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Abstract: We consider a single-machine scheduling problem, in whiehgirocessing time of a job can take any value
from a given segment. The criterion is to minimize the sum efglited completion times of thejobs, a
weight being associated with a job. For a job permutationstuey the stability box, which is a subset of
the stability region. We derive a®(nlogn) algorithm for constructing a job permutation with the lssge
dimension and volume of a stability box. The efficiency of anpatation with the largest dimension and
volume of a stability box is demonstrated via a simulatioraget of randomly generated instances.

1 INTRODUCTION derive anO(nlogn) algorithm for constructing a job
permutation with the largest volume of a stability box.

In real-life scheduling, the numerical data are usu- Computational results are presented in Section 4. We

ally uncertain. A stochastic (Pinedo, 2002) or a fuzzy conclude with Section 5.

method (Slowinski and Hapke, 1999) are used when

the job processing times may be defined as random

variables or as fuzzy numbers. If these times may

be defined neither as random variables with known 2 PROBLEM SETTING

probability distributions nor as fuzzy numbers, other

methods are needed to solve a scheduling problem un-JOPs7 = {Ji,..,Jn}, n > 2, have to be processed on

der uncertainty (Daniels and Kouvelis, 1995; Sabun- @ Single machine, a positive weighitbeing given for

cuoglu and Goren, 2009; Sotskov et al., 2010b). The @ jobJi € 5. The processing time; of a job J; can

robust method (Daniels and Kouvelis, 1995; Kasper- take any real value from a given segmepit, p;’], 0 <

ski, 2005: Kasperski and Zelinski, 2008) assumes that P < P;’- The exact valug; € [pr-, p’] may remain

the decision-maker prefers a schedule hedging againstinknown until the completion of jod.

the worst-case scenario. The stability method (Lai ~ LetT={peRl|[p-<p <p’, ie{l...,n}}

and Sotskov, 1999; Lai et al., 1997; Sotskov et al., denote the set of vectops= (py, ..., pn) (Scenarios)

2009; Sotskov et al., 2010a; Sotskov et al., 2010b) of the possible job processing time®= {y, ..., T }

combines a stability analysis, a multi-stage decision denotes the set of permutations= (J,,...,J,) of

framework and a solution concept of a minimal dom- the jobs7. Problem 1pt < p; < p! |y wiC; is to find

inant set of semi-active schedules. an optimal permutatior; € S

In this paper, we implement the stability method
for a single-machine problem with interval process- WG —v£ — min e 1
ing times of then jobs (Section 2). In Section 3, we /&, G(m,p) =V nies | 1, G(ep) ¢ (1)
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HereafterCi(mi, p) =C; is the completion time of job  Definition 1 (Sotskov and Lai, 2011)The maximal
J € 7 in a semi-active schedule defined by permuta- closed rectangular box

tion 1. .
Since a factual scenaripe T is unknown before SB (Mo T) = Xienll U] €T
scheduling, the completion tim@ of a job J; € 5 is a stability box of permutation = (Jg, ..., J,) €

can be determined only after the schedule execution.S if permutationTe = (Je,,...,Je,) € Sq being op-
Therefore, one cannot calculate the vatﬂgeof the timal for the instancel|p| > wC; with a scenario
objective function p=(p1,...,pn) € T remains optimal for the instance
1|p'| 3 wiCi with a scenario
y= 3 wG(Tp) P2 mG

= pIE{XTzl,j;éi[pkjvpkj]}X[lkivuki]

for a permutatiory, € Sbefore the schedule realiza- for each ke Ny. If there does not exist a scenaricep
tion. However, one must somehow define a sched- T such that permutatiory is optimal for the instance
ule before to realize it. So, problenjp}: <p < 1|p| SWCi, thens 3 (T, T) = 0.

i |.zwic.:i of fmdmg an optimal permutatior; € S ' The maximality of the closed rectangular box
defined in (1) is not correct. In general, one can find
only a heuristic solution (a job permutation) to prob- SB(T, T) = Xigen, [k » U]
lem 1pt < pi < p’| T wWG the efficiency of which
may be estimated either analytically or via simulation.

In the deterministic case, when a scengri@ T

is fixed before scheduling (i.e., equalitips = pV = mal pdSsible VGl ™= . .
pi hold for each jobd € 7), problem 1p- < FI> < For any scheduling instance, the stability box is
i i ’ i > Mi

U - \ = a subset of the stability region (Sotskov et al., 1998;
pr’| > Wi reduces to the classical problemiIwiCi- gy 0y et al., 2010a; Sotskov et al., 2010b). How-

In contrast to the uncertain problempt < pi < (U "0 < pctinine the stability region by the stability

U e O i -
pr | > WG, problem 1j5 wG will be called deter box, since the latter is easy to compute (Sotskov et al.,

ministic. ;
L o~ 2010a; Sotskov and Lai, 2011).
The deterministic problem/ly wG; is correct and In (Sotskov et al., 2010a), a branch-and-bound al-

can be solved exactly i®(n|ogn) time (Smit_h., 1956) gorithm has been developed to select a permutation
due to the necessary and sufficient condition (2) for in the setS with the largest volume of a stability

the optimality of a permutationy = (J. .., Ji,) € S box. If several permutations have the same volume of
Wi o S W @) the stability box, the algorithm from (Sotskov et al.,
Py Pre 2010a) selects one of them due to simple heuristics.
The efficiency of the constructed permutations has
where pg > 0 for each jobJ, € 7. Using the suf-

f I in-
ficiency of condition (2), problem |y wiG, can be been demonstrated on a set of randomly generated in

s ) stances with 5X n < 100.
solved to optimality by the weighted shortest process-

) : - he . ) . In (Sotskov and Lai, 2011), a®(nlogn) algo-
ing time rule: process the jobg in non-increasing  yjthm has been developed for calculating a stability

. . - Wi
order of their weight-to-process ratl%%, J €7. box 53 (T, T) for the fixed permutatiom € S and
O(n?) algorithm has been developed for selecting a
permutation in the se$ with the largest dimension

3 THE STABILITY BOX and volume of a stability box. The efficiency of these
algorithms was demonstrated on a set of randomly

In (Sotskov and Lai, 2011), the stability box 9eneratedinstances with ¥0n < 1000.

in Definition 1 means that the bos (15, T) C T has
both a maximal possible dimensid| and a maxi-

$B (T, T) within a set of scenario§ has been de- All algorithms developed in (Sotskov et al.,
fined for a permutatiorm = (J J)ES To 2010a; Sotskov and Lai, 2011) use the precedence-
19" . . .
present the definition of the stability boxs (1, T), ~ dominance relation on the set of jobsand the so-
we need the following notations. Iuthn concept of a minimal dominant s&T) C S
We denotes (ki) = {J,....d_,} and 7[k] = defined as follows.

{Ji1s-- - Jk )+ LELS( denote the set of permutations  Definition 2 (Sotskov et al., 2009)The set of permu-
(1(J (ki)),J, U7 [ki])) € Sof the jobsy, 1(7’) being tations T) C S is a minimal dominant set for a prob-
a permutation of the jobs' C 5. LetN denote asub-  lem1] p}- <p < piU | > wiG;, if for any fixed scenario

setof seN = {1,...,n}. The notation lIp| > wiC; will p € T, the set §T) contains at least one optimal per-
be used for indicating an instance with a fixed sce- mutation for the instancé|p| ¥ wiCi, provided that
nariop € T of the deterministic problem|{ly wC;. any proper subset of se{B) loses such a property.
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Definition 3 (Sotskov et al., 2009)Job J, dominates
job J,, if there exists a minimal dominant s€fTg for
the probleml|p- < pi < p”| s wiCi such that job J
precedes job\Jin every permutation of the se{™).

Theorem 1 (Sotskov et al., 2009)For the problem
1pt<pi < p| s WG job\]J dominates job Jif and
only if inequality (3) holds

Wu o Wy

R

Due to Theorem 1 provenin (Sotskov et al., 2009),

we can obtain a compact presentation of a minimal
dominant setS(T) in the form of a digraph7,4)
with the vertex sey and the arc set. To this end,

we can check inequality (3) for each pair of jobs from
the sety and construct a dominance digraph .2 ) of

®3)

the precedence-dominance relation on the set of jobs

7 as follows. The ar¢J,,Jy) belongs to the set if
and only if inequality (3) holds. The construction of
the digraph(7,.2) takesO(n?) time.
3.1 lllustrative Example
For the sake of simplicity of the calculation, we con-
sider a special casg@d < pi < pV| 3 Ci of problem
1|pk < pi < pY| S WCi when each jokJ € 7 has a
weightw; equal to one. From condition (2), it follows
that a deterministic problem|Iy Ci can be solved to
optimality by the shortest processing time rule: pro-
cess the jobs in non-decreasing order of their process-
ing timespy,, J € 7.

A set of scenario§ for Example 1 of the un-
certain problem fip- < p; < pY|3 G is defined in
columns 1 and 2 in Table 1.

Table 1: Data for calculating 3 (1, T) for Example 1.

1 2 3 4 5 6 17 8
I B B
112 3 % 05 1 05 2 1
211 9 1 1 1 1 3 6

i1 ¢ 1
3|8 8 3 g 5 9 6
416 10 Q1 ; 0.1 g 9 10
1
5011 12 7 0.1 7 11 10
6|10 19 1 0.1 Jlis 7 12 15
7117 19 1 %7 5D 19 15
8|15 20 & £ L L 19 20

In (Sotskov and Lai, 2011), formula (9) has been
proven. To use it for calculating the stability box
$38(T, T), one has to define for each jdj € 7 the
maximal rang€ly,uy] of possible variations of the
processing timepy, preserving the optimality of per-
mutationt (see Definition 1).

16

Due to the additivity of the objective function
y=Y wCi(T%, p),
=
the lower bounaﬂk*i on the maximal range of possible
variations of the weight-to-process raﬁgé\ preserv-

ing the optimality of permutatiorny = (J,,...,J,) €

Sis calculated as follows:

dg:max{vgj,,rr}ax{vgk }} ie{l,...,n—1}, (4
ki 1<j<n K
(5)

The upper bound ,J € 7, onthe maximal range of
possible varlatlons of the weight-to-process r%ﬁb
preserving the optimality of permutation is calcu-

lated as follows:
. W,
d; = min W—t‘, min i Jdef{2....n,
pI<i 1<j<i pk

(6)
Wi
df = —2. @)
kg pllzl
For Example 1, the valued;;_,i €{1,...,8}, de-

fined in (4) and (5) are given in column 5 of Table
1. The valuesfd+ defined in (6) and (7) are given in
column 6.

In (Sotskov and Lai, 2011), the following claim
has been proven.

Theorem 2(Sotskov and Lai, 2011)f there is no job

Ji, i€ {1,...,n—1}, in permutationry = (J,,. ..,
Jq,) € S such that inequality
Wi W;
< (8)
Py Py
holds for at least one jobyJ, j € {i+1,...,n}, then

the stability boxs 8 (i, T) is calculated as follows:

Otherwise,s 3 (T,, T) = 0.

Using Theorem 2, we can calculate the stability
boxs 3 (1y, T) of permutationy = (J1,...,Jg) in Ex-
ample 1. First, we convince that there is no jip
i €{1,...,n— 1}, with inequality (8). Due to Theo-
rem 2,538 (my, T );éﬂ)

The bounds— and % on the maximal possible

Wi Wk.

; (9)

Q;(T%T) Xdkl<d+ [

variations of the processmg timeg preserving the
optimality of permutatiory are given in columns 7
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and 8 of Table 1. The maximal ranges (segments) of

possible variations of the job processing times within
the stability boxs 3 (T, T) are dashed in a coordinate

1

The absolute volume of the whole box of the scenar-

system in Fig. 1, where the abscissa axis is used foriosT is equal to 2886-1-8-4-1-9-2-5. The relative
indicating the job processing times and the ordinate volume of the rectangular bdk is defined as 1.

axis for the jobs from set.

Jg

J7

Js

Js

nl

s

N7

N7}

Ji

> 4 6 '8 10 12 14 '16 18 20
Figure 1:-Maximal rangefl, u;] of possible variations of
the processing timep;,i € {2,4,6,8}, within the stability
boxs3(m,T) are dashed.

Using formula (9), we obtain the stability box for
permutatiornry as follows:

%&&X%%X%%
Cdydy dj ' d, dg " dg

We We = X X X
x{dg,ds}_[ae} 9,10 x [12,15] x [19,20).

_|

SB(my,

Eachjohd;, i€ {1,3,5,7}, has an empty range of pos-
sible variations of the timg; preserving the optimal-
ity of permutationmy sinced,” > d;" (see columns 5
and 6 in Table 1). The dimension of the stability box
s8(m,T) is equal to 4= 8 — 4. The volume of this
stability box is equalto 9= 3-1-3- 1.

In (Sotskov and Lai, 2011)Q(nlogn) algorithm
STABOX has been developed for calculating the sta-
bility box s 3 (T, T) for a fixed permutatiomy € S.

For practice, the value of the relative volume of
a stability box is more useful than its absolute value.
The relative volume of a stability box is defined as the
product of the fractions

e

for the jobsJ; € 7 having non-empty rangék, u;] of
possible variations of the processing tim&inequal-
ity d~ < d* must hold for such a jo € 7).

The relative volume of the stability box for per-
mutationty in Example 1 is calculated as follows:

(10)

3.2 Properties of a Stability Box

A job permutation in the s&8with a larger dimension
and a larger volume of the stability box seems to be
more efficient than one with a smaller dimension and
(or) a smaller volume of stability box.

We investigate properties of a stability box, which
allow us to derive ai®(nlogn) algorithm for choos-
ing a permutatiom € Swhich has

(@) the largest dimensidghk | of the stability box

53(7'&;1—) = XtiENt[lti’uti] cT

among all permutationsy € Sand

(b) the largest volume of the stability box
S8 (1, T) among all permutationsg € S having the
largest dimensiofNk| = |[N:| of their stability boxes
SB (T, T).

Definition 1 implies the following claim.

Property 1. ForanyjobsJe s andJ € 7, V#i,

(wi /i, Wi /1) () [/ Y, W/ Y] = 2.

Let S"™* denote the subset of all permutatiams
in the setS possessing properties (a) and (b). Using
Property 1, we shall show how to define the relative
order of a jobJ; € 7 with respect to a jold, € 7 for
anyv#iinapermutatiomg = (J,,...,J,) € S" To
this end, we have to treat all three possible cases (I)—

(111 for the intersection of the open intervélg%, &)
i i

and the closed interv%lﬁv—ﬁ, %} . The order of the jobs

Ji andJy in the desired permutatiom € S" may be
defined in the cases (1)—(Ill) using the following rules.
Case (l) is defined by the inequalities
Wy Wi W W
7 S A
provided that at least one of inequalities (11) is strict.
In case (1), the desired order of the jolysandJ;
in permutationy € S"® may be defined by a strict
inequality from (11): joh), proceeds jold; in permu-
tation . Indeed, if jobJ; proceeds jold,, then the
maximal rangedl;,u] and [ly,u,] of possible varia-
tions of the processing times and py preserving the
optimality of g, € S are both empty (it follows from
equalities (4) — (7) and (9)).
Thus, the following property is proven.
Property 2. For case (l), there exists a permutation
1% € S"* in which job J proceeds job;J

(11)

17
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Case (ll) is defined by the equalities
Wy Wi W W
o Ry o
Property 3. For case (ll), there exists a permutation
¢ € S"¥ in which jobs Jand J are located adja-
cently: i=t; and v=t;,1.
Proof. The maximal rangefi, u;] and(ly, uy] of pos-
sible variations of the processing timgsandpy pre-
serving the optimality of, € Sare both empty.

If job J; and jobJ, are located adjacently, then the
maximal rangél,, u,] of possible variation of the pro-
cessing timep, for any jobJd, € 7\ {J;, v} preserving
the optimality of permutatiomny is no less than that if
at least one joby, € 7 \ {J,J} is located between job
Ji and jobJ,. m

(12)

If equalities (12) hold, one can restrict the search
for a permutationy € S"® by a subset of permuta-
tions in setSwith the adjacently located joldsandJ,
(Property 3). Moreover, the order of such jolds Jy}
does not influence the volume of the stability box and
its dimension.

Remark 1. Due to Property 3, while looking for a
permutationtg € S" we shall treat a pair of jobs
{J, 3} satisfying (12) as one job (either jobdr J).

Case (lll) is defined by the strict inequalities
Wy Wi W W
- > =, < . 13
o7 e o 49

For jobJ; € 5 satisfying case (lll), let (i) denote

the set of all jobsl, € 7, for which the strict inequal-
ities (13) hold.
Property 4. (i) For a fixed permutatiormy € S, job
J € 7 may have at most one maximal segréent;]
of possible variations of the processing time
[pk, pY] preserving the optimality of permutation.

(ii) For the whole set of permutations S, only in
case (lll), a job J € 7 may have more than one
(namely: |7 (i)| +1 > 1) maximal segments;, u;] of
possible variations of the time g [p-, p] preserv-
ing the optimality of this or that particular permuta-
tion from the set S.

Proof. Part(i) of Property 4 follows from the fact
that a non-empty maximal segmeghtu] (if any) is
uniquely determined by the subsgt (i) of jobs lo-
cated before jold; in permutationrk and the subset
77 (i) of jobs located after jod;. The subsetg (i)
andy * (i) are uniquely determined for a fixed permu-
tationTy € Sand a fixed johJ; € 7.

Part(ii) of Property 4 follows from the following
observations. If the open interval

()

Wi Wi
P pr

18

does not intersect with the closed interval

e
o o

for each jobJ, € 7, then there exists a permuta-
tion 1 € S"® with a maximal segmentli,uj] =
[wi/pY,wi/pt] preserving the optimality of permu-
tationTg.
Each jobJ, € s with a non-empty intersection
Wi W

(st ) N #

satisfying inequalities (11) (case (l)) or equalities (12)
(case (lI)) may shorten the above maximal segment
[li,ui] and cannot generate a new possible maximal
segment.

In case (Ill), a jobJ, satisfying inequalities (13)
may generate a new possible maximal segnfiemnt]
just for job J; satisfying the same strict inequalities
(13) as jobJ, does. So, the cardinality (i)| of the
whole setz (i) of such segmentd, u;] is not greater
than|s(i)|+21.m

Let £ denote the set of all maximal segments
[li,ui] of possible variations of the processing times
pi for all jobsJ; € 7 preserving the optimality of per-
mutationT; € S"® Using Property 4 and induction
on the cardinality 7 (i)|, we proved

Property 5. |£] <n.

3.3 A Job Permutation with the Largest
Volume of a Stability Box

The above properties allows us to derive@(mlogn)
algorithm for calculating a permutation € S"®with
the largest dimensioff\;| and the largest volume of a
stability boxs 3 (1, T).

Algorithm MAX-STABOX
Segmentfp, pV'], weightswi, J € 7.
Permutatiom; € S stability box
SB (T, T).
Construct the listt (U) = (Jy,,. ..
and the listw (U) = (pT,...,
uy
in non-decreasing order (%Li
Ties are broken via increasiﬁ(#.
Construct the list/ (L) = (J,,...,J,)
and the listw (L) = (*,..., 1)
1

Input:
Output:

Step 1:

Step 2:

in non-decreasing order (%{L.
Ir

Ties are broken via increasing .

Ir
Step3: FORj=1toj=nDO
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compare jokJ,; and jobJ;;.

IFJUJ. :J|J. THEN jobJUj has to be
located in positiorj in permutation
Tk € S"™GOTO step 8.

ELSEjob]uj = J; satisfies inequalities
(13). Construct the set(i) = {Jy, ;.- - -,
Ji.,} of all jobsJ, satisfying
inequalities (13), wherg = Jy; = J,.

Choose the largest rarjg, uy;]
among those generated for jah = J;.

Partition the set(i) into subsetg ~ (i)
andy * (i) generating the largest range
[Iuj,uuj]. Setj =k+ 1 GOTO step 4.

Sef :=j+1GOTO step 4.

END FOR

Construct the permutatione S"* via

putting the joby in the positions defined

in steps 3—8.

Step 10: Construct the stability bexs (1, T)
using algorithm STABOX derived in
(Sotskov and Lai, 2011). STOP.

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Steps 1 and 2 of algorithm MAX-STABOX are
based on Property 3 and Remark 1. Step 4 is based
on Property 2. Steps 5 — 7 are based on Property 4
part(ii) . Step 9 is based on Property 6 which follows.

To prove Property 6, we have to analyze algorithm

MAX-STABOX. In steps 1, 2 and 4, all jobs' =

{Ji [ Ju; = 3 = J;} having the same position in both

lists a¢ (U) and o/ (L) obtain fixed positions in the
permutationg € S"&X
The positions of the remaining jobs\ 7 in the

permutationty are determined in steps 5 — 7. The
fixed order of the jobg! may shorten the original seg-

ment[p-, p'] of ajobJ € 7\ 7! as follows:[pt, pV].
So, in steps 5 — 7, the reduced segm@htp’| has
to be considered instead of segmfit, p’] for a job
J € 7\ ' Letl’ denote the maximal subset of $et
including exactly one element from each &gy, for
which jobJ; € 7 satisfies the strict inequalities (13).

Property 6. There exists a permutatiaog € S with
the set | C | of maximal segment$;, u;] of possible
variations of the processing time, f§ € 7, preserving
the optimality of permutatiorg.

Proof. Due to Property 2 and steps 1 — 4 of algo-

rithm MAX-STABOX, the maximal segments;, u;]
and [ly,w,] (if any) of jobs J andJ, satisfying (11)
preserve the optimality of permutatione S"

Let 7* denote the set of all joh} satisfying (13).
It is easy to see that

Therefore,
Ns)=2.
Jeys
Hence, step 9 is correct: putting the set of jgbim
the positions defined in steps 3 — 8 does not cause any
contradiction of the job orderm

Obviously, steps 1 and 2 tak¥nlogn) time. Due
to Properties 4 and 5, steps 6, 7 and 9 t&Ka)
time. Step 10 take®(nlogn) time since algorithm
STABOX derived in (Sotskov and Lai, 2011) has the
same complexity. Thus, the whole algorithm MAX-
STABOX takesO(nlogn) time.

It is easy to convince that, due to steps 1 —
5, permutationtg constructed by algorithm MAX-
STABOX possesses property (a) and, due to steps 6,
7 and 9, this permutation possesses property (b).

Remark 2. Algorithm MAX-STABOX constructs a
permutationts € S such that the dimensighk| of
the stability boxs B (T, T) = xyen [l U] € T is the
largest one for all permutations S, and the volume
of the stability boxs 3 (1, T) is the largest one for
all permutationstk € S having the largest dimension
INk| = [N| of their stability boxes 3 (Ti, T).

Returning to Example 1, one can show (using

'Algorithm MAX-STABOX) that permutationy =

(J1,...,Jg) has the largest dimension and volume of
a stability box. Next, we compares (T, T) with
the stability boxes calculated for the permutations ob-
tained by the three heuristics defined as follows.

The lower-point heuristic generates an optimal
permutation € Sfor the instance [p| S wC; with

p = (pL,....pR) €T (14)
The upper-point heuristic generates an optimal
permutationy, € Sfor the instance [p"| S WG with

P’ =(pg,....Pn) €T. (15)

The mid-point heuristic generates an optimal per-
mutationTt, € Sfor the instance [pM| 5 wiCi with

oM — (p‘fp& pH—ph) cT

16
S (16)

We obtain the permutatiory = (Jz,J1,J4,J3, Js,
Js,Js, J7) with the stability box

W2 %] % {% We
dy "dy dd " dg

The volume of the stability boxss (1, T) is
equal to 1. We obtain the permutation = (J1,Js,
J2,d4,35,37,J8,J8) and the permutationy, = (Ji,Jo,
Js, 33,35, J6,J8,J7). The volume of the stability box
Wiy W4} {Wg Wg

—, —,— | =19,10 x [19,20]
| ] e 101020

523(Tq,T)[ ][1,2]><[10,11].

593(n’.,.,T):[

19
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is equal to 1. The volume of the stability box

W W2 We Wsg
B T)=|—F,— —,—|=1[3,6] x[12,15
sl T)= | 32,22« 28 5 36 x 1219

is equal to 9= 3- 3. Itis the same volume of the stabil-
ity box as that of permutatiory. Note, however, that
the dimensionNy| of the stability boxs 3 (Tt T) is
equal to 2, while the dimensioliN;| of the stability
box s3(m,T) of the permutationy € S"is equal
to 4. Thus,, € S"®since permutatiom, does not
possess property (a).

4 COMPUTATIONAL RESULTS

as

o)
L_C.(1—- —
the upper boung” of p; € [pt, pV] was defined as
o
YU_C. —
pi =C-(1+ 100).

The same rangglL,U] for the varying center
C of the segmentpt,p’] was used for all jobs
J €7, namely: L =1 andU = 100. In Ta-
bles 2 and 3, we report computational results for
series of instances of the problenjp& <p <
p’|swC with the maximal possible error§%
of the job processing times from the sg0.25%
0.4%,0.5%, 0.75% 1%, 2.5%, 5%, 15%, 25%} .

For each johJ € 7, the weightw; € RY was uni-

There might be several permutations with the largest formly distributed in the rangél, 50). It should be

dimension and relative volume of a stability box
S5B(T, T) since several consecutive jobs in a permu-
tation ;. € S"™ may have an empty range of possi-
ble variations of their processing times preserving the
optimality of permutationg. In the computational
experiments, we break ties in ordering such jobs by
adopting the mid-point heuristic which generates a

noted that the job weighte; were assumed to be
known before scheduling (in contrast to the actual
processing timeg; of the jobsJ; € 7, which were
assumed to be unknown before scheduling).

The numben of jobs in each instance of a series
is given in column 1 of Table 2 and Table 3. The
maximum possible err@%s of the random processing

. " L U . . .
subsequence of these jobs as a part of an optimal periMeSpi € [pr, pis given in column 2.

mutationrt, € Sfor the instance [pM| 5 wiC; with the
scenariopM € T defined by (16).

Our choice of the mid-point heuristic is based
on the computational results of the experiments con-
ducted in (Sotskov and Lai, 2011) for the problem
1pF < pi < pY| T WCi with 10 < n < 1000. In those

computational results, the subsequence of a permu-

tation Ty, € S outperformed both the corresponding
subsequence of permutatione Sand that of permu-
tationTy, € Sdefined by (14) and (15), respectively.
We coded the algorithm MAX-STABOX com-
bined with the mid-point heuristic for ordering con-

secutive jobs having an empty range of their process-

ing times preserving the optimality of permutation
¢ € S"* jn C++. This algorithm was tested on a
PC with AMD Athlon (tm) 64 Processor 3200+, 2.00
GHz, 1.96 GB of RAM. We solved (exactly or ap-
proximately) a lot of randomly generated instances.

Some of the computational results obtained are pre-

sented in Tables 2 and 3 for randomly generated in-
stances of the problemd- < pi < pV| s WG with
the numben € {1000 110Q...,2000} of jobs.

Column 3 represents the average relative number
|| of the arcs in the dominance digraph,2) con-
structed using condition (3) of Theorem 1. The rel-
ative number 2| is calculated in percentages of the
number of arcs in the complete circuit-free digraph of
ordern as follows:

<|:Zl| : w) -100%

Column 4 represents the average dimenfippof
the stability boxs 3 (1%, T) of the permutatioms with
the largest relative volume of a stability bopy| is
equal to the number of jobs with a non-zero maximal
possible variation of the processing time preserving
the optimality of permutatiomy € S"™® Column 5
represents the average relative volume of the stability
boxs 3 (1%, T) of the permutations with the largest
dimension and relative volume of a stability box. If
s3(m,T)=T for all instances in the series, then col-
umn 5 contains number one.

In the experiments, we answered the question of
how large the relative errak of the objective func-
tiony= ' ;wC; was for the permutatiorg € S"

Each series presented in Tables 2 and 3 containswith the largest dimension and relative volume of a

100 solved instances with the same combination of
the numbem of jobs and the same maximal possi-
ble errord% of the random processing timgs <

[pF, pY]. An integer cente€ of a segmentpt, pV]
was generated using the uniform distribution in the
range[L,U]: L < C < U. The lower boundp} for the
possible job processing ting € [p-, p'] was defined

20

stability boxs 3 (1, T):

p Yo Vo
Yp+
where p* is the actual scenario (unknown before
scheduling),yp+ is the optimal objective function
value for scenarip® € T andy,. = 3. wCi(Tg, p*).
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Table 2: Randomly generated instances WiithJ ] = [1,100, w; € [1,50) andn € {1000110Q...,1500}.

Number  Maximal Relative Average Relative Number  Average xital CPU
of jobs errorofp; arcnumber dimension volumeof of exact error error time
n 0% |41 (in %) INt| s3(1g,T) solutions A A (ins)
1 2 3 4 5 6 7 8 9

1000 0.25% 100 1000 1 100 0 0 8.62
1000 0.4% 100 1000 1 100 0 0 8.56
1000 0.5% 100 989.61 0.227427 11 ~0 ~0 8.69
1000 0.75% 99.545177 451.29 ~0 0 0.000023 0.000031 8.98
1000 1% 99.192559 330.65 ~0 0 0.000042 0.000051 8.96
1000 2.5% 97.591726 124 0.000001 0 0.000157 0.000181 8.9
1000 5% 94.889794 54.86 0.001976 0 0.000526 0.000614 8.84
1000 15% 84.39185 12.29 0.011288 0 0.004309 0.004858 8.86
1000 25% 73.954372 4,71 0.09081 0 0.012045 0.013303 8.89
1100 0.25% 100 1100 1 100 0 0 11.51
1100 0.4% 100 1100 1 100 0 0 11.46
1100 0.5% 99.997839 1087.27 0.200252 11 ~0 ~0 11.51
1100 0.75% 99.539967 478.35 ~0 0 0.000023 0.00003 12.1
1100 1% 99.188722 349.3 ~0 0 0.000043 0.000049 12.05
1100 2.5% 97.611324 131.01 0.000001 0 0.000155 0.0001758 (1.
1100 5% 94.862642 57.35 0.006242 0 0.000528 0.000593 11.79
1100 15% 84.288381 11.46 0.017924 0 0.004371  0.004899 11.76
1100 25% 74.076585 4.29 0.133804 0 0.01189 0.013289 11.8
1200 0.25% 100 1200 1 100 0 0 154
1200 0.4% 100 1200 1 100 0 0 15.12
1200 0.5% 99.998 1185.27 0.174959 5 ~0 0.000001 15.42
1200 0.75% 99.540619 515.8 ~0 0 0.000023 0.000029 16
1200 1% 99.190977 375.34 ~0 0 0.000042 0.000051 16.06
1200 2.5% 97.581479 138.75 0.000002 0 0.000156 0.0001778115.
1200 5% 94.88253 62.06 0.006396 0 0.000534 0.000596 15.51
1200 15% 84.376763 12.88 0.042597 0 0.004332 0.004733 15.33
1200 25% 74.100395 5.01 0.08078 0 0.011872 0.01351 1k.21
1300 0.25% 100 1300 1 100 0 0 19.75
1300 0.4% 100 1300 1 100 0 0 19.38
1300 0.5% 99.997583 1280.26 0.084004 2 ~0 ~0 19.54
1300 0.75% 99.549162 543.2 ~0 0 0.000023 0.000026 20.3
1300 1% 99.199789 400.41 ~0 0 0.000042 0.000053 20.32
1300 2.5% 97.602491 148.41 0.000004 0 0.000157 0.00018601 20.
1300 5% 94.877326 65.23 0.019927 0 0.000532 0.000588 19.95
1300 15% 84.388473 13.47 0.024207 0 0.004364 0.004758 19.52
1300 25% 73.975873 55 0.08254 0 0.011962 0.013812 1P.52
1400 0.25% 100 1400 1 100 0 0 24.92
1400 0.4% 100 1400 1 100 0 0 24.8
1400 0.5% 99.997556 1377.21 0.078809 1 ~0 0.000001 24.97
1400 0.75% 99.539142 575.2 ~0 0 0.000023 0.000029 25.7
1400 1% 99.198461 422.65 ~0 0 0.000042 0.00005 25.63
1400 2.5% 97.594897 154.9 0.000001 0 0.000157 0.000178 R5.1
1400 5% 94.869044 70.36 0.002356 0 0.000533 0.000615 25.29
1400 15% 84.364242 14.35 0.029338 0 0.004339 0.004841 24.72
1400 25% 74.096446 5.18 0.14077 0 0.011998 0.013041 24.27
1500 0.25% 100 1500 1 100 0 0 31.44
1500 0.4% 100 1500 1 100 0 0 31.08
1500 0.5% 99.997493 1474.09 0.070241 0 ~0 0.000001 31.64
1500 0.75% 99.544441 607.5 ~0 0 0.000042 0.000052 32.39
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Table 3: Randomly generated instances WiithJ ] = [1,100, w; € [1,50] andn € {150Q160Q...,2000}.

Number  Maximal Relative Average Relative Number  Average xital CPU
of jobs errorofp; arcnumber dimension volumeof of exact error error time
n % |4 (in %) INt] s3B(Tg,T) solutions A A (in s)

1500 1% 99.193199 444.29 ~0 0 0.000042 0.000052 32.39
1500 2.5% 97.61593 167.25 0.000005 0 0.000155 0.000171 331.4
1500 5% 94.861654 71.34 0.00282 0 0.000533 0.000582 31.36
1500 15% 84.409904 14.93 0.05372 0 0.004394 0.00492 30.46
1500 25% 74.281235 5.46 0.148403 0 0.011936 0.013685 30.33
1600 0.25% 100 1600 1 100 0 0 38.63
1600 0.4% 100 1600 1 100 0 0 38.67
1600 0.5% 99.997452 1569.35 0.046151 0 ~0 0.000001 38.8
1600 0.75% 99.54273 638.18 ~0 0 0.000023 0.00003 39.76
1600 1% 99.192323 464.89 ~0 0 0.000042 0.000048 40.04
1600 2.5% 97.601128 174.91 0.000004 0 0.000157 0.0001777138.
1600 5% 94.861356  76.990000 0.003505 0 0.000532 0.00058146 38
1600 15% 84.343239 14.75 0.036278 0 0.004341 0.004811 37.34
1600 25% 74.123830 5.75 0.087651 0 0.011899 0.013192 36.34
1700 0.25% 100 1700 1 100 0 0 47.29
1700 0.4% 100 1700 1 100 0 0 47.18
1700 0.5% 99.997432 1665.41 0.034556 1 ~0 0.000001 47.17
1700 0.75% 99.544993 671.09 ~0 (0] 0.000023 0.000027 48.25
1700 1% 99.203930 495.13 ~0 0 0.000041 0.000049 48.47
1700 2.5% 97.598734 180.99 0.000072 0 0.000156 0.0001728846.
1700 5% 94.852439 80.53 0.001601 0 0.000533 0.000585 46.33
1700 15% 84.358524 17.27 0.028854 0 0.004379 0.0049 45.26
1700 25% 74.030579 6.03 0.082325 0 0.012069 0.013255 44.24
1800 0.25% 100 1800 1 100 0 0 56.18
1800 0.4% 100 1800 1 100 0 0 56.27
1800 0.5% 99.99761 1764.02 0.02624 0 ~0 0.000001 56.72
1800 0.75% 99.547537 706.21 ~0 0 0.000023 0.000028 57.38
1800 1% 99.193797 517.06 ~0 0 0.000042 0.000049 57.33
1800 2.5% 97.600247 190.97 0.000042 0 0.000156 0.0001778155.
1800 5% 94.899074 84.82 0.007274 0 0.000529 0.000602 55.27
1800 15% 84.408342 17.67 0.040758 0 0.004348 0.004723 153.42
1800 25% 74.162869 6.38 0.126377 0 0.011981 0.013095 H1.86
1900 0.25% 100 1900 1 100 0 0 65.65
1900 0.4% 100 1900 1 100 0 0 66.81
1900 0.5% 99.997533 1858.51 0.018832 0 ~0 0.000001 66.69
1900 0.75% 99.54191 733.81 ~0 0 0.000023 0.000028 67.75
1900 1% 99.189512 534.79 ~0 0 0.000042 0.000049 68.58
1900 2.5% 97.596318 199.82 0.000022 0 0.000156 0.0001733666.
1900 5% 94.856400 89.93 0.002011 0 0.000534 0.000596 65.68
1900 15% 84.331351 17.61 0.048813 0 0.004372 0.004844 62.97
1900 25% 74.188836 6.82 0.092068 0 0.011965 0.013234 60.74
2000 0.25% 100 2000 1 100 0 0 78.41
2000 0.4% 100 2000 1 100 0 0 78.93
2000 0.5% 99.997489 1953.88 0.017798 2 ~0 ~0 79.06
2000 0.75% 99.542435 764.35 ~0 0 0.000023 0.000027 78.83
2000 1% 99.197383 565.09 ~0 0 0.000042 0.000048 78.1
2000 2.5% 97.605895 210.17 0.000035 0 0.000156 0.0001738 /5.
2000 5% 94.867102 93.63 0.014015 0 0.000535 0.000606 75.02
2000 15% 84.412199 17.95 0.040101 0 0.004339 0.004751 74.08
2000 25% 73.977021 6.64 0.147426 0 0.01203 0.013046 71.22
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