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Abstract: This paper focus on radial- basis function (RBF) neural networks, the most popular and widely-used 
paradigms in many applications, including renewable energy forecasting. It provides an analysis of short 
term load forecasting STLF performances of RBF neural networks. Precisely, the goal is to forecast the 
DPcg (difference between the electricity produced from renewable energy sources and consumed), for 
short- term horizon. The forecasting accuracy and precision, in capturing nonlinear interdependencies 
between the load and solar radiation of these neural networks are illustrated and discussed using a data 
based obtain from an experimental photovoltaic amphitheatre of minimum dimension 0.4kV/10kW. 

1 INTRODUCTION 

Research efforts on artificial neural networks 
(ANNs) for forecasting are considerable. The 
literature is vast and growing. In the forecasting 
works, the term “forecasting” is called also 
prediction or prognosis. This reveals that there is no 
consensual acceptation of term. Due to these facts, 
in this article the forecasting will be associated with 
the notion of prediction and will determine the 
future state of the analyzed system the closest 
possible to the future real state of the system (O. 
Dragomir. 2010). 

Different forecasting time horizons are employed 
in prediction approaches (day-ahead, hour-ahead) in 
relation with the application. Short term load 
forecasting (STLF) samples the information on an 
hourly (or half hourly) basis, or even a daily basis 
(for load peak prediction) so is defined as varying 
from a few minutes up to a few weeks ahead. This 

type of forecasting is important because the national 
grid requires DPcg (difference between the 
electricity produced and consumed) values at any 
moment in the day. Traditionally, hourly forecasts 
with a lead time between one hour and seven days 
are required for the scheduling and control of power 
systems. From the perspective of the system 
operators and regulatory agencies, STLF is a source 
of primary information for safe and reliable 
operation of the system. For producers also, this type 
of forecasting is a basic tool for determining the 
optimal utilization of generators and power stations, 
as some facilities are more efficient than others. 

In this context, this paper provides architecture 
of RBF, capable to forecast the DPcg for short- term 
horizon. The proposed structures are applied on a 
data based obtain from an experimental photovoltaic 
amphitheatre of minimum dimension (0.4kV/10kW), 
located in the east-centre region of Romania, more 
precisely in the city of Targoviste (ICOP- DEMO. 
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1998). The paper is organized as follows: first, it 
provides an overview of RBF neural networks, 
which are the most popular and widely-used 
paradigms in many applications, including energy 
forecasting. Second, a particular RBF architecture is 
proposed to forecast the DPcg. The forecasting 
accuracy and precision in capturing nonlinear 
interdependencies between the load and solar 
radiation of these one are illustrated and discussed.  

2 RBF NEURAL NETWORKS  

Actually, the systems are very complexes and the 
conditioning parameters that influence system 
functioning are significant. In these cases it is very 
difficult to determine any sort of model for 
forecasting purposes. The advantages and the 
drawbacks of ANNs, leaded us to RBF neural 
networks as reference tools for our approach of short 
term energy balance forecasting. 

The RBF network is commonly used for the 
purpose of modeling uncertain and nonlinear 
functions. Utilizing RBF networks or modeling 
purposes could be seen as an approximation problem 
in a high-dimensional space (Zemouri. 2002). A key 
feature of RBF is that the output layer is nerely a 
linear combination of the hidden layer signals, there 
being only one hidden layer.Therefore, RBF 
networks allow for a much simpler weight updating 
procedure and subsequently open up greater 
possibilities for stability proofs and network 
robustness in that the network can be described 
readily by a set of nonlinear equations  

In RBF networks, determination of the number of 
neurons in the hidden layer is very important 
because it affects the network complexity and the 
generalizing capability of the network. If the number 
of the neurons in the hidden layer is insufficient, the 
RBF network cannot learn the data adequately; on 
the other hand, if the neuron number is too high, 
poor generalization or an over learning situation may 
occur (Liu, 2004). The position of the centers in the 
hidden layer also affects the network performance 
considerably (Simon. 2002), so determination of the 
optimal locations of centers is an important task. In 
the hidden layer, each neuron has an activation 
function. The gaussian function, which has a spread 
parameter that controls the behavior of the function, 
is the most preferred activation function. The 
training procedure of RBF networks also includes 
the optimization of spread parameters of each 
neuron. (Martinez. 2008) studied the best 
approximation of Gaussian RBF neural networks 

with nodes uniformly spaced. Afterwards, the 
weights between the hidden layer and the output 
layer must be selected appropriately. Finally, the 
bias values which are added with each output are 
determined in the RBF network training procedure. 
In the literature, various algorithms are proposed for 
training RBF networks, such as the gradient descent 
(GD) algorithm (Karayiannis, 1999) and Kalman 
filtering (KF) (Simon. 2002). (Ferrari. 2009) studied 
the multiscale approximation problem with 
hierarchical RBF neural networks. But these above 
RBF methods have the same defects of the 
backpropagation algorithm. They are either 
instability or complicate and slow. They have 
proved that the connection weight of RBF neural 
networks can be obtained through various learning 
algorithms; therefore the weight has certain 
instability. 

3 PERFORMING STLF WITH 
RBF 

The forecasting performances of RBF neural 
networks in load forecasting, are illustrated using a 
dataset with 240 data points {y(t), u(t)}, representing 
the radiation [W/m2] (mean value=0.9255 and 
standard deviation= 97.6705) and the DPcg [kW] 
(mean value=0.8156 and standard deviation= 
130.9313) , obtained from a Solar Amphitheatre 
(ICOP-DEMO. 1998) and (F. Dragomir et al. 2010). 
The data used are normalized before starting the 
training session and de-normalized at the end of the 
training.  

RBF neural network, used for performing STLF, 
has an input layer, one hidden layer and an output 
layer. The neurons in the hidden layer contain 
Gaussian transfer functions, whose outputs are 
inversely proportional to the distance from the center 
of the neuron (see Table 1). 

Table 1: RBF parameters. 

Architecture RBF 

Number inputs 1 

Number layers 1 hidden layer  with 5 radbas neurons 
1 output layer with  with  purelin neurons 

Transfer functions gaussian - hidden layer  
purelin- output layer  

Performance 
functions 

MSE (Mean Squared Error) 
MAE (Mean Absolute Error) 

Initial MSE goal  0.0098 

Initial spread  0.02719 

For the dataset, simulations are repeated 8 times. 
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Dataset is divided into train and test subsets. 60% of 
the data set is selected as the training data and 
remained data set is selected as the testing data. For 
each run, the number of neurons, deviations of the 
radial units, MAE (Mean Absolute Error) and MSE 
(Mean Square Error) are computed in order to reach 
the MSE goal 0.0115. The measurements based on 
MSE are suggestive, because it penalizes the huge 
forecasting errors. The MAE is considered that 
would be an adequate error measure if the loss 
function were linear (and linear in percentage, not in 
absolute error); however, recent studies and the 
experience of system operators indicates that the loss 
function in the load forecasting problem is clearly 
nonlinear, and that large errors may have disastrous 
consequences for a utility. 

The goal of the tests is, given training and test 
data, to choose the input parameters MSE goal, 
spread and Hmax (hidden layer neurons number) to 
minimize MSE value.  

The input parameters have been initialized with: 
MSE goal= 0.0098, the minimum distance between 
clusters of different classes MNDST =0.8156, 
spread0 = 0.2719 and Hmax0 = 60.  

In training phase the following steps are repeated 
until the network's mean squared error falls below 
goal or the maximum number of neurons are 
reached: 1) the network is simulated, 2) the input 
vector with the greatest error is found 3) a radbas 
neuron is added with weights equal to that vector 
and 4) the purelin layer weights are redesigned to 
minimize error.  

Table 2: Train and test results of RBF simulations. 

Train  Test  

Spread 
H MSE 

(*10-3) 
MAE 

(*10-1) 
MSE 

(*10-1) 

0.027 25 7.4966 4.9542 6.4668  

0.127 15 7.8996 1.9653  1.4197  
0.227 11 9.6653 0.6805 0.1354  

0.327 8 6.4121 0.5751 0.0766 

0.427 7 9.3638 0.5456  0.0786 
0.527 7 8.6819 0.8884  0.1448  

0.627  6 8.8989 0.5706  0.0730  

0.727 7 6.1955 0.9046  0.1332  

The general characteristics of the RBF training 
are illustrated in Table 2. 

Firstly, it was investigated how the spread of the 
hidden layer base function affects the network’s 
performance (see Figure 1). The initial downward 
trend of MSE due to spread growth isn’t the same all 
over training set. This indicates the need for 
consideration of a second parameter in the 
evaluation of RBF training performance. This is the 

number of neurons in the hidden layer. 

 

Figure 1: MSE in relation with spread for training phase. 

The number of neurons in the hidden layer is 
very important in design issue of an RBF network. 
Therefore, the experiments have been conducted on 
different RBF networks which has 6 neurons to 25 
neurons located in the hidden layer. Using more 
neurons than that is needed causes an over learned 
network and moreover, increases the complexity of 
the RBF network (see Table 2). 

The predictions made by RBF neural network 
over the test dataset in relation with the measured 
outputs (targets) are illustrated in Figure 3. The 
small number of test data has a bad influence over 
the forecasting accuracy (see Figure 2). The output 
of the RBF network is a measure of distance from a 
decision hyper plane, rather than a probabilistic 
confidence level The quality of the possible 
solutions are calculated using MSE and MAE. 

 

Figure 2: RBF outputs vs. targets in testing phase. 

Figure 3 indicates the RBF testing errors with the 
help of MAE and MSE. The Figure 3 shows that, the 
growth of spread values until 0.3 has a big influence 
over MAE and MSE values. These ones decreas a 
lot, from 4.9542 to 0.5751 MAE and from 6.4668 to 
0.0766 MSE. The trend change when the spread 
reach 0.327 value. The error values increase and 
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indicate that the optimal values for spread and 
number of neurons in hidden layer has to be locate. 

 

Figure 3: MAE and MSE values of RBF in testing phase. 

At the beginning, Hmax was equal with the 
number of training points. The training tests with 
variable number of neurons in hidden layer have 
showed that 8 is the optimum number for the 
neurons in hidden layer, much less than the number 
of training points. At the end of RBF training, the 
optimum spread value found is 0.327. 

4 CONCLUSIONS AND WORK IN 
PROGRESS 

This paper focus on a particular neural network, the 
radial basis function neural network. Considering a 
data based obtain from an experimental photovoltaic 
amphitheatre and MSE and MAE metrics for 
forecasting performance evaluation , the simulations 
and tests made in this article, put in evidence the 
accuracy and precision of the particular proposed 
RBF structure in capturing nonlinear 
interdependencies between inputs and outputs. Due 
to its good capabilities to forecast the DPcg in 
relation with solar radiation, this architecture in well 
suited in STLF energy applications. 

The work is still in progress and the developments 
are at present extended to: training the radial layer 
(the hidden layer) of RBF using the Kohonen and 
LVQ training algorithms, which are alternative 
methods of assigning centres to reflect the spread of 
data, training the output layer (whether linear or 
otherwise) using any of the iterative dot product 
algorithms and improving the interpretability of the 
obtained predictive system. 
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