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Abstract: We consider a single-machine scheduling problem, in which the processing time of a job can take any value
from a given segment. The criterion is to minimize the sum of weighted completion times of then jobs, a
weight being associated with a job. For a job permutation, westudy the stability box, which is a subset of
the stability region. We derive anO(nlogn) algorithm for constructing a job permutation with the largest
dimension and volume of a stability box. The efficiency of a permutation with the largest dimension and
volume of a stability box is demonstrated via a simulation ona set of randomly generated instances.

1 INTRODUCTION

In real-life scheduling, the numerical data are usu-
ally uncertain. A stochastic (Pinedo, 2002) or a fuzzy
method (Slowinski and Hapke, 1999) are used when
the job processing times may be defined as random
variables or as fuzzy numbers. If these times may
be defined neither as random variables with known
probability distributions nor as fuzzy numbers, other
methods are needed to solve a scheduling problem un-
der uncertainty (Daniels and Kouvelis, 1995; Sabun-
cuoglu and Goren, 2009; Sotskov et al., 2010b). The
robust method (Daniels and Kouvelis, 1995; Kasper-
ski, 2005; Kasperski and Zelinski, 2008) assumes that
the decision-maker prefers a schedule hedging against
the worst-case scenario. The stability method (Lai
and Sotskov, 1999; Lai et al., 1997; Sotskov et al.,
2009; Sotskov et al., 2010a; Sotskov et al., 2010b)
combines a stability analysis, a multi-stage decision
framework and a solution concept of a minimal dom-
inant set of semi-active schedules.

In this paper, we implement the stability method
for a single-machine problem with interval process-
ing times of then jobs (Section 2). In Section 3, we

derive anO(nlogn) algorithm for constructing a job
permutation with the largest volume of a stability box.
Computational results are presented in Section 4. We
conclude with Section 5.

2 PROBLEM SETTING

JobsJ = {J1, ...,Jn}, n ≥ 2, have to be processed on
a single machine, a positive weightwi being given for
a job Ji ∈ J . The processing timepi of a job Ji can
take any real value from a given segment[pL

i , p
U
i ], 0≤

pL
i ≤ pU

i . The exact valuepi ∈ [pL
i , p

U
i ] may remain

unknown until the completion of jobJi .
Let T = {p∈ Rn

+ | pL
i ≤ pi ≤ pU

i , i ∈ {1, . . . ,n}}
denote the set of vectorsp= (p1, . . . , pn) (scenarios)
of the possible job processing times.S= {π1, . . . ,πn!}
denotes the set of permutationsπk = (Jk1, . . . ,Jkn) of
the jobsJ . Problem 1|pL

i ≤ pi ≤ pU
i |∑wiCi is to find

an optimal permutationπt ∈ S:

∑
Ji∈J

wiCi(πt , p) = γt
p = min

πk∈S

{

∑
Ji∈J

wiCi(πk, p)

}
. (1)
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Hereafter,Ci(πk, p) =Ci is the completion time of job
Ji ∈ J in a semi-active schedule defined by permuta-
tion πk.

Since a factual scenariop∈ T is unknown before
scheduling, the completion timeCi of a job Ji ∈ J
can be determined only after the schedule execution.
Therefore, one cannot calculate the valueγk

p of the
objective function

γ = ∑
Ji∈J

wiCi(πk, p)

for a permutationπk ∈ Sbefore the schedule realiza-
tion. However, one must somehow define a sched-
ule before to realize it. So, problem 1|pL

i ≤ pi ≤
pU

i |∑wiCi of finding an optimal permutationπt ∈ S
defined in (1) is not correct. In general, one can find
only a heuristic solution (a job permutation) to prob-
lem 1|pL

i ≤ pi ≤ pU
i |∑wiCi the efficiency of which

may be estimated either analytically or via simulation.
In the deterministic case, when a scenariop ∈ T

is fixed before scheduling (i.e., equalitiespL
i = pU

i =
pi hold for each jobJi ∈ J ), problem 1|pL

i ≤ pi ≤
pU

i |∑wiCi reduces to the classical problem 1||∑wiCi .
In contrast to the uncertain problem 1|pL

i ≤ pi ≤
pU

i |∑wiCi , problem 1||∑wiCi will be called deter-
ministic.

The deterministic problem 1||∑wiCi is correct and
can be solved exactly inO(nlogn) time (Smith, 1956)
due to the necessary and sufficient condition (2) for
the optimality of a permutationπk =(Jk1, . . . ,Jkn)∈S:

wk1

pk1

≥ . . .≥
wkn

pkn

, (2)

where pki > 0 for each jobJki ∈ J . Using the suf-
ficiency of condition (2), problem 1||∑wiCi can be
solved to optimality by the weighted shortest process-
ing time rule: process the jobsJ in non-increasing
order of their weight-to-process ratios

wki
pki

, Jki ∈ J .

3 THE STABILITY BOX

In (Sotskov and Lai, 2011), the stability box
S B (πk,T) within a set of scenariosT has been de-
fined for a permutationπk = (Jk1, . . . ,Jkn) ∈ S. To
present the definition of the stability boxS B (πk,T),
we need the following notations.

We denoteJ (ki) = {Jk1, . . . ,Jki−1} and J [ki ] =
{Jki+1, . . . ,Jkn}. Let Ski denote the set of permutations
(π(J (ki)),Jki ,π(J [ki ])) ∈ Sof the jobsJ , π(J ′) being
a permutation of the jobsJ ′ ⊂ J . LetNk denote a sub-
set of setN= {1, . . . ,n}. The notation 1|p|∑wiCi will
be used for indicating an instance with a fixed sce-
nario p∈ T of the deterministic problem 1||∑wiCi .

Definition 1 (Sotskov and Lai, 2011). The maximal
closed rectangular box

S B (πk,T) =×ki∈Nk [lki ,uki ]⊆ T

is a stability box of permutationπk = (Jk1, . . . ,Jkn) ∈
S, if permutationπe = (Je1, . . . ,Jen) ∈ Ski being op-
timal for the instance1|p|∑wiCi with a scenario
p= (p1, . . . , pn) ∈ T remains optimal for the instance
1|p′|∑wiCi with a scenario

p′ ∈ {×n
j=1, j 6=i[pkj , pkj ]}× [lki ,uki ]

for each ki ∈ Nk. If there does not exist a scenario p∈
T such that permutationπk is optimal for the instance
1|p|∑wiCi , thenS B (πk,T) = /0.

The maximality of the closed rectangular box

S B (πk,T) =×ki∈Nk [lki ,uki ]

in Definition 1 means that the boxS B (πk,T)⊆ T has
both a maximal possible dimension|Nk| and a maxi-
mal possible volume.

For any scheduling instance, the stability box is
a subset of the stability region (Sotskov et al., 1998;
Sotskov et al., 2010a; Sotskov et al., 2010b). How-
ever, we substitute the stability region by the stability
box, since the latter is easy to compute (Sotskov et al.,
2010a; Sotskov and Lai, 2011).

In (Sotskov et al., 2010a), a branch-and-bound al-
gorithm has been developed to select a permutation
in the setS with the largest volume of a stability
box. If several permutations have the same volume of
the stability box, the algorithm from (Sotskov et al.,
2010a) selects one of them due to simple heuristics.
The efficiency of the constructed permutations has
been demonstrated on a set of randomly generated in-
stances with 5≤ n≤ 100.

In (Sotskov and Lai, 2011), anO(nlogn) algo-
rithm has been developed for calculating a stability
box S B (πk,T) for the fixed permutationπk ∈ S and
O(n2) algorithm has been developed for selecting a
permutation in the setS with the largest dimension
and volume of a stability box. The efficiency of these
algorithms was demonstrated on a set of randomly
generated instances with 10≤ n≤ 1000.

All algorithms developed in (Sotskov et al.,
2010a; Sotskov and Lai, 2011) use the precedence-
dominance relation on the set of jobsJ and the so-
lution concept of a minimal dominant setS(T) ⊆ S
defined as follows.

Definition 2 (Sotskov et al., 2009). The set of permu-
tations S(T)⊆S is a minimal dominant set for a prob-
lem1|pL

i ≤ pi ≤ pU
i |∑wiCi , if for any fixed scenario

p∈ T, the set S(T) contains at least one optimal per-
mutation for the instance1|p|∑wiCi , provided that
any proper subset of set S(T) loses such a property.
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Definition 3 (Sotskov et al., 2009). Job Ju dominates
job Jv, if there exists a minimal dominant set S(T) for
the problem1|pL

i ≤ pi ≤ pU
i |∑wiCi such that job Ju

precedes job Jv in every permutation of the set S(T).

Theorem 1 (Sotskov et al., 2009). For the problem
1|pL

i ≤ pi ≤ pU
i |∑wiCi , job Ju dominates job Jv if and

only if inequality (3) holds:

wu

pU
u
≥

wv

pL
v
. (3)

Due to Theorem 1 proven in (Sotskov et al., 2009),
we can obtain a compact presentation of a minimal
dominant setS(T) in the form of a digraph(J ,A )
with the vertex setJ and the arc setA . To this end,
we can check inequality (3) for each pair of jobs from
the setJ and construct a dominance digraph(J ,A ) of
the precedence-dominance relation on the set of jobs
J as follows. The arc(Ju,Jv) belongs to the setA if
and only if inequality (3) holds. The construction of
the digraph(J ,A ) takesO(n2) time.

3.1 Illustrative Example

For the sake of simplicity of the calculation, we con-
sider a special case 1|pL

i ≤ pi ≤ pU
i |∑Ci of problem

1|pL
i ≤ pi ≤ pU

i |∑wiCi when each jobJi ∈ J has a
weightwi equal to one. From condition (2), it follows
that a deterministic problem 1||∑Ci can be solved to
optimality by the shortest processing time rule: pro-
cess the jobs in non-decreasing order of their process-
ing timespki , Jki ∈ J .

A set of scenariosT for Example 1 of the un-
certain problem 1|pL

i ≤ pi ≤ pU
i |∑Ci is defined in

columns 1 and 2 in Table 1.

Table 1: Data for calculatingS B (π1,T) for Example 1.

1 2 3 4 5 6 7 8
i pL

i pU
i

wi
pU

i

wi
pL

i
d−

i d+
i

wi
d+i

wi
d−i

1 2 3 1
3 0.5 1 0.5 2 1

2 1 9 1
9 1 1

6
1
3 3 6

3 8 8 1
8

1
8

1
6

1
9 9 6

4 6 10 0.1 1
6 0.1 1

9 9 10
5 11 12 1

12
1
11 0.1 1

11 11 10
6 10 19 1

19 0.1 1
15

1
12 12 15

7 17 19 1
19

1
17

1
15

1
19 19 15

8 15 20 1
20

1
15

1
20

1
19 19 20

In (Sotskov and Lai, 2011), formula (9) has been
proven. To use it for calculating the stability box
S B (πk,T), one has to define for each jobJki ∈ J the
maximal range[lki ,uki ] of possible variations of the
processing timepki preserving the optimality of per-
mutationπk (see Definition 1).

Due to the additivity of the objective function

γ = ∑
Ji∈J

wiCi(πk, p),

the lower boundd−
ki

on the maximal range of possible

variations of the weight-to-process ratio
wki
pki

preserv-

ing the optimality of permutationπk = (Jk1, . . . ,Jkn)∈
S is calculated as follows:

d−ki
= max

{
wki

pU
ki

, max
i< j≤n

{
wk j

pL
k j

}}
, i ∈ {1, . . . ,n−1}, (4)

d−
kn
=

wkn

pU
kn

. (5)

The upper boundd+
ki
,Jki ∈ J , on the maximal range of

possible variations of the weight-to-process ratio
wki
pki

preserving the optimality of permutationπk is calcu-
lated as follows:

d+
ki
= min

{
wki

pL
ki

, min
1≤ j<i

{
wkj

pU
kj

}}
, i ∈ {2, . . . ,n},

(6)

d+
k1
=

wk1

pL
k1

. (7)

For Example 1, the valuesd−
ki
, i ∈ {1, . . . ,8}, de-

fined in (4) and (5) are given in column 5 of Table
1. The valuesd+

ki
defined in (6) and (7) are given in

column 6.
In (Sotskov and Lai, 2011), the following claim

has been proven.

Theorem 2(Sotskov and Lai, 2011). If there is no job
Jki , i ∈ {1, . . . ,n− 1}, in permutationπk = (Jk1, . . . ,
Jkn) ∈ S such that inequality

wki

pL
ki

<
wkj

pU
kj

(8)

holds for at least one job Jkj , j ∈ {i +1, . . . ,n}, then
the stability boxS B (πk,T) is calculated as follows:

S B (πk,T) =×d−ki
≤d+ki

[
wki

d+
ki

,
wki

d−
ki

]
. (9)

Otherwise,S B (πk,T) = /0.

Using Theorem 2, we can calculate the stability
boxS B (π1,T) of permutationπ1 = (J1, . . . ,J8) in Ex-
ample 1. First, we convince that there is no jobJki ,
i ∈ {1, . . . ,n−1}, with inequality (8). Due to Theo-
rem 2,S B (π1,T) 6= /0.

The bounds
wki
d+ki

and
wki
d−ki

on the maximal possible

variations of the processing timespki preserving the
optimality of permutationπ1 are given in columns 7

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

16



and 8 of Table 1. The maximal ranges (segments) of
possible variations of the job processing times within
the stability boxS B (π1,T) are dashed in a coordinate
system in Fig. 1, where the abscissa axis is used for
indicating the job processing times and the ordinate
axis for the jobs from setJ .

2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5

J6

J7

J8

Figure 1: Maximal ranges[l i ,ui ] of possible variations of
the processing timespi , i ∈ {2,4,6,8}, within the stability
box S B (π1,T) are dashed.

Using formula (9), we obtain the stability box for
permutationπ1 as follows:

S B (π1,T) =

[
w2

d+2
,

w2

d−2

]
×

[
w4

d+4
,

w4

d−4

]
×

[
w6

d+6
,

w6

d−6

]

×

[
w8

d+8
,

w8

d−8

]
= [3,6]× [9,10]× [12,15]× [19,20].

Each jobJi , i ∈ {1,3,5,7}, has an empty range of pos-
sible variations of the timepi preserving the optimal-
ity of permutationπ1 sinced−

i > d+
i (see columns 5

and 6 in Table 1). The dimension of the stability box
S B (π1,T) is equal to 4= 8−4. The volume of this
stability box is equal to 9= 3 ·1 ·3 ·1.

In (Sotskov and Lai, 2011),O(nlogn) algorithm
STABOX has been developed for calculating the sta-
bility box S B (πk,T) for a fixed permutationπk ∈ S.

For practice, the value of the relative volume of
a stability box is more useful than its absolute value.
The relative volume of a stability box is defined as the
product of the fractions

(
wi

d−
i

−
wi

d+
i

)
:
(
pU

i − pL
i

)
(10)

for the jobsJi ∈ J having non-empty ranges[l i ,ui ] of
possible variations of the processing timepi (inequal-
ity d−

i ≤ d+
i must hold for such a jobJi ∈ J ).

The relative volume of the stability box for per-
mutationπ1 in Example 1 is calculated as follows:

3
8
·
1
4
·
3
9
·
1
5
=

1
160

.

The absolute volume of the whole box of the scenar-
iosT is equal to 2880= 1·8·4·1·9·2·5. The relative
volume of the rectangular boxT is defined as 1.

3.2 Properties of a Stability Box

A job permutation in the setSwith a larger dimension
and a larger volume of the stability box seems to be
more efficient than one with a smaller dimension and
(or) a smaller volume of stability box.

We investigate properties of a stability box, which
allow us to derive anO(nlogn) algorithm for choos-
ing a permutationπt ∈ Swhich has

(a) the largest dimension|Nt | of the stability box

S B (πt ,T) =×ti∈Nt [lti ,uti ]⊆ T

among all permutationsπk ∈ Sand
(b) the largest volume of the stability box

S B (πt ,T) among all permutationsπk ∈ S having the
largest dimension|Nk| = |Nt | of their stability boxes
S B (πk,T).

Definition 1 implies the following claim.

Property 1. For any jobs Ji ∈ J and Jv ∈ J , v 6= i,

(wi/ui,wi/l i)
⋂[

wv/pU
v ,wv/pL

v

]
=∅.

Let Smax denote the subset of all permutationsπt
in the setS possessing properties (a) and (b). Using
Property 1, we shall show how to define the relative
order of a jobJi ∈ J with respect to a jobJv ∈ J for
anyv 6= i in a permutationπt =(Jt1, . . . ,Jtn)∈Smax. To
this end, we have to treat all three possible cases (I)–

(III) for the intersection of the open interval
(

wi
pU

i
, wi

pL
i

)

and the closed interval
[

wv
pU

v
, wv

pL
v

]
. The order of the jobs

Ji andJv in the desired permutationπt ∈ Smax may be
defined in the cases (I)–(III) using the following rules.

Case (I) is defined by the inequalities
wv

pU
v
≤

wi

pU
i

,
wv

pL
v
≤

wi

pL
i

(11)

provided that at least one of inequalities (11) is strict.
In case (I), the desired order of the jobsJv andJi

in permutationπt ∈ Smax may be defined by a strict
inequality from (11): jobJv proceeds jobJi in permu-
tation πt . Indeed, if jobJi proceeds jobJv, then the
maximal ranges[l i ,ui ] and [lv,uv] of possible varia-
tions of the processing timespi andpv preserving the
optimality of πk ∈ S are both empty (it follows from
equalities (4) – (7) and (9)).

Thus, the following property is proven.

Property 2. For case (I), there exists a permutation
πt ∈ Smax, in which job Jv proceeds job Ji .
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Case (II) is defined by the equalities
wv

pU
v
=

wi

pU
i

,
wv

pL
v
=

wi

pL
i
. (12)

Property 3. For case (II), there exists a permutation
πt ∈ Smax, in which jobs Ji and Jv are located adja-
cently: i= tr and v= tr+1.

Proof. The maximal ranges[l i ,ui ] and[lv,uv] of pos-
sible variations of the processing timespi andpv pre-
serving the optimality ofπk ∈ Sare both empty.

If job Ji and jobJv are located adjacently, then the
maximal range[lu,uu] of possible variation of the pro-
cessing timepu for any jobJu ∈ J \{Ji,Jv} preserving
the optimality of permutationπk is no less than that if
at least one jobJw ∈ J \{Ji,Jv} is located between job
Ji and jobJv.

If equalities (12) hold, one can restrict the search
for a permutationπt ∈ Smax by a subset of permuta-
tions in setSwith the adjacently located jobsJi andJv
(Property 3). Moreover, the order of such jobs{Ji,Jv}
does not influence the volume of the stability box and
its dimension.

Remark 1. Due to Property 3, while looking for a
permutationπt ∈ Smax, we shall treat a pair of jobs
{Ji ,Jv} satisfying (12) as one job (either job Ji or Jv).

Case (III) is defined by the strict inequalities
wv

pU
v
>

wi

pU
i

,
wv

pL
v
<

wi

pL
i
. (13)

For jobJi ∈ J satisfying case (III), letJ (i) denote
the set of all jobsJv ∈ J , for which the strict inequal-
ities (13) hold.

Property 4. (i) For a fixed permutationπk ∈ S, job
Ji ∈ J may have at most one maximal segment[l i ,ui ]
of possible variations of the processing time pi ∈
[pL

i , p
U
i ] preserving the optimality of permutationπk.

(ii) For the whole set of permutations S, only in
case (III), a job Ji ∈ J may have more than one
(namely: |J (i)|+ 1 > 1) maximal segments[l i ,ui ] of
possible variations of the time pi ∈ [pL

i , p
U
i ] preserv-

ing the optimality of this or that particular permuta-
tion from the set S.

Proof. Part (i) of Property 4 follows from the fact
that a non-empty maximal segment[l i ,ui ] (if any) is
uniquely determined by the subsetJ −(i) of jobs lo-
cated before jobJi in permutationπk and the subset
J +(i) of jobs located after jobJi . The subsetsJ −(i)
andJ +(i) are uniquely determined for a fixed permu-
tationπk ∈ Sand a fixed jobJi ∈ J .

Part(ii) of Property 4 follows from the following
observations. If the open interval

(
wi

pU
i

,
wi

pL
i

)

does not intersect with the closed interval
[

wv

pU
v
,
wv

pL
v

]

for each jobJv ∈ J , then there exists a permuta-
tion πt ∈ Smax with a maximal segment[l i ,ui ] =[
wi/pU

i ,wi/pL
i

]
preserving the optimality of permu-

tationπt .
Each jobJv ∈ J with a non-empty intersection

(
wi

pU
i

,
wi

pL
i

)⋂[
wv

pU
v
,
wv

pL
v

]
6= /0

satisfying inequalities (11) (case (I)) or equalities (12)
(case (II)) may shorten the above maximal segment
[l i ,ui ] and cannot generate a new possible maximal
segment.

In case (III), a jobJv satisfying inequalities (13)
may generate a new possible maximal segment[l i ,ui ]
just for job Ji satisfying the same strict inequalities
(13) as jobJv does. So, the cardinality|L (i)| of the
whole setL (i) of such segments[l i ,ui ] is not greater
than|J (i)|+1.

Let L denote the set of all maximal segments
[l i ,ui ] of possible variations of the processing times
pi for all jobsJi ∈ J preserving the optimality of per-
mutationπt ∈ Smax. Using Property 4 and induction
on the cardinality|J (i)|, we proved

Property 5. |L | ≤ n.

3.3 A Job Permutation with the Largest
Volume of a Stability Box

The above properties allows us to derive anO(nlogn)
algorithm for calculating a permutationπt ∈Smaxwith
the largest dimension|Nt | and the largest volume of a
stability boxS B (πt ,T).

Algorithm MAX-STABOX

Input: Segments[pL
i , p

U
i ], weightswi , Ji ∈ J .

Output: Permutationπt ∈ Smax, stability box
S B (πt ,T).

Step 1: Construct the listM (U) = (Ju1, . . . ,Jun)

and the listW (U) = (
wu1
pU

u1
, . . . ,

wun
pU

un
)

in non-decreasing order ofwur
pU

ur
.

Ties are broken via increasingwur
pL

ur
.

Step 2: Construct the listM (L) = (Jl1, . . . ,Jln)

and the listW (L) = (
wl1
pL

l1

, . . . ,
wln
pL

ln
)

in non-decreasing order ofwlr
pL

lr
.

Ties are broken via increasingwlr
pU

lr
.

Step 3: FORj = 1 to j = n DO
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compare jobJu j and jobJl j .
Step 4: IFJu j = Jl j THEN jobJu j has to be

located in positionj in permutation
πt ∈ SmaxGOTO step 8.

Step 5: ELSE jobJu j = Ji satisfies inequalities
(13). Construct the setJ (i) = {Jur+1, . . . ,
Jlk+1} of all jobsJv satisfying
inequalities (13), whereJi = Ju j = Jlk.

Step 6: Choose the largest range[lu j ,uu j ]
among those generated for jobJu j = Ji .

Step 7: Partition the setJ (i) into subsetsJ −(i)
andJ +(i) generating the largest range
[lu j ,uu j ]. Set j = k+1 GOTO step 4.

Step 8: Setj := j +1 GOTO step 4.
END FOR

Step 9: Construct the permutationπt ∈ Smax via
putting the jobsJ in the positions defined
in steps 3 – 8.

Step 10: Construct the stability boxS B (πt ,T)
using algorithm STABOX derived in
(Sotskov and Lai, 2011). STOP.

Steps 1 and 2 of algorithm MAX-STABOX are
based on Property 3 and Remark 1. Step 4 is based
on Property 2. Steps 5 – 7 are based on Property 4,
part(ii) . Step 9 is based on Property 6 which follows.

To prove Property 6, we have to analyze algorithm
MAX-STABOX. In steps 1, 2 and 4, all jobsJ t =
{Ji | Ju j = Ji = Jl j } having the same position in both
lists M (U) andM (L) obtain fixed positions in the
permutationπt ∈ Smax.

The positions of the remaining jobsJ \ J t in the
permutationπt are determined in steps 5 – 7. The
fixed order of the jobsJ t may shorten the original seg-
ment[pL

i , p
U
i ] of a jobJi ∈ J \ J

t as follows:[p̂L
i , p̂

U
i ].

So, in steps 5 – 7, the reduced segment[p̂L
i , p̂

U
i ] has

to be considered instead of segment[pL
i , p

U
i ] for a job

Ji ∈ J \ J
t . Let I ′ denote the maximal subset of setI

including exactly one element from each setI(i), for
which jobJi ∈ J satisfies the strict inequalities (13).

Property 6. There exists a permutationπt ∈ S with
the set I′ ⊆ I of maximal segments[l i ,ui ] of possible
variations of the processing time pi ,Ji ∈ J , preserving
the optimality of permutationπt .

Proof. Due to Property 2 and steps 1 – 4 of algo-
rithm MAX-STABOX, the maximal segments[l i ,ui ]
and [lv,uv] (if any) of jobsJi and Jv satisfying (11)
preserve the optimality of permutationπt ∈ Smax.

Let J ∗ denote the set of all jobsJi satisfying (13).
It is easy to see that

⋂

Ji∈J

(p̂L
i , p̂

U
i ] =∅.

Therefore, ⋂

Ji∈J

J (i) =∅.

Hence, step 9 is correct: putting the set of jobsJ in
the positions defined in steps 3 – 8 does not cause any
contradiction of the job orders.

Obviously, steps 1 and 2 takeO(nlogn) time. Due
to Properties 4 and 5, steps 6, 7 and 9 takeO(n)
time. Step 10 takesO(nlogn) time since algorithm
STABOX derived in (Sotskov and Lai, 2011) has the
same complexity. Thus, the whole algorithm MAX-
STABOX takesO(nlogn) time.

It is easy to convince that, due to steps 1 –
5, permutationπt constructed by algorithm MAX-
STABOX possesses property (a) and, due to steps 6,
7 and 9, this permutation possesses property (b).

Remark 2. Algorithm MAX-STABOX constructs a
permutationπt ∈ S such that the dimension|Nt | of
the stability boxS B (πt ,T) = ×ti∈Nt [lti ,uti ]⊆ T is the
largest one for all permutations S, and the volume
of the stability boxS B (πt ,T) is the largest one for
all permutationsπk ∈ S having the largest dimension
|Nk|= |Nt | of their stability boxesS B (πk,T).

Returning to Example 1, one can show (using
Algorithm MAX-STABOX) that permutationπ1 =
(J1, . . . ,J8) has the largest dimension and volume of
a stability box. Next, we compareS B (π1,T) with
the stability boxes calculated for the permutations ob-
tained by the three heuristics defined as follows.

The lower-point heuristic generates an optimal
permutationπl ∈ S for the instance 1|pL|∑wiCi with

pL = (pL
1, . . . , p

L
n) ∈ T. (14)

The upper-point heuristic generates an optimal
permutationπu ∈ S for the instance 1|pU |∑wiCi with

pU = (pU
1 , . . . , p

U
n ) ∈ T. (15)

The mid-point heuristic generates an optimal per-
mutationπm ∈ S for the instance 1|pM|∑wiCi with

pM =

(
pU

1 − pL
1

2
, . . . ,

pU
n − pL

n

2

)
∈ T. (16)

We obtain the permutationπl = (J2,J1,J4,J3,J6,
J5,J8,J7) with the stability box

S B (πl ,T)=

[
w2

d+
2

,
w2

d−
2

]
×

[
w6

d+
6

,
w6

d−
6

]
=[1,2]× [10,11].

The volume of the stability boxS B (πl ,T) is
equal to 1. We obtain the permutationπu = (J1,J3,
J2,J4,J5,J7,J6,J8) and the permutationπm = (J1,J2,
J4,J3,J5,J6,J8,J7). The volume of the stability box

S B (πu,T)=

[
w4

d+
4
,
w4

d−
4

]
×

[
w8

d+
8
,
w8

d−
8

]
=[9,10]× [19,20]
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is equal to 1. The volume of the stability box

S B (πm,T)=

[
w2

d+
2

,
w2

d−
2

]
×

[
w6

d+
6

,
w6

d−
6

]
=[3,6]× [12,15]

is equal to 9= 3·3. It is the same volume of the stabil-
ity box as that of permutationπ1. Note, however, that
the dimension|Nm| of the stability boxS B (πm,T) is
equal to 2, while the dimension|N1| of the stability
box S B (π1,T) of the permutationπ1 ∈ Smax is equal
to 4. Thus,πm 6∈ Smax since permutationπm does not
possess property (a).

4 COMPUTATIONAL RESULTS

There might be several permutations with the largest
dimension and relative volume of a stability box
S B (πt ,T) since several consecutive jobs in a permu-
tation πt ∈ Smax may have an empty range of possi-
ble variations of their processing times preserving the
optimality of permutationπt . In the computational
experiments, we break ties in ordering such jobs by
adopting the mid-point heuristic which generates a
subsequence of these jobs as a part of an optimal per-
mutationπm∈Sfor the instance 1|pM|∑wiCi with the
scenariopM ∈ T defined by (16).

Our choice of the mid-point heuristic is based
on the computational results of the experiments con-
ducted in (Sotskov and Lai, 2011) for the problem
1|pL

i ≤ pi ≤ pU
i |∑wiCi with 10≤ n≤ 1000. In those

computational results, the subsequence of a permu-
tation πm ∈ S outperformed both the corresponding
subsequence of permutationπl ∈ Sand that of permu-
tationπu ∈ Sdefined by (14) and (15), respectively.

We coded the algorithm MAX-STABOX com-
bined with the mid-point heuristic for ordering con-
secutive jobs having an empty range of their process-
ing times preserving the optimality of permutation
πt ∈ Smax in C++. This algorithm was tested on a
PC with AMD Athlon (tm) 64 Processor 3200+, 2.00
GHz, 1.96 GB of RAM. We solved (exactly or ap-
proximately) a lot of randomly generated instances.
Some of the computational results obtained are pre-
sented in Tables 2 and 3 for randomly generated in-
stances of the problem 1|pL

i ≤ pi ≤ pU
i |∑wiCi with

the numbern∈ {1000,1100, . . .,2000} of jobs.
Each series presented in Tables 2 and 3 contains

100 solved instances with the same combination of
the numbern of jobs and the same maximal possi-
ble error δ% of the random processing timespi ∈
[pL

i , p
U
i ]. An integer centerC of a segment[pL

i , p
U
i ]

was generated using the uniform distribution in the
range[L,U ]: L ≤C≤U . The lower boundpL

i for the
possible job processing timepi ∈ [pL

i , p
U
i ]was defined

as

pL
i =C · (1−

δ
100

),

the upper boundpU
i of pi ∈ [pL

i , p
U
i ] was defined as

pU
i =C · (1+

δ
100

).

The same range[L,U ] for the varying center
C of the segment[pL

i , p
U
i ] was used for all jobs

Ji ∈ J , namely: L = 1 and U = 100. In Ta-
bles 2 and 3, we report computational results for
series of instances of the problem 1|pL

i ≤ pi ≤
pU

i |∑wiCi with the maximal possible errorsδ%
of the job processing times from the set{0.25%,
0.4%,0.5%,0.75%,1%,2.5%,5%,15%,25%}.

For each jobJi ∈ J , the weightwi ∈ R1
+ was uni-

formly distributed in the range[1,50]. It should be
noted that the job weightswi were assumed to be
known before scheduling (in contrast to the actual
processing timesp∗i of the jobsJi ∈ J , which were
assumed to be unknown before scheduling).

The numbern of jobs in each instance of a series
is given in column 1 of Table 2 and Table 3. The
maximum possible errorδ% of the random processing
timespi ∈ [pL

i , p
U
i ] is given in column 2.

Column 3 represents the average relative number
|A | of the arcs in the dominance digraph(J ,A ) con-
structed using condition (3) of Theorem 1. The rel-
ative number|A | is calculated in percentages of the
number of arcs in the complete circuit-free digraph of
ordern as follows:(

|A | :
n(n−1)

2

)
·100%.

Column 4 represents the average dimension|Nt | of
the stability boxS B (πt ,T) of the permutationπt with
the largest relative volume of a stability box.|Nk| is
equal to the number of jobs with a non-zero maximal
possible variation of the processing time preserving
the optimality of permutationπt ∈ Smax. Column 5
represents the average relative volume of the stability
boxS B (πt ,T) of the permutationsπt with the largest
dimension and relative volume of a stability box. If
S B (πt ,T) = T for all instances in the series, then col-
umn 5 contains number one.

In the experiments, we answered the question of
how large the relative error∆ of the objective func-
tion γ = ∑n

i=1wiCi was for the permutationπt ∈ Smax

with the largest dimension and relative volume of a
stability boxS B (πt ,T):

∆ =
γt

p∗ − γp∗

γp∗
,

where p∗ is the actual scenario (unknown before
scheduling),γp∗ is the optimal objective function
value for scenariop∗ ∈ T andγt

p∗ =∑n
i=1wiCi(πt , p∗).
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Table 2: Randomly generated instances with[L,U ] = [1,100], wi ∈ [1,50] andn∈ {1000,1100, . . . ,1500}.

Number Maximal Relative Average Relative Number Average Maximal CPU
of jobs error ofpi arc number dimension volume of of exact error error time

n δ% |A | (in %) |Nt | S B (πt ,T) solutions ∆ ∆ (in s)
1 2 3 4 5 6 7 8 9

1000 0.25% 100 1000 1 100 0 0 8.62
1000 0.4% 100 1000 1 100 0 0 8.56
1000 0.5% 100 989.61 0.227427 11 ≈ 0 ≈ 0 8.69
1000 0.75% 99.545177 451.29 ≈ 0 0 0.000023 0.000031 8.98
1000 1% 99.192559 330.65 ≈ 0 0 0.000042 0.000051 8.96
1000 2.5% 97.591726 124 0.000001 0 0.000157 0.000181 8.9
1000 5% 94.889794 54.86 0.001976 0 0.000526 0.000614 8.84
1000 15% 84.39185 12.29 0.011288 0 0.004309 0.004858 8.86
1000 25% 73.954372 4.71 0.09081 0 0.012045 0.013303 8.89
1100 0.25% 100 1100 1 100 0 0 11.51
1100 0.4% 100 1100 1 100 0 0 11.46
1100 0.5% 99.997839 1087.27 0.200252 11 ≈ 0 ≈ 0 11.51
1100 0.75% 99.539967 478.35 ≈ 0 0 0.000023 0.00003 12.1
1100 1% 99.188722 349.3 ≈ 0 0 0.000043 0.000049 12.05
1100 2.5% 97.611324 131.01 0.000001 0 0.000155 0.000175 11.8
1100 5% 94.862642 57.35 0.006242 0 0.000528 0.000593 11.79
1100 15% 84.288381 11.46 0.017924 0 0.004371 0.004899 11.76
1100 25% 74.076585 4.29 0.133804 0 0.01189 0.013289 11.8
1200 0.25% 100 1200 1 100 0 0 15.4
1200 0.4% 100 1200 1 100 0 0 15.12
1200 0.5% 99.998 1185.27 0.174959 5 ≈ 0 0.000001 15.42
1200 0.75% 99.540619 515.8 ≈ 0 0 0.000023 0.000029 16
1200 1% 99.190977 375.34 ≈ 0 0 0.000042 0.000051 16.06
1200 2.5% 97.581479 138.75 0.000002 0 0.000156 0.000177 15.81
1200 5% 94.88253 62.06 0.006396 0 0.000534 0.000596 15.51
1200 15% 84.376763 12.88 0.042597 0 0.004332 0.004733 15.33
1200 25% 74.100395 5.01 0.08078 0 0.011872 0.01351 15.21
1300 0.25% 100 1300 1 100 0 0 19.75
1300 0.4% 100 1300 1 100 0 0 19.38
1300 0.5% 99.997583 1280.26 0.084004 2 ≈ 0 ≈ 0 19.54
1300 0.75% 99.549162 543.2 ≈ 0 0 0.000023 0.000026 20.3
1300 1% 99.199789 400.41 ≈ 0 0 0.000042 0.000053 20.32
1300 2.5% 97.602491 148.41 0.000004 0 0.000157 0.000186 20.01
1300 5% 94.877326 65.23 0.019927 0 0.000532 0.000588 19.95
1300 15% 84.388473 13.47 0.024207 0 0.004364 0.004758 19.52
1300 25% 73.975873 5.5 0.08254 0 0.011962 0.013812 19.52
1400 0.25% 100 1400 1 100 0 0 24.92
1400 0.4% 100 1400 1 100 0 0 24.8
1400 0.5% 99.997556 1377.21 0.078809 1 ≈ 0 0.000001 24.97
1400 0.75% 99.539142 575.2 ≈ 0 0 0.000023 0.000029 25.67
1400 1% 99.198461 422.65 ≈ 0 0 0.000042 0.00005 25.63
1400 2.5% 97.594897 154.9 0.000001 0 0.000157 0.000178 25.1
1400 5% 94.869044 70.36 0.002356 0 0.000533 0.000615 25.29
1400 15% 84.364242 14.35 0.029338 0 0.004339 0.004841 24.72
1400 25% 74.096446 5.18 0.14077 0 0.011998 0.013041 24.27
1500 0.25% 100 1500 1 100 0 0 31.44
1500 0.4% 100 1500 1 100 0 0 31.08
1500 0.5% 99.997493 1474.09 0.070241 0 ≈ 0 0.000001 31.64
1500 0.75% 99.544441 607.5 ≈ 0 0 0.000042 0.000052 32.39
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Table 3: Randomly generated instances with[L,U ] = [1,100], wi ∈ [1,50] andn∈ {1500,1600, . . . ,2000}.

Number Maximal Relative Average Relative Number Average Maximal CPU
of jobs error ofpi arc number dimension volume of of exact error error time

n δ% |A | (in %) |Nt | S B (πt ,T) solutions ∆ ∆ (in s)
1500 1% 99.193199 444.29 ≈ 0 0 0.000042 0.000052 32.39
1500 2.5% 97.61593 167.25 0.000005 0 0.000155 0.000171 31.43
1500 5% 94.861654 71.34 0.00282 0 0.000533 0.000582 31.36
1500 15% 84.409904 14.93 0.05372 0 0.004394 0.00492 30.46
1500 25% 74.281235 5.46 0.148403 0 0.011936 0.013685 30.33
1600 0.25% 100 1600 1 100 0 0 38.63
1600 0.4% 100 1600 1 100 0 0 38.67
1600 0.5% 99.997452 1569.35 0.046151 0 ≈ 0 0.000001 38.8
1600 0.75% 99.54273 638.18 ≈ 0 0 0.000023 0.00003 39.76
1600 1% 99.192323 464.89 ≈ 0 0 0.000042 0.000048 40.04
1600 2.5% 97.601128 174.91 0.000004 0 0.000157 0.000177 38.71
1600 5% 94.861356 76.990000 0.003505 0 0.000532 0.000581 38.46
1600 15% 84.343239 14.75 0.036278 0 0.004341 0.004811 37.34
1600 25% 74.123830 5.75 0.087651 0 0.011899 0.013192 36.34
1700 0.25% 100 1700 1 100 0 0 47.29
1700 0.4% 100 1700 1 100 0 0 47.18
1700 0.5% 99.997432 1665.41 0.034556 1 ≈ 0 0.000001 47.12
1700 0.75% 99.544993 671.09 ≈ 0 0 0.000023 0.000027 48.25
1700 1% 99.203930 495.13 ≈ 0 0 0.000041 0.000049 48.47
1700 2.5% 97.598734 180.99 0.000072 0 0.000156 0.000172 46.88
1700 5% 94.852439 80.53 0.001601 0 0.000533 0.000585 46.33
1700 15% 84.358524 17.27 0.028854 0 0.004379 0.0049 45.26
1700 25% 74.030579 6.03 0.082325 0 0.012069 0.013255 44.24
1800 0.25% 100 1800 1 100 0 0 56.18
1800 0.4% 100 1800 1 100 0 0 56.27
1800 0.5% 99.99761 1764.02 0.02624 0 ≈ 0 0.000001 56.72
1800 0.75% 99.547537 706.21 ≈ 0 0 0.000023 0.000028 57.38
1800 1% 99.193797 517.06 ≈ 0 0 0.000042 0.000049 57.33
1800 2.5% 97.600247 190.97 0.000042 0 0.000156 0.000177 55.81
1800 5% 94.899074 84.82 0.007274 0 0.000529 0.000602 55.27
1800 15% 84.408342 17.67 0.040758 0 0.004348 0.004723 53.42
1800 25% 74.162869 6.38 0.126377 0 0.011981 0.013095 51.86
1900 0.25% 100 1900 1 100 0 0 65.65
1900 0.4% 100 1900 1 100 0 0 66.81
1900 0.5% 99.997533 1858.51 0.018832 0 ≈ 0 0.000001 66.69
1900 0.75% 99.54191 733.81 ≈ 0 0 0.000023 0.000028 67.75
1900 1% 99.189512 534.79 ≈ 0 0 0.000042 0.000049 68.58
1900 2.5% 97.596318 199.82 0.000022 0 0.000156 0.000173 66.36
1900 5% 94.856400 89.93 0.002011 0 0.000534 0.000596 65.68
1900 15% 84.331351 17.61 0.048813 0 0.004372 0.004844 62.97
1900 25% 74.188836 6.82 0.092068 0 0.011965 0.013234 60.74
2000 0.25% 100 2000 1 100 0 0 78.41
2000 0.4% 100 2000 1 100 0 0 78.93
2000 0.5% 99.997489 1953.88 0.017798 2 ≈ 0 ≈ 0 79.06
2000 0.75% 99.542435 764.35 ≈ 0 0 0.000023 0.000027 78.83
2000 1% 99.197383 565.09 ≈ 0 0 0.000042 0.000048 78.1
2000 2.5% 97.605895 210.17 0.000035 0 0.000156 0.000173 75.8
2000 5% 94.867102 93.63 0.014015 0 0.000535 0.000606 75.02
2000 15% 84.412199 17.95 0.040101 0 0.004339 0.004751 74.08
2000 25% 73.977021 6.64 0.147426 0 0.01203 0.013046 71.22

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

22



Column 6 represents the number of instances
(among the 100 instances in a series) for which a per-
mutationπt with the largest dimension and relative
volume of the stability boxS B (πt ,T) provides an op-
timal solution for the instance 1|p∗|∑wiCi with the
actual processing timesp∗ = (p∗1, . . . , p

∗
n) ∈ T. From

the experiments, it follows that, if the maximal pos-
sible error of the processing times is no greater than
0.4%, then the dominance digraph(J ,A ) is a com-
plete circuit-free digraph. Therefore, the permutation
πt ∈Smaxprovides an optimal solution for the instance
1|p∗|∑wiCi .

The average (maximum) relative error∆ of the ob-
jective function valueγt

p∗ calculated for the permu-
tation πt ∈ Smax constructed by the algorithm MAX-
STABOX with respect to the optimal objective func-
tion valueγp∗ defined for the actual job processing
times is given in column 7 (in column 8, respectively).

For all series presented in Tables 2 and 3, the aver-
age (maximum) error∆ of the valueγt

p∗ of the objec-
tive function γ = ∑n

i=1wiCi obtained for the permu-
tation πt ∈ Smax with the largest dimension and rel-
ative volume of a stability box was not greater than
0.012069 (not greater than 0.013812).

The CPU-time for an instance of a series is pre-
sented in column 5. This time includes the time for
the realization of theO(n2) algorithm for construct-
ing the dominance digraph(J ,A ) using condition (3)
of Theorem 1 and the time for the realization of the
O(nlogn) algorithm MAX-STABOX for construct-
ing the permutationπt ∈ Smax and the stability box
S B (πt ,T). This CPU-time grows rather slowly with
n, and it was not greater than 79.06 s for each instance.

5 CONCLUSIONS

In (Sotskov and Lai, 2011), anO(n2) algorithm has
been developed for calculating a permutationπt ∈ S
with the largest dimension and volume of a stabil-
ity box S B (πt ,T). In Section 3, we proved Proper-
ties 1 – 6 of a stability box allowing us to derive an
O(nlogn) algorithm for calculating such a permuta-
tion πt ∈ Smax. The dimension and volume of a sta-
bility box are efficient invariants of uncertain dataT,
as it is shown in simulation experiments on a PC re-
ported in Section 4.

ACKNOWLEDGEMENTS

The first and third authors were supported in this re-
search by National Science Council of Taiwan.

REFERENCES

Daniels, R. and Kouvelis, P. (1995). Robust scheduling
to hedge against processing time uncertainty in single
stage production.Management Science, V. 41(2):363–
376.

Kasperski, A. (2005). Minimizing maximal regret in
the single machine sequencing problem with maxi-
mum lateness criterion.Operations Research Letters,
V. 33:431–436.

Kasperski, A. and Zelinski, P. (2008). A 2-approximation
algorithm for interval data minmax regret sequencing
problem with total flow time criterion.Operations Re-
search Letters, V. 36:343–344.

Lai, T.-C. and Sotskov, Y. (1999). Sequencing with uncer-
tain numerical data for makespan minimization.Jour-
nal of the Operations Research Society, V. 50:230–
243.

Lai, T.-C., Sotskov, Y., Sotskova, N., and Werner, F. (1997).
Optimal makespan scheduling with given bounds of
processing times.Mathematical and Computer Mod-
elling, V. 26(3):67–86.

Pinedo, M. (2002).Scheduling: Theory, Algorithms, and
Systems. Prentice-Hall, Englewood Cliffs, NJ, USA.

Sabuncuoglu, I. and Goren, S. (2009). Hedging production
schedules against uncertainty in manufacturing envi-
ronment with a review of robustness and stability re-
search.International Journal of Computer Integrated
Manufacturing, V. 22(2):138–157.

Slowinski, R. and Hapke, M. (1999). Scheduling un-
der Fuzziness. Physica-Verlag, Heidelberg, Germany,
New York, USA.

Smith, W. (1956). Various optimizers for single-stage
production. Naval Research Logistics Quarterly,
V. 3(1):59–66.

Sotskov, Y., Egorova, N., and Lai, T.-C. (2009). Minimizing
total weighted flow time of a set of jobs with interval
processing times.Mathematical and Computer Mod-
elling, V. 50:556–573.

Sotskov, Y., Egorova, N., and Werner, F. (2010a). Mini-
mizing total weighted completion time with uncertain
data: A stability approach.Automation and Remote
Control, V. 71(10):2038–2057.

Sotskov, Y. and Lai, T.-C. (2011). Minimizing total
weighted flow time under uncertainty using domi-
nance and a stability box.Computers& Operations
Research. doi:10.1016/j.cor.2011.02.001.

Sotskov, Y., Sotskova, N., Lai, T.-C., and Werner, F.
(2010b). Scheduling under Uncertainty. Theory and
Algorithms. Belorusskaya nauka, Minsk, Belarus.

Sotskov, Y., Wagelmans, A., and Werner, F. (1998). On
the calculation of the stability radius of an optimal or
an approximate schedule.Annals of Operations Re-
search, V. 83:213–252.

THE STABILITY BOX IN INTERVAL DATA FOR MINIMIZING THE SUM OF WEIGHTED COMPLETION TIMES

23


