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Abstract: This paper treats aspects concerning the design of two-degree-of-freedom (2-DOF) PI-fuzzy controllers 
dedicated to the position control of magnetic levitation system. 2-DOF Mamdani and Takagi-Sugeno PI-
fuzzy controller structures based on the fuzzification of some linear blocks in the 2-DOF linear controller 
structures are discussed. A design approach of three new cascade control system structures is offered. The 
design approach carries out first the pole placement design of the inner state feedback control system. The 
2-DOF PI-fuzzy controllers in the outer loops are next designed to merge separately designed linear PI 
controllers accounting for the linearization of the process model at certain operating points. Samples of real-
time experimental results related to a laboratory equipment are given to validate the new fuzzy control 
system structures and the design approach. 

1 INTRODUCTION 

The two-degree-of-freedom (2-DOF) controllers are 
successful with respect to the one-degree-of-freedom 
ones as they ensure very good control system 
performance indices (overshoot, settling time, etc.) 
defined in the performance specifications related to 
reference input tracking and disturbance input 
regulation (Åström, 1995; Araki, 2003; Bascetta, 
2008; Precup et al., 2009). But the main drawback of 
the control systems (CS) with 2-DOF controllers is 
that the overshoot reduction is paid by slower 
responses for reference input variations. 

The systematic design and stability of fuzzy CS 
have received much attention recently and many 
significant results have been reported recently 

(Gusikhin et al., 2007; Lam, 2009; Chohra et al., 
2010; Linda and Manic, 2011; Liu et al., 2011). The 
fuzzy logic is inserted in 2-DOF CS structures to 
ensure the further performance improvement. A 2-
DOF controller which involves a one-step-ahead 
fuzzy prefilter in the feed-forward loop and a PI-
fuzzy controller in the feedback loop meant for the 
foot trajectory tracking control of a hydraulically 
actuated hexapod robot is discussed in (Barai and 
Nonami, 2007). A 2-DOF CS that consists of a 
conventional foreword internal model controller and 
a feedback fuzzy controller for an electro-hydraulic 
servo system is suggested in (Li and Xiong, 2008). 
A simulated 2-DOF Mamdani fuzzy controller for 
automotive semi-active suspension control is 
presented in (Bei, 2009). Different structures of 2-
DOF Mamdani and Takagi-Sugeno (TS) PI(D)-
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fuzzy controllers applied to speed and position 
control of servo systems are given in (Preitl et al., 
2010). Several nonlinear control approaches 
including fuzzy control have been proposed recently 
to deal with magnetic levitation systems. They 
include the Lyapunov-based guaranteed stability 
(Shameli et al., 2007), adaptive robust nonlinear 
control (Wu and Hu, 2009) and fuzzy control 
(Dragoş et al., 2010). 

This paper suggests twofold contributions. First, 
2-DOF PI-fuzzy controllers applicable as both 
Mamdani and TS PI-fuzzy controller structures are 
offered. Second, three cascade CS structures for a 
magnetic levitation system laboratory equipment 
(MLSLE) are proposed. The new CS structures 
employ an inner state feedback CS and 2-DOF PI-
fuzzy controllers in the outer loops. The design 
approach for these structures starts with the pole 
placement design of the inner state feedback CS. 
The 2-DOF PI-fuzzy controllers in the outer loops 
are next designed to merge separately designed 
linear PI controllers accounting for the linearization 
of the process model at certain operating points. 

Our new contributions are important and 
advantageous with respect to other recent solutions 
analyzed in the literature because they ensure very 
good CS performance with respect to reference and 
disturbance inputs. In addition, our fuzzy control 
solutions belong to the class of low cost solutions as 
the design approaches are relatively simple and the 
structures are easily to implement. 

This paper is organized as follows. The 2-DOF 
PI-fuzzy controller structures are presented in 
Section 2. The process models related to the MLSLE 
are discussed in Section 3. The design of the new 
CSs and samples of real-time experimental results 
are given in Section 4. The concluding remarks are 
highlighted in Section 5. 

2 2-DOF PI-Fuzzy CONTROLLER 
STRUCTURES 

Three frequently used 2-DOF linear CS structures 
focused on the linear PI(D) controller with the 
transfer function (t.f.) C(s) are presented in Figure 1 
as the set-point filter structure (a), the feedforward 
structure (b) and the feedback structure (c) (Araki 
and Taguchi, 2003; Precup et al., 2009). The main 
variables in Figure 1 are r – the reference input, r1 – 
the filtered set-point, y – the controlled output, e=r–y 
or e=r1–y – the control error, u – the control signal, 
and d1, d2 and d3 – the three types of disturbance 
inputs. 

 
Figure 1: 2-DOF linear CS structures. 

In Figure 1, P(s) indicates the t.f. of the plant 
which is linear in this case but generally nonlinear in 
2-DOF PI(D)-fuzzy CS structures. The t.f C(s) of PI 
controller is 

ssTksC cc /)1()( += , (1) 

where kc is the controller gain and Tc is the integral 
time constant. 

The expressions of the t.f. of the reference input 
filter, referred to also as set-point filter, in Figure 1 
(a) and of the t.f. of the rest of two blocks in Figure 
1 (b) and (c) are 
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where FT  is the filter time constant. 
The 2-DOF CS structures presented in Figure 1 

(a), (b) and (c) are equivalent as they are 
characterized by the same controller t.f. in the linear 
case: 
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They will be fuzzified as follows aiming the CS 
performance enhancement. 

An alternative to the operational representation 
of the t.f.s of the three 2-DOF controllers is based on 
in the definition of the generic PI block with the t.f. 

0 ,/) 1()( ≥ττ+=τ ssksG c . (4) 

The t.f. defined in (4) is used in different 
particular forms to express the components with 
dynamics in Figure 1 to be fuzzified. The 
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fuzzification of the block with the t.f. C(s) in the set-
point filter structure and in the feedforward structure 
is based on the following relationship that results 
from (1) and (4): 

)()( sGsC cT= . (5) 

The fuzzification of the block with the t.f. C*(s) 
is supported by (2) and (5) that lead to 

)()(* sGsC FT= . (6) 

The fuzzification of the generic PI block with the 
t.f. defined in (4) starts with its discretization. The 
fuzzification results in the fuzzy block FB-τ 
presented in Figure 2 (a), where FB is the Mamdani 
or the TS fuzzy block without dynamics (Preitl et al., 
2010). The block FB is based on the input 
membership functions with the shapes and 
parameters defined in Figure 2 (b). These input 
membership functions are used in the Mamdani 
fuzzy block and in the TS fuzzy block as well; the 
output membership functions are defined only for 
the Mamdani fuzzy block. The low cost aim was 
accounted for to set three input membership 
functions for each FB input. 

 
Figure 2: Structure (a) and membership functions (b) of 
block FB-τ. 

The tuning parameters of the block FB-τ (shown 
in Figure 2 (b)) are eB , eBΔ  and uBΔ  for the 
Mamdani fuzzy block FB-τ, and eB  and eBΔ  for the 
TS fuzzy block FB-τ. The discretization involves 
setting the sampling period Ts in accordance with the 
requirements of quasi-continuous digital control. 
Tustin’s method is next applied to discretize the 
continuous-time linear PI block with the t.f. )(sG τ  
resulting in the recurrent equation of the incremental 
digital generic PI block and on its parameters given 
in (7) and (8), respectively: 

)]( )([)( kekeKku P μ+Δ=Δ , (7) 
)2/(2 ),2/( ssscP TTTkK −τ=μ−τ= . (8) 

Mamdani’s MAX-MIN composition is used in 
the inference engine of the Mamdani fuzzy block 
FB-τ, and the centre of gravity method is used in the 
defuzzification module of FB-τ. The SUM and 
PROD operators are used in the inference engine of 
the TS fuzzy block FB-τ, and the weighted average 
method is used in the defuzzification module of FB-
τ. The rule base of the TS fuzzy block FB-τ is (Preitl 
et al., 2010): 
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The superscripts presented in (9) indicate the 
index of the certain rule. For complete rule bases as 
those presented in (9) the superscripts highlight the 
possibility to carry out the separate design of a 
maximum of nine linear PI controllers. The blocks 
FB-τ will behave like bumpless interpolators 
between these separately designed PI controllers as 
shown in the next section. 

The unified structures of 2-DOF PI-fuzzy 
controllers are presented in Figure 3. 

 
Figure 3: 2-DOF PI-fuzzy controller structures. 

They are referred to as set-point filter 2-DOF PI-
fuzzy controller (a), the feedforward 2-DOF PI-
fuzzy controller (b) and the feedback 2-DOF PI-
fuzzy controller (c). The linear blocks can be 
discretized to ensure the discrete-time treatment of 
all signals in the 2-DOF PI-fuzzy controller 
structures to increase the application areas. 

3 MODELS OF MAGNETIC 
LEVITATION SYSTEM 

The  nonlinear  state-space  model  of the MLSLE is 
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where x1 is the sphere position 0≤ x1≤0.016 m, x2 is 
the sphere speed, x3 and x4, are the currents in the 
upper and lower electromagnetic coil, respectively 
0.038 A≤x3,x4≤2.38 A, u1 and u2 are the voltages 
applied to the upper and lower electromagnet, 
respectively 0.0049≤u1,u2≤1, g is the gravity 
acceleration, m is the sphere mass, y is the controlled 
output, xd is the distance between electromagnets 
minus the sphere diameter, and the parameters ki and 
ci set the actuator dynamics. The control signal is 
applied to the upper electromagnet (EM1), u=u1, and 
the disturbance input is applied to the lower 
electromagnet (EM2) d=u2. The numerical values of 
the parameters are given in (Inteco, 2008). 

We are carrying out the linearization of the 
nonlinear model (10) at several operating points 
Aj(x10, x2o, x3, x40) (with j – the index of the operating 
point) to meet the control objectives and also to offer 
low cost solutions. Accepting u2=0 (the state 
variable x4 is neglected but its effect is not) the 
following general linearized state-space 
mathematical model is employed in the design: 

,
,  

xc
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Δ=Δ

Δ+Δ=Δ
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u  (11) 

where ∆u=u–u0 and ∆y=y–y0 are the differences of 
the variables u and y with respect to their values at 
the operating point, u0 and y0, respectively, ∆x=[∆x1 
∆x2 ∆x3 ∆x4]T is the state vector, and the superscript 
T indicates the matrix transposition. For three 
operating points A1(0.007,0,0.3,0), A2(0.008,0,0.285, 
0), A3(0.009,0,0.6,0) the expressions of the matrices 
in (11) are 

].001[)(

 , 
786.8

0
0

,
3186020224

9339308.132
010

],001[)( 

, 
468.8

0
0

,
3186018125

6031708.186
010

],001[)(

 , 
376.6

0
0

,
6149015056

5028908244
010

3

33

2

22

1

11

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

T

T

T

.
.

.
.

.
..

c

bA

c

bA

c

bA

 

(12) 

4 CONTROLLER DESIGN AND 
EXPERIMENTAL RESULTS 

The cascade CS structures are represented by the 
unified structure presented in Figure 4, where rx is 
the reference input for the inner state feedback 
control loop, Tk  is the state feedback gain matrix, 
and the MLSLE process includes the actuators and 
sensors dynamics. 

The unified design approach dedicated to 2-DOF 
PI-fuzzy controllers consists of six design steps. 

 Step I. Apply the pole placement method to the 
linearized state-space models (11) and obtain the 
state feedback gain matrix 

]0075.0536[kT =  

 
Figure 4: Unified cascade CS structure. 

 Step II. Express the t.f.s of the inner state 
feedback control loops resulted from (12): 
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 Step III. Apply a linear design method to tune 
the parameters of the 2-DOF linear PI 
controllers for the processes with the t.f.s (13). 

 Step IV. Set the sampling period Ts, according 
to the requirements of quasi-continuous digital 
control, (Ts=0.01s in our case), take into account 
the zero-order hold, and discretize the 
continuous-time 2-DOF PI linear controllers 
resulting in the parameters 

BMSB
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M
P

S
P KKK μ<μ<μ<<  , . (14) 

 Step V. Set the parameter Be=0.05 and apply 
the tuning conditions 

e
BS
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B
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 Step VI. Formulate the rule base (13) of the TS 
fuzzy block FB-τ: 
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Figure 5: Experimental results for the TS fuzzy CS with the set-point filter (a), with the feedforward (b) and with the 
feedback (c) 2-DOF PI-fuzzy controller: position (y), control signal 1uu =  and disturbance input 2ud =  versus time. 

The tuning conditions (15) are obtained from the 
modal equivalence principle in order to guarantee 
the quasi-PI behaviour of the Mamdani fuzzy block 
FB-τ and of the TS fuzzy block FB-τ. Both tuning 
conditions are applied in the tuning of Mamdani 
fuzzy block FB-τ, and the first one is applied in the 
tuning of TS fuzzy block FB-τ. The setting of the 
parameter Be is important. The experience of CS 
designer can be taken into consideration but other 
mathematical or engineering analyses can be taken 
into consideration including the stability analysis 
(Škrjanc et al., 2005). The linear blocks in Figure 3 
are implemented for one of the linear controllers that 
correspond to (14), and the results are presented as 
follows for S

PK  and Sμ . 
Some real-time experimental results for the TS 

fuzzy CSs with the set-point filter 2-DOF PI-fuzzy 
controller, with the feedforward 2-DOF PI-fuzzy 
controller, and the feedback 2-DOF PI-fuzzy 
controller, are presented in Figures 5. The 
experimental scenario is characterized by the 
application of a step reference input m 01.0=r  and 
of a pulse width modulated disturbance input. 

The results presented in Figure 5 show very good 
CS performance indices, therefore our new fuzzy 
controllers are validated. The best performance 
indices (in terms of overshoot and settling time) are 
exhibited by the fuzzy CS with the set-point filter 2-
DOF PI-fuzzy controller. 

5 CONCLUSIONS 

This paper has suggested a new generation of 2-
DOF PI-fuzzy controller structures that consists of 
three fuzzy CS structures. A unified approach to the 
design of these fuzzy controller structures that 
enables the design of both Mamdani and TS fuzzy 
controllers has bee offered with focus on the 
position control of an MLSLE. 

Our approach is justified because of the process 
nonlinearities. Therefore very good CS performance 
is ensured by means of low cost fuzzy controllers. 

Future research will be focused on the 
convenient proof of the stability of the 2-DOF fuzzy 
control structures. Extensions to other models and 
processes are targeted. 
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