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Abstract: Notion of hidden attractor (basin does not contain neighborhoods of equilibria) is discussed. Effective
analytical-numerical procedure for hidden attractors localization is considered. Existence of hidden attrac-
tor in Chua’s circuits is demonstrated.

1 INTRODUCTION

*—>
The classical attractors of Lorenz (Lorenz, 1963), :
Rossler (Rossler, 1976), Chua (Chua & Lin, 1990), R X
Chen (Chen & Ueta, 1999), and other widely-known v, Nr |2] V&
attractors are those excited from unstable equilibria. ER
From computational point of view this allows one to
use numerical method, in which after transient pro-
cess a trajectory, started from a point of unstable man-
ifold in the neighborhood of equilibrium, reaches an L g

attractor and identifies it. Figure 1: Classical Chu’s circuit.
However there are attractors of another tybpiet-

den attractors, a basin of attraction of which does not ferential equations in dimensionless coordinates:

contain neighborhoods of equilibri.eonov et. al.,

2011). Here equilibria are notbnnectetiwith at- )

tractor and creation of numerical procedure of inte- y=X-y+z (1)

gration of trajectories for the passage from equilib- z=—(By+vz).

rium to periodic solution is impossible because the Here the function

neighbourhood of equilibrium does not belong to such

attractor. The simplest examples of systems with such F(X) = mux+ (mo —my)sai(x) =

hidden attractors are hidden oscillations in counterex- 1 2)

amples to widely-known Aizerman’s and Kalman’s = MaX+ E(mo —mu)(jx+1] =[x 1))

conjectures on absolute stability (see, e.9., (LeOnoV, characterizes a nonlinear element, of the system,

2010; Leonov et. al., 2010b)). Similar computational ~gjledChua’s diodea, B, y,mo, m, are parameters of

problems arise in investigation of semi-stable and he system. In this system it was discovered the

nested limit cycles in 16th Hilbert problem (see, e.9., sirange attractors (Chua, 1992; Chua, 1995) called

(Kuznetsov & Leonov, 2008; Leonov & Kuznetsov, - then Chua's attractors. All known classical Chua’s at-

2010; Leonov et. al., 2011)). tractors are the attractors that are excited from unsta-
Here a special analytical-numerical algorithm for ble equilibria. and this makes it possible to compute

localization of hidden attractors is considered. Ex- such attractors with relative easy (see, e.g., attractors

ample of hidden attractor localization in Chua'’s cir- gallery in (Bilotta & Pantano, 2008).

cuit, which is used for hidden chaotic communication The applied in this work algorithm shows the pos-

(Zhiguo et al., 2008), is demonstrated. sibility of existence of hidden attractor in system (1).
Chua’s circuit (see Fig. 1) can be described by dif- Note that L. Chua himself, analyzing in the work

x=a(y—x)—af(x),
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(Chua & Lin, 1990) different cases of attractor ex- the solutionx'(t) can be determined numerically by
istence in Chua'’s circuit, does not admit the existence starting a trajectory of system (7) wijh= 1 from the

of such hidden attractor.

2 ANALYTICAL-NUMERICAL
FOR ATTRACTORS
LOCALIZATION

Consider a system
dx

= 3
at (3)
whereP is a constani x n-matrix, {(x) is a continu-
ous vector-function, angi(0) = 0.
Define a matriXX in such a way that the matrix

Po=P+K (4)

has a pair of purely imaginary eigenvalugswy
(wp > 0) and the rest of its eigenvalues have nega-
tive real parts. We assume that sicClexists. Rewrite
system (3) as

Px+W(x),x € R",

dx

e Pox + ¢(x),
whered (x) = P(x) — Kx.

Introduce a finite sequence of functions
0°(x),91(x),...,¢M(x) such that the graphs of
neighboring functiong! (x) and¢ ! *1(x) slightly dif-
fer from one another, the functia@?(x) is small, and
d™(x) = ¢(x). Using a smallness of functiapP(x),
we can apply and mathematically strictly justify
(Leonov, 2009; Leonov, 2009; Leonov, 2010; Leonov
et. al., 2010a; Leonov et. al., 2010b) the method of
harmonic linearization (describing function method)
for the system

(5)

dx

i (6)
and determine a stable nontrivial periodic solution
xC(t). For the localization of attractor of original sys-
tem (5), we shall follow numerically the transforma-
tion of this periodic solution (a startirgscillating at-
tractor — an attractor, not including equilibria, de-
noted further byag) with increasing. Here two cases
are possible: all the points cfp are in an attraction
domain of attractom,, being an oscillating attractor
of the system

Pox + $°(x),

dx

— = 7

at (7)
with j =1, or in the change from system (6) to sys-
tem (7) with j = 1 it is observed a loss of stability
bifurcation and the vanishing ofy. In the first case

Pox + ¢/ (x)

280

initial point x°(0). If in the process of computation
the solutiorx'(t) has not fallen to an equilibrium and
itis notincreased indefinitely (here a sufficiently large
computational intervgD, T] should always be consid-
ered), then this solution reaches an attraatarThen

it is possible to proceed to system (7) with- 2 and

to perform a similar procedure of computationaf,

by starting a trajectory of system (7) wifh= 2 from
tr;e initial pointx(T) and computing the trajectory
X4(t).

Proceeding this procedure and sequentially in-
creasingj and computing! (t) (being a trajectory of
system (7) with initial data)=%(T)) we either arrive
at the computation ofi, (being an attractor of system
(7) with j = m, i.e. original system (5)), either, at a
certain step, observe a loss of stability bifurcation and
the vanishing of attractor.

To determine the initial date(0) of starting peri-
odic solution, system (6) with nonlineari?(x) can
be transformed by linear nonsingular transformation
Sto the form
X1 = —WoX2 + €91 (X1, X2, X3),
Xp = WoX1 + €P2(X1, X2, X3),
X3 = AgX3 + e3(X1, X2, X3)

(8)

Here A3 is a constan{n — 2) x (n— 2) matrix, all
eigenvalues of which have negative real pafitds an
(n— 2)-dimensional vector-functionp,,$ are cer-
tain scalar functions. Without loss of generality, it
may be assumed that for the matiy there exists
positive numben > 0 such that

Xg(Ag +A3")x3 < —2(X|X3|27 VX3 € R"2

9)

Introduce the following describing function

21/ wp
J

0
+&2 ((cosuxt)a, (sinwpt )a, 0) sinwgt | dt.

®(a) $1 ((coswpt)a, (sinuxt)a, 0) cosuwpt+

Theorem 1. (Leonov et. al., 2010b) Ifit can be found
a positive @ such that

®(ag) =0, (10)
then there is a periodic solution in systé) with the
initial data x°(0) = S(y1(0),y2(0),y3(0))*

y1(0) = a0+ O(g), y2(0) = 0, y3(0) = On_2(¢).
(11)
Here O,_3(€) is an (n— 2)-dimensional vector such
that all its components are ®).



3 LOCALIZATION OF HIDDEN
ATTRACTOR IN CHUA'S
SYSTEM

We now apply the above algorithm to analysis of
Chua’s system with scalar nonlinearity. For this pur-
pose, rewrite Chua’s system (1) in the form (3)

dx _
dt

—-a(m+1) o O
1 -1 1 o é
O 78 7y ) O b) O )

¥(0) = (Mo —my)salo).

Introduce the coefficierkk and small parametet
and represent system (12) as (6)

PX+qu(rx), xeR3 (12)

Here

P7q7r =

dx _

i Pox + ged(r*x), (13)
where
—a(m+1+k) o O
Po=P+kqr* = 1 -1 11,
0 B -y

A7y = Fiwo, A5® = —d,
$(0) = Y(o) —ko = (mg— my)salo) — ko.
In practice, to determinkeanduy it is used the trans-
fer functionW(p) of system (3):
We(p) =r*(P—pl) g,

where p is a complex variable. Then Mi(ioy) =
0 and k is computed then by formulak =
~(RéW (iwp)) ™.

By nonsingular linear transformation= Sy sys-
tem (13) can be reduced to the form

dy

praala A bed(c'y), (14)
where
0O —-u O by 1
A7b7C: Wo 0 0 3 b2 5 0 .
0 0 -d 1 —h

The transfer functioVa (p) of system (14) can be
represented as

Wa(p) =We(p).

Further, using the equality of transfer functions of
systems (13) and (14), we obtain

Wa(p) =r*(Po—pl)*q.

HIDDEN ATTRACTOR IN CHUA'S CIRCUITS

This implies the following relations
_ —cx(m1+m1y+v)+w%fy— B

k= a(l+y) ’
g O WB—BF1+y+y
N 1+y ’

—(14y)d+d?
h:G(VJrBwé:dZ) + )7 (15)
b _aly+B-wp—(1+y)d)

v w§+d? ’
L _a(1ty- A6+ (v+B)d)
? w0 (X + d2) '

System (13) can be reduced to the form (14) by
the nonsingular linear transformatignr= Sy. Having
solved the following matrix equations

A=S1'PS b=S1'g, c =r*S
one can obtain the transformation matrix

S11 S12 S13
S= S22 3.

S1
$B1 S22 =3

By (11), for small enougls we determine initial
data for the first step of multistage localization proce-

dure
o apS11
SY(0)=S| 0 | =] a1 |.
0 a0S31
Returning to Chua’s system denotations, for deter-

mining the initial data of starting solution of multi-
stage procedure we have the following formulas

X(0) = ao, ¥(0) = ao(mM + 1+K),

% a(my + k) — o? .
a

Consider system (13) with the parameters

a =8.4562 =120732 y=0.0052
myp=—0.1768 my = —1.1468

Note that for the considered values of parameters
there are three equilibria in the system: a locally sta-
ble zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden at-
tractors localization to Chua’s system (12) with pa-
rameters (18). For this purpose, compute a starting
frequency and a coefficient of harmonic linearization.
We have

wp =2.0392 k=0.2098.

Then, compute solutions of system (13) with nonlin-
earityed (x) = g(P(x) —kx), sequentially increasing
from the valuee; = 0.1 tog10 = 1 with the step QL.

(16)

40 (17)

(18)
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By (15) and (17) we obtain the initial data
x(0) =9.4287,y(0) = 0.5945 z(0) = —13.4705

for the first step of multistage procedure for the con-
struction of solutions. For the value of parameter
€1 = 0.1, after transient process the computational
procedure reaches the starting oscillatid(t). Fur-
ther, by the sequential transformatigh(t) with in-
creasing the parametey, using the numerical proce-
dure, for original Chua'’s system (12) the $Btqgenis
computed. This set is shown in Fig. 3.

Figure 2: Equilibrium, stable manifolds of saddles, and lo-
calization of hidden attractor.

The considered system has three stationary points:
the stable zero poirfy and the symmetric sadd|&s
and$. To zero equilibriunmf correspond the eigen-

values\® = —7.9591 and\% = —0.0038-+ 3.2495

and to the saddleS; and S correspond the eigen-

values\>'? = 2.2189 andhy%2 = —0.9915:+ 2.4066.

The behavior of trajectories of system in a neighbor-
hood of equilibria is shown in Fig. 3.

We remark that here positive Lyapunov exponent
(Leonov & Kuznetsov, 2007) corresponds to the com-
puted trajectories.

By the above and with provision for the remark on
the existence, in system, of locally stable zero equi-
librium and two saddle equilibria, we arrive at the
conclusion that inaniggen @ hidden strange attractor
is computed. I(:igl;re 3: Hidden attractor projections ¢xy), (x,z), and

Y,2).
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4 CONCLUSIONS

In the present work the application of special
analytical-numerical algorithm for hidden attractor

localization is discussed. The existence of such hid-
den attractor in classical Chua’s circuits is demon-

strated.
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Kuznetsov N. V., Leonov G. A. (2008). Lyapunov quanti-
ties, limit cycles and strange behavior of trajectories
in two-dimensional quadratic systems. Journal of Vi-
broengineering. Vol. 10, Iss. 4, pp. 460-467.

Leonov G. A., Kuznetsov, N. V. (2010). Limit cycles of
guadratic systems with a perturbed weak focus of or-
der 3 and a saddle equilibrium at infinity Doklady
Mathematics. 82(2), pp. 693—696.

Itis also can be noted that to obtain existence of | gonov G. A., Kuznetsov N. V., and Kudryashova E. V.

hidden attractor in Chua’s circuit one can artificially

stabilized (Suykens et al., 1997; Savaci & Gunel,
2006; Leonov et. al., 2010a) zero stationary point
by inserting small stable zone around zero stationary

point into nonlinearity (Chua diode characteristics).
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