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Abstract: This paper deals with the application of an Iterative Learning Control (ILC) structure to the position control 
of a 3D crane system in the crane position control problem. The control system structure involves Cascade 
Learning (CL) built around control a loop with a frequency domain designed lead-lag controller. The 
parameters of the continuous-time real PD learning rule as lead-lag controller are set such that to fulfil the 
convergence condition of the CL process. A set of real-time experimental results concerning a 3D crane 
system laboratory equipment is offered to validate the new CL-based ILC structure. 

1 INTRODUCTION 

The gantry crane systems are important in many 
industrial applications including the 3D crane 
systems as representative Multi Input-Multi Output 
(MIMO) systems. Some current control approaches 
related to 3D crane systems reported in the literature 
deal with the combination of time-optimal control 
and of visual feedback (Yoshida and Tabata, 2008), 
PID controllers with friction compensation 
(Westerberg et al., 2008), inertia theorem-based 
nonlinear controllers (Chang and Chiang, 2008), 
nonlinear tracking control structures (Chwa, 2009), 
feed-forward and input-shaping techniques 
(Kaneshige et al., 2009), sliding mode control 
(Pisano et al., 2010) or gain scheduling techniques 
(Cuenca et al., 2011). 

Iterative Learning Control (ILC) is based on the 
fact that the performance indices (overshoot, settling 
time, etc.) of control systems executing repetitively 
the same tasks can be improved using previous 
experiments, referred to also as cycles or iterations, 
in the control system operation. Several learning 

rules are implemented in ILC structures that are built 
around the control system whose performance is 
improved (Bristow et al., 2006; Ahn et al., 2007; Xu 
et al., 2009). 

This paper gives a new solution to the crane 
position control problem dedicated to a 3D crane 
system laboratory equipment that models industrial 
gantry crane systems (Inteco, 2008). Our control 
system structure involves Cascade Learning (CL) 
(Xu et al., 2009) built around a control loop with a 
frequency domain designed lead-lag controller. The 
parameters of the continuous-time real PD learning 
rule as lead-lag controller are set such that to fulfil 
the convergence condition of the learning process in 
the CL-based control system structure. The 
convergence condition guaranteed by our ILC 
structure is an inequality that employs a frequency 
domain calculated H∞ norm. 

This paper suggests two contributions with this 
regard. First, a new control system structure based 
on the combination of lead-lag control and ILC is 
suggested. Second, real-time experimental results 
are included to validate our new control system 
structure. 
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The two contributions of this paper are important 
and also advantageous with respect to the current 
literature in the field because they ensure the simple 
design of both the lead-lag controller and the 
learning rule. Frequency domain approaches are 
used in this context. 

This paper is structured as follows. The process 
models are presented in the next section. Section 3 
focuses on the design of the new control system 
structure. A set of real-time experimental results is 
given in Section 4 to validate the new CL-based ILC 
structure. The conclusions are given in Section 5. 

2 PROCESS MODELS 

It is accepted that the state variables of the MIMO 
state-space model of the process are (Chen et al., 
2008; Inteco, 2008) 1x  – the distance of the cart 
from the centre of the rail, 10x  – the initial condition 
for 1x , 2x  – the speed of the cart on the direction of 

1x , 3x  – the distance of the rail with the cart from 
the centre of the construction frame, 4x  – the speed 
of the rail with the cart on the direction of 3x , 5x  – 
the acute angle between the lift-line of the payload 
and the rail, 6x  – the angular speed that corresponds 
to 5x , 7x  – the acute angle between the lift-line of 
the payload and the vertical line, 8x  – the angular 
speed that corresponds to 7x , 9x  – the length of the 
lift-line, and 10x  – the speed of the lift-line. 

The control signals in the process model are 1u , 

2u  and 3u  that correspond to the PWM duty cycles 
applied to the DC motors that actuate the system on 
the axes 1x , 3x  and 9x , respectively. The three axes 

1x , 3x  and 9x  are referred to as follows the x-axis, 
the y-axis, and the z-axis, respectively. 

The nonlinear state-space equations of the 
process in the 3D crane system are expressed in (1) 
if no disturbance are considered and zero initial 
conditions are considered for all state variables 
excepting 1x  by the transformation of the equations 
given in (Chen et al., 2008; Inteco, 2008). 

Therefore the MIMO state-space model of the 
process and the parameter values, obtained from the 
first-principle model of the process, are given as 
follows in (1) and (2), respectively: 
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The controlled output, y, can be one or more of 

the state variables 1x , 3x , 5x , 7x  and 9x , and the 
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choice of the state variables depends on the control 
problem that is solved. The state variables 1x , 3x  are 
involved as controlled outputs in the crane position 
control problem, and the state variables 5x , 7x  and 

9x  are involved as outputs in the anti-swing control 
problem. With this regard the process with the state-
space equations given in (1) is a nonlinear MIMO 
system. 

Several approaches can be used to simplify the 
nonlinear process model presented in (1) and (2). 
The strongest simplification is based on accepting 
that only the forces on the three axes 1x , 3x  and 9x  
affect the movement of the system. The zero initial 
conditions result in the definition of the three 
transfer functions )(sH x , )(sH y  and )(sH z : 
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where xk , yk  and zk  are the process gains, and xT , 

yT  and zT  are the process time constants. The least-
squares identification based on real-world input-
output data measured from the laboratory equipment 
leads to the following parameter values (Enache, 
2010): 
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The three transfer functions defined in (3) (with 
the parameters in (4)) can be viewed as three Single 
Input-Single Output (SISO) processes. Three SISO 
control loops can be designed, but the control 
systems design should account for the model 
simplification and for the interactions between the 
three control loops. The effects of these interactions 
cannot be neglected when control structures for 9x  
are designed. 

The ILC-based control system structure designed 
in the next section is dedicated to the x-axis and to 
the y-axis, i.e., it controls 1x  and 3x , respectively, 
using the process transfer functions )(sH x  and 

)(sH y . However, the experimental results to be 
presented in Section 4 were conducted for the real-
world process. 

3 CONTROL SYSTEM 
STRUCTURE 

The ILC-based control system structure with CL is 
are presented in Figure 1, where r is the reference 
input, y is the controlled output, yre −=  is the 
control error, u is the control signal, M is the 
memory block, the subscript j indicates the cycle 
(experiment) index, C and C1 are the transfer 
functions of the controllers with the argument 
omitted for simplicity, and P is the process transfer 
function. The current control loop is characterized 
by the controller with the transfer function C, the 
reference input jr  and the index 1+j . The 
controller with the transfer function C1 is referred to 
also as the learning rule. The disturbance inputs are 
not included in Figure 1 as in many situations they 
are not repetitive. That is the reason why they were 
not applied in the real-time experiments. 

If the error at the first cycle 0e  is finite and 
nonzero, }0{\0 Re ∈ , the convergence condition for 
the learning process in the ILC-based control system 
structure is 

10  ,  1 <γ<∈∀γ≤
∞

+ Ni
e

e

i

i , (5) 

where the parameter γ  determines the convergence 
speed, and the following general notation and 
frequency domain calculation are used for the H∞ 
norm 

|)(|sup ω=
Ω∈ω

∞
jGG , (6) 

with 12 −=j , and baba ω<ω≤ωω=Ω 0  ],,[  – the 
frequency range of interest that contains the 
frequencies ω  of the controllers. The convergence 
of the learning process is guaranteed because (5) 
results in 

∞→→γ≤
∞∞

iee i
i   as  00 . (7) 

Using the control system structure in Figure 1, 
the convergence condition can be transformed into 

1
 1

  
1 1 <γ≤

+
−

∞CP
CCP . (8) 

The design approach consists of the following 
design steps based on frequency domain designs: 
Step 1. Carry out a frequency domain design to tune 
the parameters of the controller with the transfer 
function  C  that  belongs  to  the  control  loop in the  
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Figure 1: ILC-based control system structure with CL. 

current cycle. The value of the phase margin is 
imposed to ensure not only stable control system in 
the current cycle that guarantees a finite 0e  but also 
acceptable performance indices of this control 
system which is subject to performance 
improvement by ILC. 

Step 2. Set the value of the parameter γ  and 
carry out a frequency domain design that employs 
(6) to tune the parameters of the controller with the 
transfer function C1 that belongs to the control loop 
in the previous cycle. The parameters of C1 are 
tuned such that to fulfil the condition (8). 

4 REAL-TIME EXPERIMENTAL 
RESULTS 

Our design approach is tested through experiments 
on a 3D crane system laboratory equipment (Inteco, 
2008) to validate it for the two ILC-based control 
system structures presented in the previous section. 
Our experimental setup consists of a rail moving 
along the frame, a cart moving on the rail, and a 
payload being shifted up and down. 

The ILC-based control system structure controls 
separately the x-axis and the y-axis, i.e., it controls 

1x  and 3x , respectively, using the process transfer 
functions )()( sHsP x=  and )()( sHsP y= , 
respectively, defined in (3). The two steps of the 
design approach use the lead-lag controllers and the 
real PD learning rules with the transfer functions 

)(sC  and )(1 sC , respectively: 
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where ck  and 1k  are gains, and aT , bT , cT  and dT  
are time constants. 

The two steps of the design approach were 
applied such that to obtain the same parameter 
values for both processes, i.e., both axis, x and y. 

This simplification is possible because of the 
inequality-type convergence condition (8). The 
frequency domain approaches applied in the two 
steps of the design approach resulted in the 
parameter values 
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A part of the real-time experimental results is 
presented as follows for reference inputs jr  that 
characterize an arc of a circle in the ( 1x , 3x ) plane, 
referred to also as the xy plane. The results are 
expressed as the responses of 1x  and 3x  as 
controlled outputs (i.e., they play the role of 1+jy  
according to Figure 1) after one iteration and after 
several iterations. The system responses of the ILC-
based control system structure with CL are presented 
in Figure 2. The results prove the strong control 
system performance improvement with respect to 
the first cycle (experiment). A good tracking 
performance is ensured. 

5 CONCLUSIONS 

This paper has suggested an ILC-based control 
system structure that involves CL. The combination 
with PD controllers and learning rules and 
application to the position control of a 3D crane 
system laboratory equipment is convenient because 
this equipment allows the application of repeatable 
reference inputs and initial conditions over the 
cycles (iterations) of the ILC learning processes. 

Our design approach is important as it ensures 
the serious improvement of the control system 
performance indices (overshoot, settling time, etc.) 
in the system responses with respect to the reference 
input. However the disturbance rejection is not 
carried out since we used PD controllers. 

Our continuous-time design approach is justified 
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Figure 2: Experimental results: the system responses after 1 and after 70 iterations for the ILC-based control system 
structure with CL. 

because of its simplicity in the design. Therefore it is 
applicable to other nonlinear processes in various 
fields (Cottenceau et al., 2001; Horváth and Rudas, 
2004; Škrjanc et al., 2005; Johanyák et al., 2006; 
Bellomo et al., 2008; Bernard and Tichkiewitch, 
2008; Derr and Manic, 2008; Vaščák, 2009). The 
only constraint concerns the repeatability of the 
inputs and of the initial conditions related to the 
control systems. 

Future research will be focused on the 
application of our ILC-based control structures to 
the z-axis crane position control problem and to the 

anti-swing control problem. The extensions to 
discrete-time control system structures are aimed. 
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