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Abstract: The aim of the paper is to present a novel conception of the optimization method for discrete manufacturing 
processes control. This method uses gathering information during the search process and a sophisticated 
structure of local optimization task. It is a learning method of a special type. A general formal model of a 
vast class of discrete manufacturing processes (DMP) is given. The model is a basis for learning algorithms. 
To illustrate the presented ideas, the scheduling algorithm for a special NP-hard problem is given. 

1 INTRODUCTION 

The control of Discrete Manufacturing Process 
(DMP) lies in determining the manner of performing 
a certain set of jobs under restrictions referring to 
machines/devices, resources, energy, time, 
transportation possibilities, order of operation 
performing and others. Most of control algorithms 
are approximate (heuristic) due to NP-hardness of 
the optimization problems. Within the frame of 
artificial intelligence, one attempts at both formal 
elucidation of heuristic algorithm ideas and giving 
some rules for creating them (metaheuristics) 
(Dudek-Dyduch and Fuchs-Seliger, 1993), 
(Dudek-Dyduch and Dyduch, 1988), (Pearl, 1988), 
and (Rajedran, 1994). The paper ties in with this 
direction of research. It deals with formal modeling 
of discrete manufacturing/production processes and 
its applications for control/planning algorithms. It 
presents the development of ideas given in 
(Dudek-Dyduch, 2000). Its aim is twofold: 

 To present a novel heuristic method that uses 
a sophisticated local optimization and 
gathering information during consecutive 
search iterations (learning method); 

 To present an intelligent search algorithm 
based on the method for a certain NP-hard 
scheduling problem, namely a scheduling 
problem with state depended retooling. 

The paper uses the formal model based on 
the special type of the multistage decision process 
given below. 

2 FORMAL MODEL OF DMP 

Simulation aimed at scheduling any DMP consists in 
determining a sequence of process states and the 
related time instances. The new state and its time 
instant depend on the previous state and the decision 
that has been realized (taken) then. The decision 
determines the job to be performed, resources, 
transport unit, etc. Manufacturing processes belong 
to the larger class of discrete processes, namely 
discrete deterministic processes (DDP). The formal 
model of DDP given in (Dudek-Dyduch, 1990), 
(Dudek-Dyduch, 1992), and (Dudek-Dyduch, 1993) 
will be adopted here for DMP. 

Definition 1. A discrete manufacturing/pro-
duction process (DMP) is a process that is defined 
by the sextuple DMP=(U, S, s0, f, SN, SG) where U is 
a set of control decisions or control signals, S=X×T 
is a set named a set of generalized states, X is a set 
of proper states, T+{0} is a subset of non 
negative real numbers representing the time 
instants, f:U×SS is a partial function called 
a transition function, (it does not have to be 
determined for all elements of the set U×S), 
s0=(x0,t0), SN  S, SG  S are respectively: an initial 
generalized state, a set of not admissible generalized 
states, and a set of goal generalized states, i.e. 
the states in which we want the process to take place 
at the end.  

It can be noticed, that DMP corresponds to some 
multistage decision processes. 
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The transition function is defined by means of 
two functions, f=(fx,ft) where fx: U×X×TX 
determines the next state, ft: U×X×TT determines 
the next time instant. It is assumed that the 
difference t =ft(u, x, t)-t has a value that is both 
finite and positive.  

Thus, as a result of the decision u that is taken or 
realized at the proper state x and the moment t, the 
state of the process changes for x’=fx(u, x, t) that is 
observed at the moment t’=ft(u, x, t)=t+t. 

Because not all decisions defined formally make 
sense in certain situations, the transition function f is 
defined as a partial one. As a result, all limitations 
concerning the control decisions in a given state s 
can be defined in a convenient way by means of so-
called sets of possible decisions Up(s), and defined 
as: Up(s)={uU: (u, s)Dom f}. 

 
At the same time, a DMP is represented by a set 

of its trajectories that starts from the initial state s0. It 
is assumed that no state of a trajectory, apart from 
the last one, may belong to the set SN or has 
an empty set of possible decisions. Only a trajectory 
that ends in the set of goal states is admissible. 
The control sequence determining an admissible 
trajectory is an admissible control sequence 
(decision sequence). The task of optimization lies in 
the fact of finding such an admissible decision 
sequence ũ that would minimize a certain criterion 
Q. 

In the most general case, sets U and X may be 
presented as a Cartesian product U=U1×U2×...×Um, 
X=X1×X2×...×Xn i.e. u=(u1,u2,...,um), x=(x1,x2,...,xn). 
There are no limitations imposed on the sets; in 
particular they do not have to be numerical. Thus 
values of particular co-ordinates of a state may be 
names of elements (symbols) as well as some 
objects (e.g. finite set, sequence etc.). Particular ui 
represent separate decisions that must or may be 
taken at the same time. The sets SN, SF , and Up are 
formally defined with the use of logical formulae. 
Therefore, the complete model constitutes 
a specialized form of a knowledge-based model 
(logic-algebraic model). According to its structure, 
the knowledge on DMP is represented by coded 
information on U, S, s0, f, SN, SG. Function f may be 
defined by means of a procedure or by means of 
IF..THEN rules. The basic structure of DMP (def.1) 
is usually created on the basis of process technology 
description. Based on additional expert knowledge 
(or analysis of DMP) subsets of states can be 
differentiated, for which best decisions or some 
decision choice rules R (control rules) are known. 

3 OPTIMIZATION LEARNING 
METHOD 

The method of solution search with information 
gathering is a significant development of the method 
presented in papers (Dudek-Dyduch, 1990), 
(Dudek-Dyduch, 2000), which generates subsequent 
process trajectories with the use of previously 
obtained and analyzed solutions (admissible and 
non-admissible trajectories) so as to generate 
improved solutions. 

The method uses local optimization tasks. 
The task lies in the choice of such a decision among 
the set of possibilities in the given state Up(s), for 
which the value of a specially constructed local 
criterion is the lowest. The form of the local 
criterion and its parameters are modified in 
the process of solution search. 

The local criterion consists of three parts and is 
created in the following way. The first part concerns 
the value of the global index of quality for the 
generated trajectory. It consists of the increase of the 
quality index resulting from the realization of the 
considered decision and the value related to the 
estimation of the quality index for the final 
trajectory section, which follows the possible 
realization of the considered decision. This part of 
the criterion is suitable for problems, whose quality 
criterion is additively separable and monotonically 
ascending along the trajectory (Dudek-Dyduch, 
1990). 

The second part consists of components related 
to additional limitations or requirements. 
The components estimate the distance in the state 
space between the state in which the considered 
decision has been taken and the states belonging to 
the set of non-admissible states SN, as well as 
unfavorable states or distinguished favorable states. 
Since the results of the decision are known no 
further than for one step ahead, it is necessary to 
introduce the “measure of distance” in the set of 
states, which will aid to define this distance. For that 
purpose, any semimetrics can be applied. As we 
know, semimetrics, represented here as , differs 
from metrics in that it does not have to fulfill 
the condition  (a,b)=0  a=b. 

The third part includes components responsible 
for the preference of certain types of decisions 
resulting from problem analysis. The basic form of 
the criterion q(u,x,t) can be then represented as 
follows: 

 
q(u,x,t)=Q(u,x,t)+ ̂Q(u,x,t)+ 

+a11(u,x,t)+…+aii(u,x,t)+…+ann(u,x,t)+ 
+b11(u,x,t)+…+bjj(u,x,t)+…+ bnn(u,x,t) 

(1) 
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where: 
 Q(u,x,t) - increase of the quality index value 

as a result of decision u, undertaken in 
the state s=(x,t); 

 ˆQ(u,x,t) - estimation of the quality index value 
for the final trajectory section after 
the decision u has been realized; 

 i(u,x,t) - component reflecting additional 
limitations or additional requirements in 
the space of states, i=1,2,...,n; 

 ai - coefficient, which defines the weight of i-th 
component i(u,x,t) in the criterion q(u,x,t); 

 j(u,x,t) - component responsible for 
the preference of certain types of decisions, 
j=1,2,...,m; 

 bj - coefficient, which defines the weight of j-th 
component responsibles for the preference of 
particular decision types. 

 
The significance of particular local criterion 

components may vary. The more significant a given 
component is, the higher value is of its coefficient. It 
is difficult to define optimal weights a priori. They 
depend both on the considered optimization problem 
as well as the input date for the particular 
optimization task (instance). The knowledge 
collected in the course of experiments may be used 
to verify these coefficients. On the other hand, 
coefficient values established for the best trajectory 
represent aggregated knowledge obtained in 
the course of experiments. 

The presented method consists in the 
consecutive construction of whole trajectories, 
whilst their generation always begins from the initial 
state s0=(x0,t0). For each generated trajectory, both 
admissible and non-admissible, its final 
characteristics is remembered and then used in 
further calculations. The method is characterized by 
the following features: 

 A trajectory sequence is generated; each 
trajectory is analyzed, which provides 
information about the DMP taken control; 

 Based on the analysis of so far generated 
whole trajectories, it is possible to modify 
coefficients used in local optimization or 
change the form of local optimization 
criterion when generating a new trajectory; 

 In the course of trajectory creation, 
the subsequent state of the process is being 
analyzed and it is possible to modify the form 
or/and parameters used in local optimization. 

4 SCHEDULING PROBLEM 
WITH STATE DEPENDED 
RETOOLING  

To illustrate the application of the presented method, 
let us consider the following real life scheduling 
problem that takes place during scheduling 
preparatory works in mines. The set of headings in 
the mine must be driven in order to render the 
exploitation field accessible. The headings form a 
net formally, represented by a nonoriented 
multigraph G=(W,C,P) where the set of branches C 
and the set of nodes W represent the set of headings 
and the set of heading crossings respectively, and 
relation P(W×C×W) determines connections 
between the headings (a partial order between the 
headings).  

There are two kinds of driving machines that 
differ in efficiency, cost of driving and necessity of 
transport. Machines of the first kind (set M1) are 
more effective but the cost of driving by means of 
them is much higher than for the second kind (set 
M2). Additionally, the first kind of machines must 
be transported when driving starts from another 
heading crossing than the one in which the machine 
is, while the second type of machines need no 
transport. Driving a heading cannot be interrupted 
before its completion and can be done only by one 
machine at a time.  

There are given due dates for some of 
the headings. They result from the formerly prepared 
plan of field exploitation. One must determine 
the order of heading driving and the machine by 
means of which each heading should be driven so 
that the total cost of driving is minimal and each 
heading complete before its due date. 

There are given: lengths of the headings dl(c), 
efficiency of both kinds of machines VDr(m) (driving 
length per time unit), cost of a length unit driven for 
both kinds of machines, cost of the time unit waiting 
for both kinds of machines, speed of machine 
transport VTr(m) and transport cost per a length unit.  

The problem is NP-hard (Kucharska, 2006). 
NP-hardness of the problem justifies the application 
of approximate (heuristic) algorithms. A role of 
a machine transport corresponds to retooling during 
a manufacturing process, but the time needed for 
a transport of a machine depends on the process state 
while retooling does not. 
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4.1 Formal Model of Problem 

The process state at any instant t is defined as 
a vector x=(x0,x1,x2,...,x|M|), where M=M1M2. 
A coordinate x0 describes a set of heading (branch) 
that has been driven to the moment t. The other 
coordinates xm describes  state of the m-th machine, 
where m=1,2,...,|M|.  

A structure of the machine state is as follows: 
 

xm=(p,,) (2) 
 
where:  
 pC{0} - represents the number of 

the heading assigned to the m-th machine to 
drive for pC or no assignment for 
the machine for p=0 (if the machine is not 
assigned to a heading, i.e. the machine 
remains idle at the crossing w); 

 W - the number of the crossing (node), 
where the machine is located (if it is not 
assigned to any heading, i.e. p=0) or 
the number of the node, in which it finishes 
driving the assigned heading c (information 
about movement direction of the machine); 

 [0,∞) - the length of the route that remains to 
reach the node =w by the m-th machine, 
whilst =0 means, that the machine is in node 
w, (0,dl(c)) means that the machine is 
driving a heading, and the value of  is the 
length that remains for the given heading c to 
be finished, whilst >dl(c) means that the 
machine is being transported to the heading, 
the value  is the sum of the length of heading 
c and the length of the route until the 
transportation is finished. 

 
A state s=(x,t) belongs to the set of 

non-admissible states if there is a heading whose 
driving is not complete yet and its due date is earlier 
than t. The definition SN is as follows:  

 
SN={s=(x,t): (cC, cx0)  d(c) < t} (3) 

 
where d(c) denotes the due date for the heading c.  
A state s=(x,t) is a goal if all the headings have 

been driven. The definition of the set of goal states 
SG is as follows: 

 
SG={s=(x,t) : sSN  (cC, cx0)} 

 
(4) 

A decision determines the headings that should 
be started at the moment t, machines which drive, 

machines that should be transported, headings along 
which machines are to be transported and machines 
that should wait. Thus, the decision u=(u1,u2,...,u|M|) 
where the co-ordinate um refers to the m-th machine 
and um=C{0}. um=0 denotes continuation of 
the previous machine operations (continuation of 
driving with possible transport or further stopover). 
um=c denotes the number of heading c that is 
assigned to be driven by machine m. As a result of 
this decision, the machine starts driving the heading 
c or is transported from the current location to 
the node of the heading c, to which 
the transportation route defined in the state s is 
the shortest. This route is computed by the Ford’s 
algorithm (a polynomial one).  

Obviously, not all decisions can be taken in 
the state (x,t). The decision u(x,t) must belong to 
the set of possible (reasonable) decisions Up(x,t). 
For example, a decision um=c is possible only when 
the c-th heading is neither being driven nor complete 
and is available, i.e. there is a way to transport 
machine to the one of the heading crossing adjacent 
to the c-th heading or machine is standing in the one 
of the heading crossings adjacent to the c-th heading. 

Moreover, in the given state s=(x,t), to each 
machine waiting in the node w, (it has not assigned 
a heading to perform), we can assign an available 
heading or it can be decided that it should continue 
to wait. However, each machine which has been 
previously assigned a heading and is currently 
driving it or it is being transported to that heading, 
can be only assigned to continue the current activity. 
Also, none of the headings can be assigned to more 
than one machine. The complete definition of the set 
of the possible decision Up(x,t) will be omitted here 
because it is not necessary to explain the idea of 
the learning method. 

Based on the current state s=(x,t) and 
the decision u taken in this state, the subsequent 
state (x’,t’)=f(u,x,t) is generated by means of 
the transition function f. The transition function is 
defined for each possible decision u(s)Up(s).  

Firstly, it is necessary to determine the moment 
t’ when the subsequent state occurs, that is 
the nearest moment in which at least one machine 
will finish driving a heading. For that purpose, tm 
time of completion of the realized task needs to be 
calculated for each machine. The subsequent state 
will occur in the moment t’=t+t, where t equals 
the lowest value of the established set of tm.  

Once the moment t’ is known, it is possible to 
determine the proper state of the process at the time. 
The first coordinate x0 of the proper state, that is the 
set   of   completed   headings,   is   increased    by 
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Table 1: Particular parameters of the coordinate of the new machine state. 

for the decision to continue the activity of the machine um = 0: 
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the number of headings whose driving has been 
finished in the moment t’. 

Afterwards, the values of subsequent coordinates 
in the new state are determined x’m=(p’,’,’), for 
m=1,2...|M|, which represent the states of particular 
machines.  

Particular parameters of the coordinate of 
the new machine state are determined in the way 
described in Table 1, where wk(c) is the node 
adjacent to the heading c, in which the machine will 
finish driving, and |rmin(m,c)| is the length of the 
shortest transportation route to the heading c for the 
machine m. 

4.2 Learning Algorithm 

The algorithm based on the learning method consists 
in generating consecutive trajectories. Each of them 
is generated with the use of the specially designed 
local optimization task and then is analyzed. 
The information gained as a result of the analysis is 
used in order to modify the local optimization task 
for the next trajectory, i.e. for the next simulation 
experiment. This approach is treated as a learning 
without a teacher. 

In the course of trajectory generation in each 
state of the process, a decision is taken for which 

the value of the local criterion is the lowest. 
The local criterion takes into account a component 
connected with cost of work, a component 
connected with necessity for trajectory to omit 
the states of set SN and a component for preferring 
some decisions.  

The first components is a sum of Q(u,x,t) and 
ˆQ(u,x,t) where Q(u,x,t) denotes the increase of 
work cost as a result of realizing decision u and 
ˆQ(u,x,t) the estimate of the cost of finishing the set 
of headings matching the final section of 
the trajectory after the decision u has been realized. 

The second component 1(u,x,t)=E(u,x,t), 
connected with the necessity for the trajectory to 
omit the states of set SN, is defined by means of 
a semimetrics. 

The third component is aimed at reduction of 
machine idleness time. Since the model considers 
the possibility that the machines will stand idle in 
certain cases, it seems purposeful to prefer decisions 
which will engage all machines to for most of 
the time. It is therefore necessary to reduce 
the probability of selecting the decision about 
machine stopover when headings are available for 
driving and machines could be used for work. This 
may be realized by using an additional auxiliary 
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criterion 1(u,x,t)=F(u,x,t), which takes into 
consideration penalty for a decision about a stopover 
in the case of a machine which could have started 
work. 

Thus, the local criterion is of the form: 
 

q(u,x,t)=Q(u,x,t)+ ̂Q(u,x,t)+ 
+a1E(u,x,t)+b1F(u,x,t) 

(5) 

 
where a1, b1 are weights of particular components.  

In the course of trajectory generation, the local 
optimization task may be changed. Problem 
analysis reveals that the moment all headings with 
due dates are already finished, it is advisable to use 
only cheaper machines. Formally, this corresponds 
to the limitation of the set of possible decisions 
Up(s). Moreover, it is no longer necessary to apply 
the component E(u,x,t) in the local criterion. 
The modified form of the criterion can be then 
represented as follows: 

q(u,x,t)=Q(u,x,t)+ ̂Q(u,x,t)+ b1F(u,x,t) (6) 

In order to select a decision in the given state s, it 
is necessary to generate and verify the entire set of 
possible decisions in the considered state Up(s). For 
each decision uk, it is necessary to determine 
the state the system would reach after realizing it. 
Such a potentially consecutive state of the process 
will be represented as sp_k=(xp_k,tp_k).  

Afterwards, the criterion components are 
calculated. The increase of cost Q(uk,x,t) is the sum 
of costs resulting from the activities of particular 
machines in the period of time tp_k-t. The estimate of 
the cost of the final trajectory section ˆQ(uk,x,t) can 
be determined in a number of ways. One of these is 
to establish the summary cost of finishing previously 
undertaken decisions, whose realization has not been 
completed yet, and the cost of a certain relaxed task, 
realized in the cheapest way. Taking into 
consideration that the estimate should take place 
with the lowest number of calculations, relaxation 
has been proposed which would include omitting 
temporal limitations and the assuming the least 
expensive procedure for finishing the remaining 
headings; this would involve using the least 
expensive machines. 

The component of the local criterion E(uk,x,t) 
uses the value of the estimated “distance” between 
the state sp_k, and the set of inadmissible states. 
The distance is estimated with the help of 
semimetrics (s,SN)=min{(s,s’): s’SN}. 

Assuming that the speed of transporting 
the “fastest” machine is significantly higher than its 
speed of performance, and this one in turn 

significantly exceeds the speed of performance of 
the remaining machines, it is possible to omit 
the time of transporting the fastest machine. For 
the sake of simplicity, let us assume that there is one 
fastest machine. 

One of the methods of determining 
the component E(uk,x,t) is to calculate, for each not 
realized and not assigned heading c with due date, 
the time reserve rtc(sp_k). 

Taking into consideration these assumptions, 
the time reserve is defined by the following formula: 

 
rtc(sp k)=d(c)-tp k-(c)-tend (7) 

 
where: 
 d(c) - due date for the heading c; 
 (c) - time necessary to drive heading c and all 

the headings situated along the shortest route 
from the heading c to the so-called realized 
area in the given state, by the fastest machine; 

 tend - time necessary to finalize the current 
activity of the fastest machine. 

 
The parameters tend and (c) results for following 

situations: 
a) “the fastest” machine may continue 

the previously assigned task to drive another 
heading. 

b) heading c may be inaccessible and it might 
be necessary to drive the shortest route to this spot 
from the realized area, involving already excavated 
headings as well as those assigned for excavation 
together with relevant crossings. For the period of 
time when the fastest machine finishes 
the excavation of the previously assigned heading, 
a fragment of this distance may be excavated by the 
fastest of the remaining machines. When the heading 
is accessible the time equals to the time of 
excavating the length of the heading with the fastest 
machine. 

Finally, the component estimating the influence 
of time limitations assumes the following form: 

 

_

_
_

min ( ) 0

1( , , )
min ( ) 0

min ( )

c p k

k
c p k

c p k

for rt s

E u x t
for rt s

rt s

 
  


 
(8) 

 

As a result, the decision to be taken, from the set 
of considered decisions, is the one for which the 
subsequent state is most distant from the set of 
non-admissible states. 

The shape of the local criterion component 
F(uk,x,t) in certain cases should make it purposeful 
to prefer decisions which will engage all machines 
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for most of the time. It is therefore necessary to 
reduce the probability of selecting the decision about 
machine stopover when headings are available for 
driving and machines could be used for work. For 
that purpose, a penalty may be imposed for the 
stopover of each machine that could potentially start 
driving an available heading. The proposed form of 
F(uk,x,t) is the following: 

 
F(uk,x,t)=Piwaiting (9) 

 
where:  
 P - denotes the penalty for machine stopover, 

(calculated for the decision about stopover 
when there are still headings available for 
work); 

 iwaiting - the number of machines that are 
supposed to remain idle as a result of such 
a decision. 

 
The values a1 and b1 are respectively coefficients 

defining the weight of particular components of 
the local criterion q(u,x,t) and reflect current 
knowledge about controls, whilst their values change 
in the course of calculations. The higher the weight 
of a given parameter, the higher its value. 
The weights depend both on the considered 
optimization problem as well as input data for 
the particular optimization task (instance). 
Coefficient values, as well as their mutual 
proportions are not known nor can they be 
calculated a priori. 

The knowledge gained in the course of 
experiments may be used to change weight values. If 
the generated trajectory is non-admissible, then for 

the subsequent trajectory, the value of weight a1 
should be increased; which means the increase of 
the weight of the component estimating the distance 
from the set of non-admissible states and/or 
the increase of weight b1 value, which would result 
in lower probability of machine stopover.  

Whereas, if the generated trajectory is 
admissible, then for the subsequent trajectory the 
values of this coefficients may be decreased. 

4.3 Experiments 

The aim of conducted experiments was to verify the 
effectiveness of applying the components E(u,x,t) 
and F(u,x,t) in the local criterion.  

The research was conducted for the set of 10 
heading networks. Each network is represented by 
a planar graph, in which the vertex degrees equal 
from 1 to 4. The lengths of headings are numbers 
from the range [19, 120]. The number of headings 
with due dates is approximately 25% of all headings. 
The parameters of heading networks used in 
simulation experiments are given in Table 2. 

Also, two examples of network are presented in 
Figure 1. 

Two machines are used to perform the task 
during our experiments, one of the first type and one 
of the second type. Parameters for both types of 
machines are given in the Table 3.  

The effectiveness of component E(u,x,t) for each 
network was tested by constructing 40 trajectories 
with the changing value of coefficient a1 and zero 
value of coefficient b1.  

Table 2: The heading network parameters. 

Parameter GI-1a GI-1b GI-2 GI-3 GII-4 GII-5a GII-5b GII-6 GII-7 GII-8 

Number of heading 20 20 20 20 24 27 27 29 67 68 

Number of heading crossing 18 18 18 18 20 20 20 20 50 50 

Length of the shortest 
heading 20 20 22 19 30 30 30 30 30 30 

Length of the longest 
heading 109 109 106 120 81.59 107.52 107.52 94.75 114.65 111.95 

Sum of the length of   
the headings 1008 1008 1010 1066 1364.45 1863.07 1863.07 1869.88 4579.11 4607.81 

Number of heading with 
deadline 

5 5 5 5 5 5 5 5 18 16 

Minimum deadline 55 60 55 55 60 70 100 50 80 80 

Maximum deadline 70 60 70 70 100 150 100 100 320 200 
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Figure 1a: Example of heading network - GI-1a. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1b: Example of heading network - GII-5. 

Table 4 presents results for one of the tested 
networks, i.e. for network GII-4. 
The time reserve refers to the time that remains after 
a given heading has been driven until the due date, 
whilst the minus value means that the due date has 
been exceeded. The symbol ”*” means that heading 
driving has not commenced because the trajectory 
reached a non-admissible state. Based on 
the obtained results, it can be concluded that 
increasing the value of E(u,x,t) increases 
the probability of obtaining an admissible solution. 

Table 3: Parameters of the machines. 

Parameter Machine of 
M1 type 

Machine 
of M2 type 

Efficiency [m/h] 10.0 5.0 
Transport speed [m/h] 100.0 unspecified 

Driving cost [$/h] 200.0 50.0 
Transport cost [$/h] 100.0 0.0 
Waiting cost [$/h] 30.0 5.0 

 
When the component E(u,x,t) was omitted, 

an admissible solution was not found. 
Table 5 presents in columns the best obtained 

total cost at changeable value of coefficient b1, 
responsible for the weight of component F(u,x,t) in 
the local criterion. In most cases, the increase of 
weight of this component resulted in increased total 
costs, but at the same time the probability of finding 
an admissible solution was higher. Moreover, in 
some cases, the use of this component resulted in 
decreased total costs of performing work. A lot of 
this experiments have been conducted, they are 
presented in (Kucharska, 2006). Unfortunately, they 
must be omitted here because the limited length of 
the paper. 

The experiments have confirmed  effectiveness 
of the use of the component F(u,x,t). 

To evaluate the effectiveness of the proposed 
algorithm one has compared the obtained results 
with the optimal solution. A complete review 
algorithm for all considered heading network has 
been applied. To reduce calculations, the generation 
of each trajectory was interrupted when the lower 
estimate of its cost in a given state was greater than 
the best found solution. 

 

Table 4: The effectiveness of applying parameter E(u,x,t)  for the network GII-4. 

Coeff. a1 Total 
cost 

Time 
reserve of 

head. 4 

Time 
reserve of 

head. 9 

Time 
reserve of 
head. 12 

Time 
reserve of 
head. 16 

Time 
reserve of 
head. 22 

Min. 
reserve 

Average 
reserve 

0 - 7.40 * * * * - - 

1 - 12.90 * * * * - - 

50 - 12.90 * -0.62 * * - - 

5000 - 12.90 * -2.84 * * - - 

7500 22887.64 12.90 4.02 7.68 5.15 11.64 4.02 8.28 

25000 23153.10 13.18 32.10 48.01 1.46 2.67 1.46 19.48 

50000 23359.93 12.90 21.73 48.01 38.90 30.34 12.90 30.38 

75000 23204.35 25.18 19.42 48.01 20.54 25.59 19.42 27.75 

500000 23027.78 27.47 20.13 19.71 40.06 29.18 19.71 27.31 

2500000 23084.25 27.47 20.13 19.71 36.57 37.53 19.71 28.28 
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Table 5: Effectiveness of applying component F(u,x,t). 

Network 

Best found cost 

b1=0   b1=0,5      b1=1     b1=2      b1=5     

GI-1a 17026.90 17026.90 17249.10 16922.00 16922.00 

GI-2 * * * 17284.10 17284.10 

GI-3 16359.90 16359.90 16359.90 16359.90 16359.90 

GII-4 22665.17 22665.17 22667.89 22667.89 22667.89 

GII-5a 30982.02 30946.33 31004.27 31004.27 31004.27 

GII-5b 30888.34 30888.34 31139.72 31139.72 31139.72 

GII-6 30662.32 30675.19 30675.19 30675.19 30675.19 

GII-7 77428.92 77717.02 77288.44 77717.02 77717.02 

Table 7: Comparison of results from the solution obtained by a complete review of the algorithm for which the calculations 
were interrupted. 

Network 

Review algorithm 
Best cost founded by 
learning algorithm 

Percentage 
difference of cost  time to stop 

calculation 
best found cost 

GI-1a 43h 48min 16480,00 16922.00 2,68% 

GI-3 43h 41min 17448,90 16359.90 -6,24% 

GII-4 44h 3min 23132,40 22665.17 -2,01% 

GII-6 43h 38min 31142,54 30662.32 -1,54% 

The lower bound was calculated as the sum of 
the cost of the current part of trajectory and a cost 
estimation of remaining part.  

Optimal solution was found only for network 
GI-2. In other cases, the calculations were 
interrupted after more than 2 days. Only for four 
networks an admissible solution has been found, 
while for the other networks an acceptable solution 
has not been found during 2 days.  

The comparison between the optimal cost with 
the best found cost is presented in Table 6. Error of 
found solution is also given. It can be noticed that 
the proposed learning algorithm has found very good 
solution (almost optimal). It should be point out also 
that the its calculation time was very short (a several 
seconds). While the exact algorithm needs very long 
time (over 40 hours). 

Table 6: Comparison of results from the optimal solution. 

Net-
work 

Time for the 
optimal 
solution 

Optimal 
cost 

The best 
cost 

found by 
the 

proposed 
algorithm 

Error of 
found 

solution 

GI-2 43h 43min 59s 16524.40 17284.10 4.59% 

 
The comparison of the learning algorithm results 

with solution obtained by complete review algorithm 
after over 40 hour are presented in Table 7. Also, 
the time after which the calculation of the algorithm 
was stopped, and the cost of which could be 
determined at this time are given. Percentage 
difference of cost is calculated as 
(LAcost-RAcost)/RAcost where LA, RA denote best 
cost calculated by learning algorithm and completed 
review algorithm respectively. 

The result of experiments shows that 
the difference between sub-optimal cost and the best 
found by the learning algorithm is small and in 
the worst case is 4.59%. One can say that 
the learning algorithm finds a better solution in most 
cases. 

 
Based on the obtained results, it can be 

concluded that the application of the proposed 
algorithm for the DMP problem yields very positive 
results. 
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5 CONCLUSIONS 

The paper presents a conception of intelligent search 
method for optimization of discrete manufacturing 
processes control (scheduling, planning). 
The method uses a sophisticated structure of local 
optimization task. The structure as well as 
parameters of the task are modified during search 
process. It is done on a basis of gathering 
information during previous iterations. Thus 
the method is a learning one. The method is based 
on a general formal model of discrete manufacturing 
processes (DMP), that is given in the paper. 

A large number of difficult scheduling problems 
in manufacturing can be efficiently solved by means 
of the method. Moreover, the proposed method is 
very useful for another difficult scheduling 
problems, especially for problems with state 
depended resources. Managing projects, especially 
software projects belongs to this class. 

 To illustrate the conception, some NP-hard 
problem, namely a scheduling problem with state 
depended retooling is considered and the learning 
algorithm for it is presented. Results of computer 
experiments confirm the efficiency of the algorithm. 
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