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Abstract: In this paper is proposed a novel steganographic scheme based on chaotic iterations. This research work takes
place into the information hiding security fields. We show that the proposed scheme is stego-secure, which is
the highest level of security in a well defined and studied category of attack called “watermark-only attack”.
Additionally, we prove that this scheme presents topological properties so that it is one of the firsts able to
face, at least partially, an adversary when considering the others categories of attacks defined in the literature.

1 INTRODUCTION These efforts to bring a theoretical framework
for security in steganography and watermarking have

Robustness and security are two major concerns in in-0een followed up by Kalker, who tries to clarify
formation hiding (Katzenbeisser and Dittmann, 2004; the concepts (robustness. security), and the clas-
Domingo-Ferrer and Bras-Amorbs, 2008). These two S|f|_cat|ons of watermarking attacks (Kalker, 2001).
concerns have been defined in (Kalker, 2001) as fol- This work has been deepened by Fueiral, who
lows. “Robust watermarking is a mechanism to cre- have translated Kerckhoffs’ principle (Alice and Bob
ate a communication channel that is multiplexed into Shall only rely on some previously shared secret for
original content[...]. Itis required that, firstly, the per- Privacy), from cryptography to data hiding (Furon,
ceptual degradation of the marked content [...] is min- 2002). They used Diffie and Hellman methodology,
imal and, secondly, that the capacity of the watermark @1d Shannon's cryptographic framework (Shannon,
channel degrades as a smooth function of the degra-1949), to classify the watermarking attacks into cat-
dation of the marked content. [...]. Watermarking se- €gories, according to the type of information Eve
curity refers to the inability by unauthorized users to has access to (Cayre et al., 2005; Perez-Freire et al.,
have access to the raw watermarking channel. [...] to 2006), namely: Watermarked Only Attack (WOA),
remove, detect and estimate, write or modify the raw Known Message Attack (KMA), Known Original At-

watermarking bits” We will focus in this research tack (KOA), and Constant-Message Attack (CMA).
work on security. Levels of security have been recently defined in these

setups. The highest level of security in WOA is called
stego-security (Cayre and Bas, 2008), whereas chaos-
security tends to improve the ability to withstand at-

In the framework of watermarking and steganog-
raphy, security has seen several important develop-
ments since the last decade (Barni et al., 2003; Cayre :
et al., 2005; Ker, 2006: Bras-Amords and Domingo- (2CKS in KMA, KOA, and CMA setups (Guyeuxetal.,
Ferrer, 2008). The first fundamental work in secu- 2010).
rity was made by Cachin in the context of steganogra-  To the best of our knowledge, there exist only two
phy (Cachin, 1998). Cachin interprets the attempts of information hiding schemes that are both stego-secure
an attacker to distinguish between an innocent imageand chaos-secure (Guyeux et al., 2010). The first one
and a stego-content as a hypothesis testing problemis based on a spread spectrum technique called Nat-
In this document, the basic properties of a stegosys-ural Watermarking. It is stego-secure when its pa-
tem are defined using the notions of entropy, mutual rametem is equal to 1 (Cayre and Bas, 2008). Un-
information, and relative entropy. Mittelholzer, in- fortunately, this scheme is neither robust, nor able
spired by the work of Cachin, proposed the first theo- to face an attacker in KOA and KMA setups, due
retical framework for analyzing the security of a wa- to its lack of a topological property called expansiv-
termarking scheme (Mittelholzer, 1999). ity (Guyeux et al., 2010). The second scheme both
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chaos-secure and stego-secure is based on chaotic it- Let (x,d) be a metric space anfla continuous
erations (Bahi and Guyeux, 2010b). However, it al- function on(x ,d).

lows to embed securely only one bit per embedding pefinition 2. f is said to beopologically transitivef,

parameters. The objective of this research work is t0 for any pair of open sets IV  x, there exists k- 0
improve the scheme presented by authors of (Bahi andgych that f(U) NV + o.

S;r?gzxerigigz)eén such a way that more than one bit Defjnit_ion 3 (x_, f)is sa?d to beregularif the set of
The remainder of this document is organized as periodic points is dense in.

follows. In Section 2, some basic recalls concerning Definition 4. f hassensitive dependence on initial

both chaotic iterations and Devaney’s chaos are given.conditionsf there exist® > 0 such that, for any x x

In Section 3 are presented results and information hid- and any neighborhood V of x, there exist ¥ and

ing scheme on which our work is based. Classes of at-N = 0 such thaf f"(x) — f"(y)| > .

tacks considered in this paper are detailed in Section - 3 is called theconstant of sensitivitpf f.

4. Stego-security and chaos-security are recalled too  Itis now possible to introduce the well-established

in this section. The new information hiding scheme mathematical definition of chaos (Devaney, 1989),

IS given 1n Sec.t|on 5. lis steg(_)-secunty is studied Definition 5. A function f: x — x is said to be

in the next section. The topological framework mak- chaoticon x if:

ing it possible to evaluate chaos-security is introduced ) i

in Section 7. Then the topological properties of our 1+ T IS regular,

scheme are investigated in the next section, leading 2. f is topologically transitive,

to the evaluation of its chaos-security. This research 3. f has sensitive dependence on initial conditions.

work ends by a conclusion section where our contri-— - when f is chaotic, then the systerfix; f) is

bution is summarized and intended future researcheschaotic and quoting Devaney: “it is unpredictable be-

are presented. cause of the sensitive dependence on initial condi-
tions. It cannot be broken down or simplified into two
subsystems which do not interact because of topo-

2 BASIC RECALLS logical transitivity. And in the midst of this random
behavior, we nevertheless have an element of regu-
2.1 Chaotic lterations larity”. Fundamentally different behaviors are conse-

quently possible and occur in an unpredictable way.

In the sequeB" denotes the'" term of a sequenc® Letus finally remark that,
andV; is for theit" component of a vectdr. Finally, =~ Theorem 1 ((Banks et al., 1992))If a function is
the following notation is usedO;N] = {0,1,...,N}. regular and topologicaly transitive on a metric space,
then the function is sensitive on initial conditions.
Let us consider aystemof a finite numbem of
elements (orcells), so that each cell has a boolean

state A sequence of lengtN of boolean states ofthe 3 |[NFORMATION HIDING BASED
cells corresponds to a particuktate of the systen\ ON CHAOTIC ITERATIONS

sequence that elements belong ifagN — 1] is called
astrategy The set of all strategies is denotedSy

Definition 1. The setB denoting {0,1}, let f :
BN — BN be a function and 8 S be a strategy. The
so-calledchaotic iterationsare defined by %&e BN
andVv(n,i) € IN* x [O;N —1]:

3.1 Topology of Chaotic Iterations

In this section, we give the outline proofs establish-
ing the topological properties of chaotic iterations. As
our scheme is inspired by the work of Guyeetxal.

n_ xi”‘l if S"£1, (Guyeux et al., 2010; Bahi and Guyeux, 2010b; Babhi
X = (fx* 1) S =i. and Guyeux, 2010a), the proofs detailed at the end of
this document will follow a same canvas.
2.2 Devaney’'s Chaotic Dynamical Let us firstly introduce some notations and termi-
Systems nologies.

Definition 6. Letk € IN*. A strategy adaptds a se-
Some topological definitions and properties taken quence which elements belong ififiok — 1]. The set
from the mathematical theory of chaos are recalled of all strategies with terms ifi0, k — 1] is denoted by
in this section. Sk.
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Definition 7. Thediscrete boolean metris the ap-
plicationd : B — B defined by(x,y) =0< x =Y.

Definition 8. Let ke IN*. Theinitial functionis the
map i defined by:

Sk — [0,k—1]
(Sn)ne]N —
Definition 9. Let ke IN*.
mapoy defined by:

Sk — Sk
(Sn)ne]N — (Sn+l)ne]N

Definition 10. Given a function f: BN — BN, the
function F is defined by:
Fr: [O;N—1]xBN — BN

(k,E) —> (Ej~5(ka D+ f(E)k'm)je[[o:N—l]]

Definition 11. The phase space used for chaotic iter-
ations is denoted hy; and defined by; =Sy x BN.
Definition 12. Given a function f: BN — BN, the
map G is defined by:

Gt :

ikZ

Theshift functionis the

Ok -

—
—

X1 X1
(SE) (on(S), Fi(in(S),E))

With these definitions, chaotic iterations can be
described by the following iterations of the discret dy-
namical system:

X0 e X1

{ vk € IN*, XK+ = G¢(XK)
Finally, a new distancd; between two points has
been defined by:

Definition 13 (Distanced; on x1). Y(SE),(SE) €
X1, Gi((SE);(SE)) = dgn(E,E) + dsy(S9),
where:

e dpn(E,E) ZO5E|(,E|< € [O;N]

° dgN SS |Sk Skl ;1.

are respectlvely two dlstances @\ andSy (VN €

IN%).

Remark 1. This new distance has been introduced

by authors of (Bahi and Guyeux, 2010a) to satisfy

the following requirements. When the number of dif-

ferent cells between two systems is increasing, then
their distance should increase too. In addition, if two

systems present the same cells and their respectlveDef'r“t'On 16. Let

strategies start with the same terms, then the distance

Itis then proven that,

Proposition 1. G¢ is a continuous function on
(x1,dy), forall f : BN — BN,

Let us now recall the iteration function used by
authors of (Bahi and Guyeux, 2010b).

Definition 14. Thevectorial negatiors the function

defined by:
fo . BN BN

(bo,--- ,bn_1) (b_o,--- ,m)

In the metric spacéxy,d), Gy, satisfies the three
conditions for Devaney’s chaos: regularity, transitiv-
ity, and sensitivity. So,

Theorem 2. Gy, is a chaotic map orfixy,d;) accord-
ing to Devaney.

Finally, it has been stated in (Bahi and Guyeux,
2010a) that,

Proposition 2. The phase space; has, at least, the
cardinality of the continuum.

—
—

3.2 Chaotic Iterations for Data Hiding

To explain how to use chaotic iterations for informa-
tion hiding, we must firstly define the significance of
a given coefficient.

3.2.1 Most and Least Significant Coefficients

We first notice that terms of the original conterihat
may be replaced by terms issued from the watermark
y are less important than other: they could be changed
without be perceived as such. More generallsigani-
fication functiomattaches a weight to each term defin-
ing a digital media, depending on its position
Definition 15. A signification functionis a real se-
quence(uk)kel,

Example 1. Let us consider a set of grayscale images
stored into portable graymap format (P3-PGM): each
pixel ranges between 256 gray levels, i.e., is mem-
orized with eight bits. In that context, we consider
uk=8— (k mod 8 to be the k-th term of a signi-
fication function(u®)*¢N. Intuitively, in each group

of eight bits (i.e., for each pixel) the first bit has an
importance equal to 8, whereas the last bit has an im-
portance equal to 1. This is compliant with the idea
that changing the first bit affects more the image than
changing the last one.

(U9EN pe a signification func-
tion, m and M be two reals s.t. mM.

between these two points must be small, because the ¢ The most significant coefficients (MSCs¥ x is

evolution of the two systems will be the same for a
while. The distance presented above follows these
recommendations.
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e Theleast significant coefficients (LSCs) x is the
finite vector

U = (k\ ke Nand <mand k§|x|);
e Thepassive coefficientsf x is the finite vector
Up = (k\ ke N and &f €]m;M[ and k<| x|> .

For a given host contemt MSCs are then ranks of

Strategy (CIIS) and Chaotic Iterations with Depen-
dent Strategy (CIDS). In CIIS, the strategy is inde-
pendent from the cover media whereas in CIDS the
strategy will be dependent @i As we will use the
CIIS strategy in this document, we recall it below. Fi-
nally, MSCs are not used here, as we do not consider
the case of authenticated watermarking.

3.2.3 CIIS Strategy

x that describe the relevant part of the image, whereas) g s firstly give the definition of the Piecewise Lin-
LSCs translate its less significant parts. These tWo o5 chaotic Map (PLCM, see (Shujun et al., 2001)):

definitions are illustrated on Figure 1, where the sig-

nificance function(u¥) is defined as in Example 1,
M =5, andm=6.

(b) MSCs of Lena. (c) LSCs of Lena x17).
Figure 1: Most and least significant coefficients of Lena.

3.2.2 Presentation of the Scheme

X/p if x € [0;p],
Fxp)=q x=p)/(3—p) if xe[p3],
F(1—xp) else,

wherep € ]0; 3] is a “control parameter”.

Then, the general term of the strate@y"), in
CIIS setup is defined by the following expression:
S'= N xK"| +1, where:

p € [0:3]

KO=M®K

KM = F(K", p),¥n < Np
in which ® denotes the bitwise exclusive or (XOR)
between two floating part numbeis(, between their
binary digits representation).

4 DATA HIDING SECURITY

4.1 Classification of Attacks

In the steganography framework, attacks have been
classified in (Cayre and Bas, 2008) as follows.

Authors of (Bahi and Guyeux, 2010b) have proposed Definition 17. Watermark-Only Attack (WOA) occurs
to use chaotic iterations as an information hiding when an attacker has only access to several water-

scheme, as follows. Let:
e (K,N) €[0;1] x N be an embedding key,
e X € BN be theN LSCs of a cove€,

¢ (Snen € [0,N—1]N be a strategy, which de-
pends on the message to hidecs [0; 1] andK,

o fo:BN — BN be the vectorial logical negation.

So the watermarked media@whose LSCs are
replaced by = XN, where:

X0 =X
vn < N, X1 =Gy, (XM).
Two ways to generatéS") e are given by these

authors, namely Chaotic Iterations with Independent

marked contents.

Definition 18. Known-Message Attack (KMA) occurs
when an attacker has access to several pairs of water-
marked contents and corresponding hidden messages.

Definition 19. Known-Original Attack (KOA) is when
an attacker has access to several pairs of water-
marked contents and their corresponding original
versions.

Definition 20. Constant-Message Attack (CMA) oc-
curs when the attacker observes several watermarked
contents and only knows that the unknown hidden
message is the same in all contents.
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4.2 Stego-Security In the approach presented by Guyetal., a data
hiding scheme is secure if it is unpredictable. Its iter-

In the prisoner problem of Simmons (Simmons, 1984; &tive process must satisfy the Devaney’s chaos prop-
Bergmair and Katzenbeisser, 2006), Alice and Bob €rty and its level of chaos-security increases with the
are in jail, and they want to, possibly, devise an escapenumber of chaotic properties satisfied by it. =~
plan by exchanging hidden messages in innocent-  This new concept of security for data hiding
looking cover contents. These messages are to be conSchemes has been proposed in (Bahi and Guyeux,
veyed to one another by a common warden, Eve, who 2010c) as a complementary approach to the existing
over-drops all contents and can choose to interrupt theframework. It contributes to the reinforcement of con-
communication if they appear to be stego-contents.  fidence into existing secure data hiding schemes. Ad-
The stego-security, defined in this framework, is ditionally, the study of security in KMA, KOA, and
the highest security level in WOA setup (Cayre and CMA setups is realizable in this context. Finally,
Bas, 2008). To recall it, we need the following nota- this framework can replace stego-security in situa-

tions: tions that are not encompassed by it. In particular,
] ] this framework is more relevant to give evaluation of
o KK is the set of embedding keys, data hiding schemes claimed as chaotic.
e p(X) is the probabilistic model ofly initial host
contents,

5 THE IMPROVED ALGORITHM

e p(Y|Kq) is the probabilistic model oNp water-

marked contents. . L .
In this section is introduced a new algorithm that gen-

Furthermore, it is supposed in this context that grajize the scheme presented by authors of (Bahi and
each host content has been watermarked with thegyyeux, 2010b).

same secret kelf; and the same embedding function Let us firstly introduce the following notations:

e
o X? € BN is theN least significant coefficients of a

It is now possible to define the notion of stego- _ )
given cover medi&.

security:

P .
Definition 21 (Stego-Security) The embedding func- o P’ € B is the watermark to embed in.

tion e isstego-securié and only if: e S € Sy is a strategy calleglace strategy

Sp is a strategy calledhoice strate
VK1 € K, p(Y[Ky) = p(X). * S5 & &

e Lastly, S5 € Sp is a strategy calledhixing strat-
To the best of our knowledge, until now, only two egy.
schemes have been proven to be stego-secure. On the
one hand, the authors of (Cayre and Bas, 2008) have
established that the spread spectrum technique calle
Natural Watermarking is stego-secure when its distor-
tion parameten is equal to 1. On the other hand, it

Our information hiding scheme called Steganog-

aphy by Chaotic Iterations and Substitution with
ixing Message (SCISMM) is defined bx(n.i, j) €

IN* x [O;N — 1] x [O;P —1]:

has been proven in (Guyeux et al., 2010) that: -1t i
n_ i : :
Proposition 3. Chaotic Iterations with Independent % { mg if S =i.
Strategy (CIIS) are stego-secure.
_ m~tif S ]
4.3 Chaos-Security m =
m~t it =

To check whether an information hiding scheBiis — _ »
chaos-secure or no§ must be written as an iterate Wherem( = is the boolean negation af} .

proces<™1 = f(x") on a metric spacéx,d). This The stego-content is the boolean vegter x° €
formulation is always possible (Bahi and Guyeux, BN.
2010c). So,

Definition 22 (Chaos-Security) An information hid-

ing scheme S is said to be chaos-securd.ord) if 6 STUDY OF STEGO-SECURITY

its iterative process has a chaotic behavior according
to Devaney. Let us prove that,
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Proposition 4. SCISMM is stego-secure.

Proof. Let us suppose that® ~ U (BN) and m® ~
U (BP) in a SCISMM setup. We will prove by a math-
ematical induction thatn € IN,x" ~ U (BN). The

base case is obvious according to the uniform reparti-

tion hypothesis.

Let us now suppose that the statemefit~
U (BV) holds for somen. For a giverk € BN, we de-
note byk; € BN the vector defined byi € [O;N — 1],
if k:~ (k07k17' . ';kl'a';7kN727kal)y
thenki = (ko, ki, -k, ku_2,kn 1)

Let E j be the following events:

v(i,j) € [O;N—1] x [0;P - 1],Ei =

S =ingt=jamtt=kA (X" =kvx"=k),

andp =P (x"t1 =k). So,

p=P \V;
ie[O;N—1],j€[0;P—1]

We now.introduce-the following-notationPy (i) =

P(SI"t=i), Pu(i) = P(S"=]), Ra(i,i) =
P(mT+1 - k@) LandPy(i) = P (x" = kvx" = k).

These four events are independent in SCISMM
setup, thus:

p= F Pu(i)P2(1)Ps(i, j)Pa(i).-
ie[O;N—1],je[0;P—1]

According to Proposition 3P (mTJrl = ki) =1 As
the two events are incompatible:

P(xX"=kvx"=k)

:P(x”:k)+P(X”:k.).

Then, by using the_inductive hypothesis:
P(X"=k) = 5, andP (X" = k) = 5.
Let Sbe defined by
S= Pu(i)P2(]).

ic[oN-1fTe[oP-1]

Thenp:2><%><2iN><S:iN><S
Scan now be evaluated:

S = Yicron-1],jefor—11 Pr(i)P(])
= Yieon-11 P1(i) X Tjcqop—17 P2()-

The set of event§S] ™! =i} fori € [0;N— 1] and
the set of event§S} ™ = j} for j € [0;P— 1] are both
a partition of the universe of possible, Se= 1.

Finally, P (X" = k) = 5, which leads to""* ~
U (BN). This result is truevn € IN, we thus have
proven that the stego-contepis uniform in the set
of possible stego-content, so~ U (BN) whenx ~

U (BN). O

7 TOPOLOGICAL MODEL

In this section, we prove that SCISMM can be mod-
eled as a discret dynamical system in a topological
space. We will show in the next section that SCISMM
is a case of topological chaos in the sense of Devaney.

7.1 lteration Function and Phase Space

Let

F: [O;N—1]xBNx[0;P—1] x B> — BN
(kXA m) e (80 i) +8k m) o
where + and . are the boolean addition and product
operations.

Consider the phase spatgdefined as follow:

X2 =Sn x BN x Sp x B” x Sp,
whereSy andSp are the sets introduced in Section 5.
We define the mag, : xo — X2 by:

gfo (S_]_,X,SZ, m, 83) =5
(on(S1),F(in(S1),%ip(S2), M), 0p(S2), Gt (M, S8),0p(Ss))
Then SCISMM can be described by the iterations of
the following discret dynamical system:

X0 e X2
Xk+l _ gfo (Xk)

7.2 Cardinality of x»

By comparingx, and.x;, we have the following re-
sult.

Proposition 5. The phase spacg; has, at least, the
cardinality of the continuum.

Proof. Let$ be the map defined as follow:

b: x1 — xo
(Sx) — (Sx,0,0,0)
¢ is injective. So the cardinality of; is greater than
or equal to the cardinality of;. And consequently
X2 has at least the cardinality of the continuum.J

Remark 2. This result is independent on the number
of cells of the system.

7.3 A New Distance onx,

We define a new distance on asvfollovvv:vxv,f( € X2,
if X=(S1,%X,S,m S) andX = (S1,%X, S, M ), then:
da(X, X) A (%, X) + dge (M, ). 5
+ dSN (817 Sl) + dSP (S27 SZ) + dSp (837 83)7
wheredpn, dpp, ds,, andds, are the same distances
than in Definition 13.
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7.4 Continuity of SCISMM

To prove that SCISMM is another example of topo-
logical chaos in the sense of Devangy, must be
continuous on the metric spatez, dy).

Proposition 6. G, is a continuous function on
(.Xz,dz).

Proof. We use the sequential continuity.

Let ((S]-)nvxnv(sz)nvn{]a(%)n)neﬂ\f be a se-
gquence of the phase spac#&;, which con-
verges to (S;,X,S,m S3). We will prove that
(61o((S)™, X", (S2)" M, (S3)") oy CONVerges to
G1(S1,% S, M, ). Let us recall that for alh, (S)",
()" and ()" are strategies, thus we consider a
sequence of strategieisg(, a sequence of sequences).

ASdZ(((Sl>n7Xn7(SZ)narnna(%)n)v(slvx7827mas3)>
converges to 0, each distangign (X, X), dge (M, m),
dsy ()% 1), Gsp((S)",S), and ds,((Ss)"Ss)
converges to 0. Budign (X",X) anddge (M, m) are
integers, sodng € IN,¥n > ng,dpn (X",x) = 0 and
Ing-€ IN,Vn = ng,dge (M, m) = 0.

Letng = Max(np,n1). In other words, there exists
a thresholdz € IN after which no cell will change its
state:Inz e N,n > ng = (X" =x) A(mM"=m).

In addition, dsy,((S)",S) — O,
dsp(S)".S) — 0, and ds,((S)",S) — O,
sodng,ns,ng € IN,

e VN> n4,dSN((Sl)”,Sl) < 10_1,

e Vn>ns,ds, (S)",S) < 1071,

e Vn>ng,ds, ((S)", ) < 107
(

Letn; =Max(na,ns, ng). Forn > ny, all the strate-

gies(S)", ()",
which are respectiveI@Sl)o,(

((S1)0 = (S1)o) A ((S2)6 = (S2)o) A ((S8)6 = (Sa)o)-

Letng = Max(nz, n7). After theng—th term, states
of X" andx on the one hand, and” andmon the other
hand, are identical. Additionally, strategi€% )" and
S1, ($)"andS, and(S3)" andS; start with the same
first term.

Consequently, of
G 1o ((S)™ X", ()", m", (S5)") and
G1,(S1,%,S,mSs) are equal, so, after théng)
term, the distancel, between these two points is
strictly smaller than 302, so strictly smaller than
1.

and(S$3)" have the same first term,
S)oand(Ss)o :Vn = ny,

states

We now prove that the distance be-
tween  (G¢((S)" X" ()" ", (S)"))  and
(61,(S1,%x,S2,m S3)) is convergent to 0.  Let

€>0.
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o If ¢ > 1, we have seen that distance be-

tween G, ((S)"x" ()", M, (S)")  and
G, (S1, X S,mS) is strictly less than 1 af-

ter the(ng)'" term (same state).

o If <1, thendke N,10% > £ > 101, As

dsy ((S1)",S1), dsp((£)",S2) and ds, ((Se)", Ss)
converges to 0, we have:

— dng € IN,Vn > ng, ds, ((S1)",S1) < 10~ (k+2)
— 3o € IN,Vn = Mo, s, ((S)", S) < 10~ K+2),
— dni1 € IN,Vn > Ny, dSp((S3) ;83) <10 k+2),

Let nj2 = Max(ng, n1g, N11) thus aftemo, thek+
2 first terms of(S)" and S, ()" and S, and
(S$3)" andS;, are equal.

As ‘a consequence, th& + 1 first entries of
the strategies of51,((S1)", x", (S)",m", (S)") and
G£,(S1,X, S, m, S3) are the same (due to the shift of
strategies) and following the definition @k, and
Sp-

d> (gfo((sl)nvxna (Sz)nv mnv (S3)n)' ng(Sl,X, S, m783))

is equal to :
dsy, ((S1)",S1) + s ()", S2) + s ((S8)", Sg)

which is smaller than 30~ (D < 3. =¢
Let No = maxng,ni2). We can claim that

Ve > 0,INp € IN,¥n > No,

d2 (G, ((S)™ X" ()" M, (S)"); 61, (S1L,X, S, M ) < €
G, IS consequently continuous ¢z, dy). O

8 SCISMM IS CHAOTIC

To prove that we are in the framework of Devaney’s
topological chaos, we have to check the regularity,
transitivity, and sensitivity conditions.

8.1 Regularity

Proposition 7. Periodic points ot 1, are dense imx».

Proof. Let (S,% $,M, S3) € x2 ande > 0. We are
Iooklngforapenodlc p0|n¢51 X, S, M, 53) satisfying
do((S1, % S, 1, S3); (S1.% S, M, S5)) <
As € can be strictly lesser than 1, we
chooseX = X and M= m. Let us deﬂneko( )
[logio(3)] +1 and consider the sekg ¢ & ko( ) =
)

{SGSN x Sp x Sp/((S1)k = &

must

= S9N (2=
A(S) = &), k< kole) }.
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Then, V(Svl,Sz,ng) ) € 585 Sk
d2((S1, X, S, M, S3); (Sliszmsa)) < 3% = &
It remains to choos(aSl S, Sl) € 551 $ Sko(e) such

that (Sl X, Sz m, Ss) (Sl X, Sz m Ss) is a periodic
point forgf0

Let s = {ie[O;N-1]/x #X, where
(S8 m ) = G(S.%. % M%)}
A =card(y), and jo < j1 < ... < jp_1 the ele-
ments ofy.

1. Letus firstly build three strategieS;, S;, andS;,
as follows.
(@ (S =S (8" = & and (S = & i
k< ko(g).
(b) Let us now explain how to replaog,,” Vq €
[O;A —1]:

First of all, we must replace;,’

i If Ino € [O;P—1]/Xj, = my,, then we
can choose(S))k*t = jo, (STt = o,
(Sh)tt = Ao, and sdj, will be equal to 1.

ii. If such aAg does not exist, we choose:
(Sfo*t = jo, ()2 =0, (Sl =0,
(S)o*? = jo, ()2 =0, ()2 =0,

andlj, = 2.

All of the Xj, are replaced similarly. The other
terms ofS;, S;, andS; are constructed iden-
tically, and the values dfj, are defined in the
same way.
Lety= 23 o lia-
(c) Finally, let (S)* = (§))’, (S)* = (S)’, and
(Syk = (S5)!, wherej < ko(€) +Yis satisfying
j =k [mod(ko(g) +Y)], if k> ko(€) +
so, 69 XS MS) = (S,%SmS).
Let x = {i € [0;P —1]/m # My, where
G N _ %
Gfo (S£5X7827m7$§) - (SLXa%amaSg)}a
M= card(x), andrg < r; < ... < ry_1 the ele-
ments ofx .

2. Let us now build the strategi€s, S, Ss.

(a) Firstly, let§, = ()%, §° = (S,)¥, and%" =
(S3), if k< ko(e) +.
(b) How to replacery,,Vq € [O;u— 1]:

First of all, let us explain how to replaca,’

Af Jue € [O;N-1]/%, = my,, then we
can chooseS, " = 1o, 7V = 1o,
& ko+y+1

S =To.

In that situation, we defing, = 1.

ii. Ifsuch apg does not exist, then we can choose:

= kot+y+1 & kot+y+1 & kot+y+1 —y
- - - OI
ko+y+2 =~ ko+y+2 — 1o Szko+y+2 0,
= ko+y+3 ko+y+3 =~ ko+y+3
S = 0 S 0> =0.
LetJ, = 3.

Then the othemy, are replaced as previously,

the other terms of5;, S, and S; are con-

structed in the same way, and the value§pf

are defined similarly.

Leta = Zal;éJrq-

(©) Finally, let§ = §' § = §', and & =
S’ wherej < ko(€) +y+a is satisfyingj =
k [mod (ko(€) + y+a)], if k> ko(€) + y+a.

50,60 S X DM G) = (S.% S M)
Then, (S_L S, 53) S 5315233‘(0(8 defined as pre-

vious is such that(S3,x Ss,m Sg) is a periodic
point, of periodko(g) +y+ a, which is e—close to
(S.I.a)zasbr‘h)S?))'

As a conclusion(xz, G ,) is regular. O

8.2 Transitivity

Proposition 8. (x2,G+,) is topologically transitive.

Proof. Let us definex : x», — BN, such that
X(S,x,$,mS) = x and ¥ : xp — BF,
such that # (S,X,S$,mS) = m Let
Ban = QE(XA,YA) and B = QE(XB,YB)
be two open balls  of xo, with
Xa = ((S)a,xa (S2)a,ma, (S)a) and Xg =
((Sl)B;XB;ESZ)BamBa(%)B)- We are look-

ing for X = (S,X,$,MS) in 8 such that

dng € N, gf O(X )easB

X must be inBa andra can be strictly lesser than 1, so

X=xa andM= ma. Letko = [log;o("8) +1]. Letus

notice Sx, k, = {(S1,S2,S3) € Sn % (Sp)?/Vk < ko,

(S = SV A (S = ()N (= (S)R) }-
ThenV(S_]_,SZ, %) € SXA,koa (Slvia SZ; mvs3) € Q;A'
Lets = {i € [0,N—1]/% # x (X8)i, Where

(Svla)zvsvbm;%) = g:fg(XA)} R A= Card(]),

andjo < j1 < ... < jy_1 the elements of .

1. Letus firstly build three strategieS§;, S;, andS;
as follows.

(@ (S)* = (Sk
(Ss)K, if k < ko.
(b) Let us now explain how to replace(Xg)j,,
vaqe [0;A —1]:
First of all, we must replace (Xg)j,:

(8¢ = (S5 and (S =
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i. If 3o € [0;P —1]/x (Xg)j,

= my,,, then we
can choose(S))ktt = jo, (S)ktL = Ao,

X2 is such thak € 35 andg ™" (X) € 3. Finally
we have proven the result. O

(Sh)ko+L =g, and sdj, will be equal to 1. o N -

ii. If such ahg does not exist, we choose: 8.3 Sensitivity on Initial Conditions
(SD'rt = jo, (S)e*L =0, (S " =0, . .
(S)ot2 = jo, (Sy)ket2 =0, (Sp%t2 =0 Proposition 9. (x2, Gt,) has sensitive dependence on

and so let us noticg, = 2.

All of the x (Xg) j, are replaced similarly. The
other terms ofS;, S;, andS; are constructed
identically, and the values df, are defined
on the same way.

initial conditions.

Proof. g+, is regular and transitive. Due to Theo-
rem 1,6+, is sensitive. O

8.4 Devaney’'s Chaos

A1
Lety=3q-0ljq- In conclusion, (x2,Gs,) is topologically transitive,
©) (SHk= (S, (S)k=(Sh)) and(Sy)K = (S})! regular, and has sensitive dependence on initial con-

So g MV((S], %A, S5, M, S5)) =

wherej < ko + yis satisfyingj = k [mod (ko +
V)], if k> ko+Y.

(S,%e, S5, M. )

Let x = {i € [0;P—1]/m # 2 (Xg)i, where

(SL;Xngama %)
u:

g$§+y((qﬂXA7%a Ma, S\;))} )

card(x ) andro<ri<...<ru1theelements

of .
2. Eet~us secondly build three other strategiéé;
S, S as follows.

ditions. Then we have the result.

Theorem 3. g1, is a chaotic map orfx»,dy) in the
sense of Devaney.

So we can claim that:
Theorem 4. SCISMM is chaos-secure.

9 CONCLUSIONS

In this research work, a new information hiding

@) S = (S, = (S;)%, and &= (Sy)K, if scheme has been introduced. It is chaos-secure and
k<ko+y. stego-secure, and thus is able to withstand attacks
(b) Let us now explain how to replace in Watermark-Only Attack (WOA) and Constant-
M (Xg)rq, V0 € [O;u—1]: tl;/lessagt:])e Att?jckﬂ(CIPI/lA). setupj: C;I'r;]ese relsul'gs rlrgve
; : een obtained after having studied the topological be-
First of all, we must replaca (Xg)r,: havior of this data hiding scheme. To the best of our
- 1f 3po € [OsN — 1]/ (Xg)ry = (X8)uo» then  ynowledge, this algorithm is the third scheme that has
we can choosslkoﬂ+1 Ho, §2k°+y+l =Tp, been proven to be secure, according to the informa-

& kot+y+1

S = ro, andJ;, will be equal to 1.

i. If such a Y does not exist, we choose:

tion hiding security field.
In future work, we intend to study the robust-
ness of this scheme, and to compare it with the two

& kot+y+1 ~ ko+y+1 = ko+y+1 _ -~ i

§1k0+ o 0, Szk0+ ‘2 =To, 53»'(O+ o other secure algorithms. Additionally, we will inves-
S e =0, Y 0 e 0, tigate the topological properties of our scheme, to see
glovs _go 52"0”*3 0, SO o whether it is secure in KOA and KMA setups.

and so let us noticg, = 3.

All the ar (XB)rq are replaced similarly. The
other terms of5;, S, andS; are constructed
identically, and the values ok, are defined
on the same way.
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