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Abstract: Notion of hidden attractor (basin does not contain neighborhoods of equilibria) is discussed. Effective
analytical-numerical procedure for hidden attractors localization is considered. Existence of hidden attrac-
tor in Chua’s circuits is demonstrated.

1 INTRODUCTION

The classical attractors of Lorenz (Lorenz, 1963),
Rossler (Rossler, 1976), Chua (Chua & Lin, 1990),
Chen (Chen & Ueta, 1999), and other widely-known
attractors are those excited from unstable equilibria.
From computational point of view this allows one to
use numerical method, in which after transient pro-
cess a trajectory, started from a point of unstable man-
ifold in the neighborhood of equilibrium, reaches an
attractor and identifies it.

However there are attractors of another type:hid-
den attractors, a basin of attraction of which does not
contain neighborhoods of equilibria(Leonov et. al.,
2011). Here equilibria are not “connected” with at-
tractor and creation of numerical procedure of inte-
gration of trajectories for the passage from equilib-
rium to periodic solution is impossible because the
neighbourhoodof equilibrium does not belong to such
attractor. The simplest examples of systems with such
hidden attractors are hidden oscillations in counterex-
amples to widely-known Aizerman’s and Kalman’s
conjectures on absolute stability (see, e.g., (Leonov,
2010; Leonov et. al., 2010b)). Similar computational
problems arise in investigation of semi-stable and
nested limit cycles in 16th Hilbert problem (see, e.g.,
(Kuznetsov & Leonov, 2008; Leonov & Kuznetsov,
2010; Leonov et. al., 2011)).

Here a special analytical-numerical algorithm for
localization of hidden attractors is considered. Ex-
ample of hidden attractor localization in Chua’s cir-
cuit, which is used for hidden chaotic communication
(Zhiguo et al., 2008), is demonstrated.

Chua’s circuit (see Fig. 1) can be described by dif-

Figure 1: Classical Chu’s circuit.

ferential equations in dimensionless coordinates:

ẋ= α(y− x)−α f (x),

ẏ= x− y+ z,

ż=−(βy+ γz).
(1)

Here the function

f (x) = m1x+(m0−m1)sat(x) =

= m1x+
1
2
(m0−m1)(|x+1|− |x−1|)

(2)

characterizes a nonlinear element, of the system,
calledChua’s diode; α,β,γ,m0,m1 are parameters of
the system. In this system it was discovered the
strange attractors (Chua, 1992; Chua, 1995) called
then Chua’s attractors. All known classical Chua’s at-
tractors are the attractors that are excited from unsta-
ble equilibria. and this makes it possible to compute
such attractors with relative easy (see, e.g., attractors
gallery in (Bilotta & Pantano, 2008).

The applied in this work algorithm shows the pos-
sibility of existence of hidden attractor in system (1).
Note that L. Chua himself, analyzing in the work
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(Chua & Lin, 1990) different cases of attractor ex-
istence in Chua’s circuit, does not admit the existence
of such hidden attractor.

2 ANALYTICAL-NUMERICAL
FOR ATTRACTORS
LOCALIZATION

Consider a system

dx
dt

= Px+ψ(x),x ∈ R
n, (3)

whereP is a constantn×n-matrix,ψ(x) is a continu-
ous vector-function, andψ(0) = 0.

Define a matrixK in such a way that the matrix

P0 = P+K (4)

has a pair of purely imaginary eigenvalues±iω0
(ω0 > 0) and the rest of its eigenvalues have nega-
tive real parts. We assume that suchK exists. Rewrite
system (3) as

dx
dt

= P0x+ϕ(x), (5)

whereϕ(x) = ψ(x)−Kx.
Introduce a finite sequence of functions

ϕ0(x),ϕ1(x), ...,ϕm(x) such that the graphs of
neighboring functionsϕ j(x) andϕ j+1(x) slightly dif-
fer from one another, the functionϕ0(x) is small, and
ϕm(x) = ϕ(x). Using a smallness of functionϕ0(x),
we can apply and mathematically strictly justify
(Leonov, 2009; Leonov, 2009; Leonov, 2010; Leonov
et. al., 2010a; Leonov et. al., 2010b) the method of
harmonic linearization (describing function method)
for the system

dx
dt

= P0x+ϕ0(x), (6)

and determine a stable nontrivial periodic solution
x0(t). For the localization of attractor of original sys-
tem (5), we shall follow numerically the transforma-
tion of this periodic solution (a startingoscillating at-
tractor — an attractor, not including equilibria, de-
noted further byA0) with increasingj. Here two cases
are possible: all the points ofA0 are in an attraction
domain of attractorA1, being an oscillating attractor
of the system

dx
dt

= P0x+ϕ j(x) (7)

with j = 1, or in the change from system (6) to sys-
tem (7) with j = 1 it is observed a loss of stability
bifurcation and the vanishing ofA0. In the first case

the solutionx1(t) can be determined numerically by
starting a trajectory of system (7) withj = 1 from the
initial point x0(0). If in the process of computation
the solutionx1(t) has not fallen to an equilibrium and
it is not increased indefinitely (here a sufficiently large
computational interval[0,T] should always be consid-
ered), then this solution reaches an attractorA1. Then
it is possible to proceed to system (7) withj = 2 and
to perform a similar procedure of computation ofA2,
by starting a trajectory of system (7) withj = 2 from
the initial pointx1(T) and computing the trajectory
x2(t).

Proceeding this procedure and sequentially in-
creasingj and computingx j(t) (being a trajectory of
system (7) with initial datax j−1(T)) we either arrive
at the computation ofAm (being an attractor of system
(7) with j = m, i.e. original system (5)), either, at a
certain step, observe a loss of stability bifurcation and
the vanishing of attractor.

To determine the initial datax0(0) of starting peri-
odic solution, system (6) with nonlinearityϕ0(x) can
be transformed by linear nonsingular transformation
S to the form

ẋ1 =−ω0x2+ εϕ1(x1,x2,x3),

ẋ2 = ω0x1+ εϕ2(x1,x2,x3),

ẋ3 = A3x3+ εϕ3(x1,x2,x3)

(8)

Here A3 is a constant(n− 2)× (n− 2) matrix, all
eigenvalues of which have negative real parts,ϕ3 is an
(n− 2)-dimensional vector-function,ϕ1,ϕ2 are cer-
tain scalar functions. Without loss of generality, it
may be assumed that for the matrixA3 there exists
positive numberα > 0 such that

x∗3(A3 +A3
∗)x3 ≤−2α|x3|

2, ∀x3 ∈ R
n−2 (9)

Introduce the following describing function

Φ(a) =
2π/ω0∫

0

[

ϕ1 ((cosω0t)a,(sinω0t)a,0)cosω0t+

+ϕ2 ((cosω0t)a,(sinω0t)a,0)sinω0t

]

dt.

Theorem 1. (Leonov et. al., 2010b) If it can be found
a positive a0 such that

Φ(a0) = 0, (10)

then there is a periodic solution in system(6) with the
initial data x0(0) = S(y1(0),y2(0),y3(0))∗

y1(0) = a0+O(ε), y2(0) = 0, y3(0) = On−2(ε).
(11)

Here On−2(ε) is an (n− 2)-dimensional vector such
that all its components are O(ε).
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3 LOCALIZATION OF HIDDEN
ATTRACTOR IN CHUA’S
SYSTEM

We now apply the above algorithm to analysis of
Chua’s system with scalar nonlinearity. For this pur-
pose, rewrite Chua’s system (1) in the form (3)

dx
dt

= Px+qψ(r∗x), x ∈R
3. (12)

Here

P,q,r =









−α(m1+1) α 0
1 −1 1
0 −β −γ









,





−α
0
0



 ,





1
0
0



 ,

ψ(σ) = (m0−m1)sat(σ).

Introduce the coefficientk and small parameterε,
and represent system (12) as (6)

dx
dt

= P0x+qεϕ(r∗x), (13)

where

P0 = P+ kqr∗ =





−α(m1+1+ k) α 0
1 −1 1
0 −β −γ



 ,

λP0
1,2 =±iω0, λP0

3 =−d,

ϕ(σ) = ψ(σ)− kσ = (m0−m1)sat(σ)− kσ.

In practice, to determinek andω0 it is used the trans-
fer functionW(p) of system (3):

WP(p) = r∗(P− pI)−1q,

where p is a complex variable. Then ImW(iω0) =
0 and k is computed then by formulak =
−(ReW(iω0))

−1.
By nonsingular linear transformationx = Sy sys-

tem (13) can be reduced to the form

dy
dt

= Ay+bεϕ(c∗y), (14)

where

A,b,c =





0 −ω0 0
ω0 0 0
0 0 −d



 ,





b1
b2
1



 ,





1
0
−h



 .

The transfer functionWA(p) of system (14) can be
represented as

WA(p) =WP(p).

Further, using the equality of transfer functions of
systems (13) and (14), we obtain

WA(p) = r∗(P0− pI)−1q.

This implies the following relations

k=
−α(m1+m1γ+ γ)+ω2

0− γ−β
α(1+ γ)

,

d =
α+ω2

0−β+1+ γ+ γ2

1+ γ
,

h=
α(γ+β− (1+ γ)d+d2)

ω2
0+d2

,

b1 =
α(γ+β−ω2

0− (1+ γ)d)
ω2

0+d2
,

b2 =
α
(

(1+ γ−d)ω2
0+(γ+β)d

)

ω0(ω2
0+d2)

.

(15)

System (13) can be reduced to the form (14) by
the nonsingular linear transformationx = Sy. Having
solved the following matrix equations

A = S−1P0S, b = S−1q, c∗ = r∗S, (16)

one can obtain the transformation matrix

S =





s11 s12 s13
s21 s22 s23
s31 s32 s33



 .

By (11), for small enoughε we determine initial
data for the first step of multistage localization proce-
dure

x(0) = Sy(0) = S





a0
0
0



=





a0s11
a0s21
a0s31



 .

Returning to Chua’s system denotations, for deter-
mining the initial data of starting solution of multi-
stage procedure we have the following formulas

x(0) = a0, y(0) = a0(m1+1+ k),

z(0) = a0
α(m1+ k)−ω2

0

α
.

(17)

Consider system (13) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 =−0.1768, m1 =−1.1468.
(18)

Note that for the considered values of parameters
there are three equilibria in the system: a locally sta-
ble zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden at-
tractors localization to Chua’s system (12) with pa-
rameters (18). For this purpose, compute a starting
frequency and a coefficient of harmonic linearization.
We have

ω0 = 2.0392, k= 0.2098.

Then, compute solutions of system (13) with nonlin-
earityεϕ(x) = ε(ψ(x)−kx), sequentially increasingε
from the valueε1 = 0.1 to ε10 = 1 with the step 0.1.
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By (15) and (17) we obtain the initial data

x(0) = 9.4287,y(0) = 0.5945,z(0) =−13.4705

for the first step of multistage procedure for the con-
struction of solutions. For the value of parameter
ε1 = 0.1, after transient process the computational
procedure reaches the starting oscillationx1(t). Fur-
ther, by the sequential transformationx j(t) with in-
creasing the parameterε j , using the numerical proce-
dure, for original Chua’s system (12) the setAhiddenis
computed. This set is shown in Fig. 3.
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Figure 2: Equilibrium, stable manifolds of saddles, and lo-
calization of hidden attractor.

The considered system has three stationary points:
the stable zero pointF0 and the symmetric saddlesS1
andS2. To zero equilibriumF0 correspond the eigen-
valuesλF0

1 = −7.9591 andλF0
2,3 = −0.0038±3.2495i

and to the saddlesS1 and S2 correspond the eigen-

valuesλS1,2
1 = 2.2189 andλS1,2

2,3 =−0.9915±2.4066i.
The behavior of trajectories of system in a neighbor-
hood of equilibria is shown in Fig. 3.

We remark that here positive Lyapunov exponent
(Leonov & Kuznetsov, 2007) corresponds to the com-
puted trajectories.

By the above and with provision for the remark on
the existence, in system, of locally stable zero equi-
librium and two saddle equilibria, we arrive at the
conclusion that inAhidden a hidden strange attractor
is computed.
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Figure 3: Hidden attractor projections on(x,y), (x,z), and
(y,z).
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4 CONCLUSIONS

In the present work the application of special
analytical-numerical algorithm for hidden attractor
localization is discussed. The existence of such hid-
den attractor in classical Chua’s circuits is demon-
strated.

It is also can be noted that to obtain existence of
hidden attractor in Chua’s circuit one can artificially
stabilized (Suykens et al., 1997; Savaci & Gunel,
2006; Leonov et. al., 2010a) zero stationary point
by inserting small stable zone around zero stationary
point into nonlinearity (Chua diode characteristics).
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