can avail the tools 
therein to study healthcare models. However, 
tracking analytically the system performance 
measures such as the mean waiting times and the 
utilization factors is almost infeasible due to inherent 
complexities and the significant interactions that are 
present among various segments of a healthcare 
system. An alternative approach to analytical 
modelling is through simulation. While simulation in 
healthcare has evolved at a slow pace (as compared 
to other non-healthcare systems such as 
manufacturing and telecommunications) over the 
last three decades or so (see e.g., Jun, et al., 1999, 
Baldwin, et al., 2004), it is recognized as an 
important tool in solving problems arising in 
healthcare systems. Most of the published papers 
dealing with simulation in healthcare systems focus 
on sub-systems such as emergency room, outpatient 
clinics, etc. (Eldabi, et al., 2010, Gunal and Pidd, 
2010). For latest developments in simulation and its 
application to many fields including healthcare 
systems we refer the reader to journals such as 
Simulation Modelling Practice and Theory, 
Simulation in Healthcare, Journal of Simulation, and 
Proceedings of Winter Simulation Conference. 

Thus, the objective of this paper is to provide 
insights into how stochastic modelling can be 
applied to a typical HCS at a macroscopic level so as 
to help the management with aggregate planning. It 
is our intent here to focus on the use of simulation to 

identify bottlenecks that cause excessive delays in 
patients receiving service, and areas of under 
utilization of the resources, by looking at a HCS at a 
macroscopic level. More specific ones (within this 
type of HCS) requiring microscopic level modelling 
will be addressed elsewhere.  

2 MODEL DESCRIPTION 

As indicated earlier a HCS is plagued with wastage, 
underutilized resources, and excessive delays 
experienced by patients. Whether one is dealing with 
handling patients to go through diagnostic labs or to 
process paperwork before (and after) the patients go 
through diagnostics or the doctors to notify the 
patients of the results, or the patients need to be 
admitted in the hospitals, or the patients requiring 
operations need to wait for beds, equipments, 
personnel, delays are inevitable due to available 
finite resources and the way they are allocated 
among competing service providers. These delays 
are further compounded by inherent randomness. 
For example, the arrivals of the patients to service 
providers are not deterministic. Different classes of 
patients arrive and they have to be attended based on 
their priorities. These are also random. The service 
times are usually random and some patients may 
have to go through the same service more than once 
for reasons that cannot be anticipated. Thus, a 
natural approach to solving such problems is the use 
of stochastic modelling. While analytical modelling 
is important, there are instances such as the current 
study where one has to rely on simulation due to 
complex nature of the model.  

Patients are the central focus in any HCS and so 
we start with assuming that patients arrive to a HCS 
according to a Markovian arrival process (MAP) 
with representation (D0, D1) of order m. Note that 
the transitions corresponding to no arrivals are 
governed by D0 and the transitions corresponding to 
arrivals are governed by D1. The underlying 
continuous-time Markov chain (CTMC) has the 
generator given by Q = D0+D1. This representation 
of MAP is a special case of batch Markovian arrival 
process (BMAP). This BMAP was originally 
introduced by Neuts (1979) as a versatile Markovian 
point process in 1979. MAP, a very versatile point 
process used extensively in stochastic modelling, 
includes several well-known point processes such as 
Poisson, Erlang, and hyperexponential. For full 
details on MAP and its applications to stochastic 
models we refer to (Lucantoni, 1991, Chakravarthy, 
2001, Chakravarthy, 2010). The fundamental rate 
(the rate of arrivals per unit of time), λ, is given by 
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,eπ 1D=λ  where π is the steady state probability 
vector of the generator Q governing the underlying 
CTMC satisfying πQ = 0, πe = 1 and where e is a 
column vector of 1’s with dimension m.  

While one can model the arrivals of different 
priority type patients to follow independent MAPs, 
we choose here to model the arrivals to be dependent 
on each other generated by a common MAP with an 
associated probability vector. However, it is easy to 
modify our model to accommodate any variation to 
the current one. Also, the idea of using MAP to 
model patient arrivals is to incorporate inherent 
correlation present in the inter-arrival times of 
patients. 

Note that the patients in any HCS require 
different types of services. Thus, the patients are 
classified based on their service requirements that 
range from a simple administrative query to a more 
serious one requiring key resources such as doctors, 
labs, etc. We assume that a HCS under consideration 
has N groups and that with probability pi, 1 ≤  i ≤ N,  
an arriving patient belongs to group i and let p =  (p1, 
p2 ,…, pN). We will, henceforth, refer to them as 
patients of type i. Type i patients have to go through 
Ki stages of servicing. This is again typical of a 
HCS. For example, a patient admitted into a hospital 
has to go through registration, triage, examination 
room, etc. Also, patients who call administrative 
people for any query related to billing, office visits, 
and other activities go through various stages before 
hanging up the phone.  

We assume that the service times of patients of 
type i, 1 ≤ i ≤ N, need to go through Ki stages and in 
each stage the time required to process the patients is 
of phase type. (A phase type distribution (PH-
distribution) is obtained as the time until absorption 
in a finite state continuous time Markov chain with n 
transient states and one absorbing states. Thus, a PH 
distribution is represented by (β, S) of order n. PH-
distributions include well-known distributions such 
as exponential, (generalized) Erlang, and 
hyperexponentials as very special cases (Neuts, 
1995). 

These stages represent the patients going through 
admission process, filling necessary paperwork, 
triage, etc. It is possible for some patients to seek 
direct or indirect services from another group after 
getting serviced in the group they entered. For 
example, patients getting into hospitals may have to 
seek administrative help for follow up paperwork or 
examination/billing details. Some may opt to ask at a 
later point in time (in which case we can treat them 
as new arrivals to the system) or as part of their 
current visit. We model this scenario by specifying 
the routing mechanism. We also put a restriction that 

a patient may not seek services from more than two 
groups (including the one that was entered). This is 
not only to mimic the most practical situations but 
also to avoid patients cycling through many groups 
more than once. This one requires more book-
keeping. A pictorial description of this model is 
displayed in Figure 2. 

Thus, the processing time of a priority i patient 
in stage j, 1 ≤  j ≤ Ki , 1 ≤  i ≤ N, is assumed to be of 
phase type with representation (β(i,j), S(i, j)) of order 
nij.  

MAP arrivals

GROUP 1 

GROUP 2 

GROUP N 

 
Figure 2: A typical HCS. 

By keeping track of the phase of the arrival 
process, the number of type i patients in the system, 
and the phase of the services in various stages, one 
can study the model under consideration using 
Markov chain theory and algorithmic methods 
(Neuts, 1989, 1995). However, the state space for 
the model grows exponentially and the book-
keeping is very involved. Furthermore, the 
computations of the distributions of the waiting 
times in the system of patients are very complicated 
to describe analytically. Thus, we will use 
simulation to study our model. We have chosen 
ARENA to simulate the model under study. 

2.1 Simulation with ARENA 

In this section we will outline how ARENA is used 
to simulate the HCS under study. The following 
assumptions are made in developing the model in 
ARENA. 
(a) The number of groups and the number of stages 
within each group are as follows: 

N = 4, K1 = 2, K2 = 2, K3 = 3, and K4 = 5. 
(b) Type 1 patients go through both their stages and 
then leave the system after getting the services. 
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(c) Type 2 patients go through both stages before 
leaving the system. 
(d) Type 3 patients go through one of the three 
sequences: (i) Stage 1 to Stage 2 to Stage 3; (ii) 
Stage 1 to Stage 2; (iii) Stage 1 to Stage 3; according 
to a probability vector, say, p2 =  (p21, p22 , p23) 
before leaving the system.  
(e) Type 4 patients go through one of the five  
sequences: (i) Stage 1 to Stage 2 to Stage 3 to Stage 
4 to Stage 5; (ii) Stage 1 to Stage 2 to Stage 5; (iii) 
Stage 1 to Stage 5; (iv) Stage 1 to Stage 2 to Stage 4 
to Stage 5; and (v) Stage 1 to Stage 2 to Stage 3 to 
Stage 5; according to a probability vector, say, p3 =  
(p31, p32 , p33, p34 , p35) before leaving the system. 
(f) Patients of types 2, 3, and 4 create additional 
work for servers in Stage 2 of Group 1 when they 
leave the system. These have a lower priority as 
compared to Type 1 patients.  

3 ILLUSTRATIVE EXAMPLE 

For our illustrative example, we consider five 
different arrival processes and different service time 
distributions. The five arrival processes with 
parameter matrices D0 and D1 are as follows. The 
base time units are taken to be minutes. 

EXPA: Exponential: D0 = -1and D1 = 1. 

ERLA: Erlang of order 5 
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HEXA: Hyperexponential: This is the mixture of 
two exponential with mixing probabilities 0.9 and 
0.1, and with parameters 1.9 and 0.19. Here 
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MNCA: MAP with negatively correlated arrivals:  
Here we take D0 and D1 to be 

 
0 1

1.00222 1.00222 0 0 0 0
0 1.00222 0 , 0.01002 0 0.9922 .
0 0 225.75 223.4925 0 2.2575

D D
−⎡ ⎤ ⎡ ⎤
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MPCA: MAP with positively correlated arrivals: 
Here we take D0 and D1 to be 

 
0 1

1.00222 1.00222 0 0 0 0
0 1.00222 0 , 0.9922 0 0.01002 .
0 0 225.75 2.2575 0 223.4925

D D
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦  

All these five MAP processes are normalized 
during simulation so as to have an arrival rate of 
12/minute. However, these are qualitatively different 
in that they have different variance and correlation 
structure. The first three arrival processes, namely 
ERLA, EXPA, and HEXA, correspond to renewal 
processes and so the correlation is 0. The arrival 
process labeled MNCA has correlated arrivals with 
correlation between two successive inter-arrival 
times given by -0.4889 and the arrivals 
corresponding to the processes labeled MPCA has a 
positive correlation with values 0.4889. The ratio of 
the standard deviations of the inter-arrival times of 
these five arrival processes with respect to ERLA 
are, respectively, 1, 2.2361, 5.0194, 3.1518, and 
3.1518. 

For services in various stages in different groups 
we pick among the following three special cases of 
PH-distributions. These are displayed in general 
notations and in the examples we will point out the 
specific values used for these parameters. 

EXPS: Exponential:  β = (1) , S = (- ξ). 

ERLS(µ, m): Erlang of order m 
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HEXS(β,µ): This is the mixture of two exponential 
with mixing probabilities β = (β1,…, βm) and with  
parameters µ = (µ1,…, µm). These parameters will be 
chosen so as to arrive at a desired mean. 

.),...,( 2

1

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

==

m

m S

μ

μ
μ

βββ
 

All three PH-distributions will be normalized by 
modifying the parameters so as to have a specific 
mean. However, these are qualitatively different in 
that they have different variance structure. Note that 
the coefficient of variation of ERLS, EXPS, and 
HEXS are, respectively, less than 1, equal to 1 and 
greater than 1.  

In Table 1 we list the values of the parameters of 
the model under study used in simulation. In the 
following we denote Stage j in Group i by GiSj, for  
1 ≤  j ≤ Ki , 1 ≤  i ≤ N. 

Before we specify other parameters of the model, 
we display in Figure 3 the bar diagram of some key 
statistics (related to our model) taken from various 
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sources such as state health facts (SHF), US Census 
(Census), and population by state that are available 
on the public domain.  We first group the 50 states 
and the District of Columbia of USA into 5 regions 
as: (a) Northeast consisting of 13 states; (b) 
Southeast with 12 states; (c) Midwest with 12 states; 
(d) Southwest with 4 states; and (e) West with 10 
states. The number of HMOs (HMO) and the 
number of hospitals (HOS) are in actual units; the 
units for doctors (DOC) are the rate per 100,000 
residents; the population (POP) is in units of 
100,000s; the number of patients (PAT) served by 
Federally-funded Federally qualified health centers 
are in units of 100,000s, and the number of 
healthcare employees (HCE) are in 100,000s.  

 
Figure 3: Key statistics related to a HCS. 

It should be noted that such statistics pertaining 
to specific HMOs or hospitals or doctors or any 
other category may not only be proprietary in nature 
but also difficult to obtain. So, we try our best to 
reasonably estimate the parameters for our 
simulation model. Also this is the first step that we 
take in dealing with modelling a healthcare system 
at the macroscopic level (mainly for aggregate 
planning) and hence there is room for considerable 
improvement in the future. 

In the following let cij, 1 ≤  j ≤ Ki , 1 ≤  i ≤ N, 
denote the number of service providers such as 
doctors or healthcare administrative personnel, etc., 
available to serve type i patients in Stage j. Based on 
the statistics seen above coupled with additional 
statistics on one of the local HMOs we fix our other 
parameters as follows. All the time units are in 
minutes. The simulation was run for 365 days on a 
24-hr basis. In Tables 2 through 4 we display the (a) 
utilization of resources; (b) mean and (c) coefficient 
of variation (CV) of the waiting time in the system. 

Table 1: Parameter values. 

Parameter Values 

N 4 

(K1, K2, K3, K4 ) (2, 2, 3, 5 ) 

λ 5/minute 

(c11, c12) (20, 40) 

(c21, c22) (500, 250) 

(c31, c32, c33) (40, 30, 30) 

(c41, c42, c43, c44,
c45) 

(50, 75, 125, 150, 200) 

p (0.1, 0.6, 0.2, 0.1) 

p2 (0.30, 0.35, 0.35) 

p3 (0.1, 0.2, 0.2, 0.2, 0.3) 

Service time at 
G1S1 

ERLS(0.2, 5) 

Service time at 
G1S2 

HEXS ((0.6,0.3,0.1),(0.68, 0.068, 
0.0068)) for type 1 patients;  
ERLS(1/0.3,10) for additional 
work 

Service time at 
G2S1 

ERLS(1/3, 5) 

Service time at 
G2S2 

HEXS ((0.85,0.1,0.05),(0.3425, 
0.03425, 0.003425) 

Service time at 
G3S1 

ERLS(1/3, 5) 

Service time at 
G3S2 

ERLS(2.5, 5) 

Service time at 
G3S3 

ERLS(1, 5) 

Service time at 
G4S1 

ERLS(0.25, 5) 

Service time at 
G4S2, G4S3, 
G4S4, and G4S5 

HEXS ((0.85,0.1,0.05),(0.17125 
0.017125, 0.0017125)  

MAP ERLA, EXPA, HEXA, MNCA, 
MPCA 

Looking at these tables we notice that all arrival 
processes have pretty much the same utilization in 
all sectors. The utilization is not high for any of the 
sectors. In fact, the largest value is 0.590. With 
regards to the mean waiting time in the system, we 
find that the five arrival processes appear to have 
similar values for all types of patients. However, 
with respect to the additional paperwork (created by 
types 2, 3, and 4 patients) the mean time taken is 
much higher for the positively correlated arrivals. In 
fact, the mean is almost three times as large as the 
other arrival processes. 

The CV of the waiting time in the system of 
patients shows a different pattern as compared to the 
mean waiting time for the five arrival processes 
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considered. For example, the smallest value for CV 
seems to occur for type 3 patients with positively 
correlated arrivals. This measure, for type 3 patients, 
is larger than 1 in all cases indicating that standard 
deviation of the waiting time in the system to be 
much larger than the mean. 

Table 2: Utilization of the resources. 

MAP ERLA EXPA HEXA MNCA MPCA 

G1S1 0.251 0.250 0.249 0.250 0.251 

G1S2 0.590 0.583 0.584 0.587 0.588 

G2S1 0.090 0.090 0.090 0.090 0.090 

G2S2 0.240 0.240 0.239 0.240 0.238 

G3S1 0.374 0.375 0.375 0.375 0.374 

G3S2 0.067 0.067 0.067 0.067 0.067 

G3S3 0.166 0.166 0.166 0.167 0.166 

G4S1 0.200 0.200 0.200 0.200 0.200 

G4S2 0.271 0.269 0.264 0.263 0.270 

G4S3 0.161 0.160 0.157 0.158 0.159 

G4S4 0.135 0.131 0.134 0.133 0.133 

G4S5 0.100 0.099 0.099 0.100 0.101 

Table 3: Mean waiting time in the system. 

MAP ERLA EXPA HEXA MNCA MPCA 
Type 1 30.23 29.64 29.83 29.91 31.43 
Type 2 34.99 35.01 34.94 34.98 34.83 

Type 31 22.02 22.01 22.00 22.03 24.77 
Type 32 22.00 22.03 22.01 22.00 24.78 
Type 33 21.98 22.01 22.02 21.99 24.81 
Type 41 185.84 175.79 180.16 181.02 180.31 
Type 42 181.60 180.57 179.38 180.24 179.83 
Type 43 177.86 179.46 178.96 178.08 183.42 
Type 44 180.56 179.82 177.87 177.34 180.10 
Type 45 181.50 179.43 178.97 177.81 179.42 

Paperwork 3.00 3.00 3.00 3.00 8.80 

Table 4: CV of the waiting time in the system. 

MAP ERLA EXPA HEXA MNCA MPCA 
Type 1 0.471 0.470 0.472 0.470 0.490 
Type 2 0.385 0.382 0.383 0.383 0.385 

Type 31 3.086 3.095 3.078 3.078 2.463 
Type 32 3.084 3.090 3.087 3.094 2.479 
Type 33 3.086 3.075 3.083 3.088 2.470 
Type 41 0.498 0.501 0.488 0.499 0.491 
Type 42 0.490 0.486 0.494 0.495 0.493 
Type 43 0.497 0.497 0.498 0.491 0.498 
Type 44 0.496 0.490 0.505 0.494 0.495 
Type 45 0.494 0.500 0.495 0.492 0.498 

Paperwork 0.316 0.316 0.316 0.316 1.631 

In the case of additional paperwork, we notice 
that CV is about 5 times larger for the positively 

correlated arrivals as compared to all the other 
arrivals (which all have roughly the same value). 
This illustrates that one cannot solely depend on the 
means. In practice, the management normally uses 
the means to allocate appropriate resources and this 
example points out the danger in doing so. 

Finally, we display the fitted distributions of the 
waiting times of different patients in various stages 
in Table 5. In most applications the waiting time 
distribution will be skewed to the right since some 
patients have to wait unusually longer than the 
others. Therefore, we notice that most of the fitted 
distributions are either gamma, lognormal, or beta, 
which are very common in situations that exhibit a 
large variation. In the case of all but positively 
correlated arrival processes, we observe that the best 
fit for the time spent by the additional paperwork is 
same as the processing time (Erlang of order 10 with 
parameter 10/3). This indicates that the additional 
paperwork is processed soon after its arrival. 
However, for the positively correlated this is not the 
case and there appears to exhibit a large variation 
requiring a beta distribution. Thus, in practice one 
should integrate fully the type of distribution used 
for the arrivals rather than just a few descriptive 
measures such as mean, standard deviation, and 
correlation. 

4 CONCLUSIONS 

In this paper we used ARENA simulation software 
to study a healthcare system at a macroscopic level 
and identified a few underutilized resources as well 
as areas for improvement (with regards to delay in 
waiting for services). We used a versatile point 
process to model the arrivals of patients and phase 
type distributions for the services of the patients in 
various stages of a HCS. Different types of patients 
require different sequencing to get services and are 
routed accordingly. It should be pointed out that the 
intent of this paper is not to simulate any specific 
unit of a HCS but to highlight the need (especially 
for aggregate planning) for modelling at a 
macroscopic level through an example. Thus, in this 
first attempt the results are only approximate and 
should be taken and interpreted carefully. There are 
several variants and improvements to the current 
model and will be addressed elsewhere.  
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Table 5: Fitted distributions of the waiting time in the system (using ARENA notation). 

 ERLA EXPA HEXA MNCA MPCA 

Type 1 2 + LOGN(22.4, 29.4) 2 + LOGN(22, 28.5) 1 + LOGN(22.9, 26.9) 1 + LOGN(22.9, 26.9) 1 + LOGN(24.7, 28.7) 

Type 2 3 + LOGN(23.9, 25.5) 2 + LOGN(24.8, 24.4) 2 + LOGN(24.8, 24.4) 2 + LOGN(24.8, 24.4) 2 + LOGN(24.7, 24.3) 

Type 31 5 + GAMM(3.06, 5.57) 5 + GAMM(3.05, 5.58) 5 + GAMM(3.07, 5.54) 5 + GAMM(3.07, 5.55) 5 + GAMM(4.59, 4.31) 

Type 32 5 + GAMM(3.07, 5.55) 5 + GAMM(3.06, 5.56) 4 + GAMM(2.83, 6.36) 4 + GAMM(2.82, 6.39) 5 + GAMM(4.54, 4.35) 

Type 33 5 + GAMM(3.06, 5.56) 5 + GAMM(3.08, 5.53) 5 + GAMM(3.06, 5.56) 5 + GAMM(3.05, 5.57) 5 + LOGN(19.9, 10.6) 

Type 41 8 + LOGN(140, 244) 8 + LOGN(132, 221) 8 + LOGN(133, 227) 8 + LOGN(136, 233) 7 + LOGN(135, 225) 

Type 42 8 + LOGN(135, 232) 8 + LOGN(133, 229) 7 + LOGN(134, 223) 7 + LOGN(135, 226) 8 + LOGN(134, 228) 

Type 43 7 + LOGN(134, 222) 8 + LOGN(135, 228) 7 + LOGN(135, 224) 7 + LOGN(133, 220) 8 + LOGN(137, 238) 

Type 44 7 + LOGN(135, 226) 8 + LOGN(133, 226) 8 + LOGN(134, 227 8 + LOGN(133, 224) 7 + LOGN(135, 224) 

Type 45 7 + LOGN(136, 228) 6 + LOGN(136, 221) 6 + LOGN(135, 219) 6 + LOGN(134, 217) 8 + LOGN(134, 228) 

Paperwork ERLA(0.3, 10) ERLA(0.3, 10) ERLA(0.3, 10) ERLA(0.3, 10) 152 * BETA(0.296, 4.82) 
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