
BLACK-BOX COLLISION ATTACKS ON THE COMPRESSION
FUNCTION OF THE GOST HASH FUNCTION

Nicolas T. Courtois and Theodosis Mourouzis
Computer Science, University College London, Gower Street, WC1E 6BT, London, U.K.

Keywords: Hash functions, Block ciphers, GOST, Compression function, Cryptanalysis, Generic attacks, Collisions.

Abstract: The GOST hash function and more precisely GOST 34.11-94 is a cryptographic hash function and the official
government standard of the Russian Federation. It is a key component in the national Russian digital signature
standard. The GOST hash function is a 256-bit iterated hash function with an additional checksum computed
over all input message blocks. Inside the GOST compression function, we find the standard GOST block
cipher, which is an instantiation of the official Russian national encryption standard GOST 28147-89.
In this paper we focus mostly on the problem of finding collisions on the GOST compression function. At
Crypto 2008 a collision attack on the GOST compression function requiring 296 evaluations of this function
was found. In this paper, we present a new collision attack on the GOST compression function which is
fundamentally different and more general than the attack published at Crypto 2008. Our new attack is a black-
box attack which does not need any particular weakness to exist in the GOST block cipher, and works also if
we replace GOST by another cipher with the same block and key size. Our attack is also slightly faster and
we also show that the complexity of the previous attack can be slightly improved as well.
Since GOST has an additional checksum computed over all blocks, it is not obvious how a collision attack
on the GOST compression function can be extended to a collision attack on the hash function. In 2008
Gauravaram and Kelsey develop a technique to achieve this, in the case in which the checksum is linear or
additive, using the Camion-Patarin-Wagner generalized birthday algorithm. Thus at Crypto 2008 the authors
were also able to break the collision resistance of the complete GOST Hash function.
Our attack is more generic and shows that the GOST compression function can be broken whatever is the
underlying block cipher, but remains an attack on the compression function. It remains an open problem how
and if this new attack can be extended to a collision attack on the full GOST hash function.

1 INTRODUCTION

The GOST 34.11-94 hash function is defined in the
national Russian hash standard (GOST, 1994) and a
key component on the national Russian digital signa-
ture standard. It is a 256-bit hash function which has
an iterative structure like most of the common hash
functions such as MD5 and SHA-1 with a particular-
ity that it involves an extra checksum computed over
all input message blocks. The value of this checksum
is an input to the final compression function.

The GOST hash function is based on the GOST
28147-89 block cipher. The specification of the
GOST block cipher can be found in (I.A. Zabotin,
1989). GOST 28147-89 is a well-known block cipher
which started as an official government standard of
the former Soviet Union, and remains the official en-
cryption standard of the Russian Federation. GOST
has very large 256-bit keys and is intended to provide

a military level of security. Very few serious stan-
dardized block ciphers were ever broken, and until
2010 the consensus in the cryptographic community
was that GOST could or should be very secure, which
was summarized in 2010 in these words: “despite
considerable cryptanalytic efforts spent in the past 20
years, GOST is still not broken”, see (A. Poschmann,
2010). In addition GOST is an exceptionally compet-
itive block cipher in terms of the cost of implementa-
tion, see (A. Poschmann, 2010). Accordingly, in 2010
GOST was submitted to ISO, to become a worldwide
industrial encryption standard.

Then suddenly the GOST cipher was shown to
be broken by several new attacks, see (Isobe, 2011;
Courtois, b; Courtois, a). It is however not neces-
sary at all to be able to break the block cipher, in or-
der to find attacks on the hash function. Here the at-
tacker has much more freedom to control and manip-
ulate the key. He can exploit weak keys, related keys,

325T. Courtois N. and Mourouzis T..
BLACK-BOX COLLISION ATTACKS ON THE COMPRESSION FUNCTION OF THE GOST HASH FUNCTION.
DOI: 10.5220/0003525103250332
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 325-332
ISBN: 978-989-8425-71-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

and other ideas to benefit from the additional degrees
of freedom available. There is a substantial amount
of published work which deal with these aspects of
GOST, see (Kara, 2008; Isobe, 2011; Courtois, a) for
a more complete bibliography. In this paper we will
look only at one aspect of GOST which is the study of
symmetric fixed points in GOST (Kara, 2008; Isobe,
2011; Courtois, a; F. Mendel N. Pramstaller, 2008),
which are those which are relevant in the attack on the
GOST hash function (F. Mendel N. Pramstaller, 2008)
presented at Crypto 2008. In our attack we will not
use any particular property of GOST, only a higher-
level self-similarity property: one inside the compres-
sion function, namely the fact that it uses the same
block cipher several times. This is a very weak prop-
erty present in many cryptographic constructions.

1.1 Hash Functions

A hash functionH : {0,1}∗ → {0,1}n is a map that
maps a messageM of arbitrary but finite length
to a fixed-length hash value. Cryptographic hash
functions are never injective and have many appli-
cations in information security such as digital sig-
natures, message authentication codes (MACs) and
other forms of authentication (Schneier, 1996). The
three main security requirements for cryptographic
hash functions are one-wayness, second pre-image
resistance, and collision resistance (Schneier, 1996;
J. Talbot, 2006). The properties which seem to be the
hardest to achieve for the designers of hash functions,
or those on which most successful attacks concentrate
are second pre-image resistance, and collision resis-
tance. Each property has its own generic attacks and
their complexity determines the security objective to
be attained, as shown in Table 1. Any attack below
this bound will be considered as a valid shortcut at-
tack on this security property.

Table 1: Number of messages needed to perform an attack.

Resistance type Number of messages
Collision 2n/2

Pre-image 2n

Second pre-image 2n

We can remark that the reference attack complexity
level for collision attacks on hash functions is much
smaller than in the other two security notions, due
to the well-known birthday paradox (Schneier, 1996).
This security requirement depends only on the size of
the output space. In the GOST hash function, the out-
put space for the compression function which hashes
messages of a fixed length, and for the full hash func-
tion which hashes messages of variable length, are of

the same size, both outputs are 256 bits long. Accord-
ingly in both cases the goal of the attacker is to find
an attack faster than 2128 times the cost of comput-
ing the compression function. We stress the fact that
for the hash functions the reference unit is also the
cost of computing the compression function, and the
cost of computing the hash function is variable. These
bounds correspond closely to what really is achieved
by generic attacks on hash functions. In both cases,
any attack to compute collisions faster than 2128 com-
putations of the GOST compression function, will be
considered as a valid shortcut attack which allows to
break the given (hash or compression) function.
Attacks on hash functions can occur at three dis-
tinct levels. Some of the attacks on hash function
are generic and high-level attacks related to high-
level construction used in a specific hash function,
such as the Merkle-Damgård construction (Damgård,
1990). Other are more specific attacks exhibit a spe-
cific weaknesses of a given compression function. Fi-
nally in block-cipher based constructions, one can
also go one level deeper and exploit particular weak-
nesses of the underlying block cipher.

It is well known that if the compression func-
tion is collision-resistant, so is the resulting Merkle-
Damgård construction (Damgård, 1990). If the com-
pression function is not collision-resistant, as it is the
case in this paper, it may be possible or not to extend
the attack to the full hash function, but the exact way
to do that will depend a lot on the high-level construc-
tion.

1.2 Specificity of GOST Hash

At Crypto 2008 an attack on the GOST compression
function of complexity of 296 evaluations of the com-
pression function is presented. Then the attack is ex-
tended to a collision attack on the full GOST hash
function with a complexity of 2105 evaluations of the
compression function, see (F. Mendel N. Pramstaller,
2008). This extension is a non-trivial step. GOST
contains a major innovation compared to many clas-
sical hash functions based on the Merkle-Damgård
construction (Damgård, 1990). It has an additional
checksum computed over all input message blocks
which is hashed in the last application of the com-
pression function. However in 2008 Gauravaram and
Kelsey demonstrated that if the checksum is linear or
additive, one can still do the extension of the attack
and this independently of the underlying compres-
sion function (P. Gauravaram, 2008). The extension
method uses the Camion-Patarin-Wagner generalized
birthday attack (P. Camion, 1991; Wagner, 2002).
Thus at Crypto 2008 the authors were able also to

SECRYPT 2011 - International Conference on Security and Cryptography

326

break the collision resistance of the complete GOST
Hash function. Hence, this sort of extra checksum
does not prevent GOST and many other hash func-
tions from being cryptanalysed.

1.3 Our Focus

The attack on the GOST hash function presented at
Crypto 2008 is an extension of an attack on the un-
derlying compression function of complexity of 296

evaluations of the compression function (F. Mendel
N. Pramstaller, 2008). This attack is based on a spe-
cific weakness of the GOST block cipher, where given
some plaintexts with a specific structure, the attacker
can construct a fixed point for the block cipher by con-
structing a fixed point in the first eight rounds (Kara,
2008).

In this paper, we present a generic black-box at-
tack on the GOST compression function with im-
proved complexity which also works if we replace the
GOST by any other cipher with the same block and
key size. Our attack is very different from the attack
presented by Mendelet al(2008) (F. Mendel N. Pram-
staller, 2008). Currently we are not able to propose an
extension of this new attack for the full GOST hash
function.

Our collision attack on the compression function
works by exploiting the linear nature of key deriva-
tion and other components of the compression func-
tion and by constructing a certain subspace where we
are going to be able to exploit the self-similarity of
the GOST compression method, and force two GOST
encryptions to coincide, without exploiting any weak-
nesses in the internal structure of the GOST block ci-
pher. Our attack shows that attacks of the same com-
plexity can be performed for any hash function built
in the same way, regardless whether the GOST cipher
is or not a secure cipher in some sense.

Table 2: Comparison of results regarding collision attacks
for the compression function of the GOST hash function.

Source Attack complexity
Mendelet al(2008) 296

Our Improvement 295.58

This work 295.58

2 GOST HASH FUNCTION

The GOST hash function, defined in the Russian gov-
ernment standard GOST R 34.11-94 and it is a cryp-
tographic hash function which outputs 256-bit hash
values. It processes message blocks of 256-bits and if

the number of bits of the given message is not a mul-
tiple of 256 then an extra padding to the final block is
added. A more detailed description of the GOST hash
function is found in (GOST, 1994).

Its high level structure does more work than
just following the Merkle-Damgård design principles
used in common hash functions such as MD5 and
SHA-1. In addition to the same iterated structure, it
has is the extra checksum, which has to be computed
over all input blocks and is an input to the very last
hash block. On Figure 1 below we recall the struc-
ture of the GOST hash function wheref stands for
the compression functionGF(2)256+256→ GF(2)256.

Figure 1: The structure of the GOST hash function.

The hash valueh=H(M) is computed recursively us-
ing the following formulas:

H0 = IV (1)

Hi = f (Hi−1,Mi) (2)

Ht+1 = f (Ht , |M|) (3)

h= f (Ht+1,Σ) (4)

whereΣ is the sum of all the message blocksMi com-
puted modulo 2256, IV is the fixed initial vector given
to the compression function and where|M| is the size
in bits of the entire message.
In this paper, we focus on the properties of the com-
pression function and we will work on how to con-
struct a collision for the compression function without
using any mathematical or structural properties of the
GOST cipher. The compression functionf consists
of three basic components, the State update transfor-
mation, the Key generation and the Output transfor-
mation which are shown on Figure 2.

Figure 2: The three different components of the compres-
sion function.

BLACK-BOX COLLISION ATTACKS ON THE COMPRESSION FUNCTION OF THE GOST HASH FUNCTION

327

From Figure 2 we observe that the intermediate hash
value Hi−1 affects all the three components of the
compression function. In the following subsection we
go through the full details of these three components
which are appropriate for our security analysis of the
GOST hash function.

2.1 State Update Transformation

The state update transformation as shown on Fig-
ure 3 is the “four encryptions in parallel” compo-
nent of the underlying compression function. Here
the GOST block cipher(E) is used four times in par-
allel to encrypt the intermediate hash valueHi−1 =
h3||h2||h1||h0 wherehi ∈ {0,1}64 for 0 ≤ i ≤ 3 and
output a 256-bit valueS= s3||s2||s1||s0 wheresi ∈
{0,1}64 for 0≤ i ≤ 3 as described below:

s0 = E(k0,h0) (5)

s1 = E(k1,h1) (6)

s2 = E(k2,h2) (7)

s3 = E(k3,h3) (8)

HereE(K,P) is the encryption of the given plaintext
P on 64-bits with a keyK on 256-bits using the GOST
cipher. The cost of evaluating the whole compression
function depends essentially on the cost on these four
encryptions, while as we will see later, all the other
components are very inexpensive to implement, being
very simple linear operations. Figure 3 gives a more
detailed presentation of the compression function of
the GOST hash function.

Figure 3: The compression function of GOST.

2.2 Key Generation

The key generation of GOST produces a 1024-bit key

K using the intermediate hash valueHi−1 and the mes-
sage blockMi . The key is split in four 256-bit compo-
nentsk3||k2||k1||k0 and each component is computed
using the following formulas:

k0 = P(Hi−1⊕Mi) (9)

k1 = P(A(Hi−1)⊕A2(Mi)) (10)

k2 = P(A2(Hi−1)⊕Const⊕A4(Mi)) (11)

k3 = P(A(A2(Hi−1)⊕Const)⊕A6(Mi)) (12)
The mapsA and P are linear transformations and
Const is a constant. The fact that these maps are lin-
ear is the keystone to our attack since they force linear
relations to hold between bits of the keys and bits of
the messages and the intermediate hash value.

2.3 Output Transformation

The output transformation is the final transformation
which is applied in order to produce the output value
Hi of the compression function. The inputs given to
the output transformation are the intermediate hash
valueHi−1, the message blockMi and the output of
the state update transformationS. The output value
Hi is computed in the following way.

Hi = ψ61(Hi−1⊕ψ(Mi ⊕ψ12(S))) (13)
whereψ is a linear and invertible transformation from
{0,1}256 to {0,1}256 given by:

ψ(X) = (x0⊕x1⊕x2⊕x3⊕x12⊕x15)||x15||x14||...||x1
(14)

where the vectorX ∈ {0,1}256 is written as
x15||x14||....||x0 with eachxi ∈ {0,1}16.
Since the mapψ is linear and invertible, equation(13)
can be written as:

ψ−74(Hi) = ψ−13(Hi−1)⊕ψ−12(Mi)⊕S (15)

By the linearity ofψ we have that this equation in-
duces linear equations on the bits ofHi which involve
bits of Hi−1,Mi andS. Also the termψ−74(Hi) is lin-
early related toHi so any change in the bits of the lat-
ter term affects linearly the bits of the first term. This
observation is the basic idea behind our construction
of the collision for the compression function.

3 COLLISION ATTACKS ON THE
GOST HASH FUNCTION

This section is divided in three main parts. In the first
part we recall some basic facts about existing colli-
sion attacks on hash functions. Then we explain the
collision attacks by Mendelet al(2008) from Crypto
2008. Then we present our new black-box collision
attack on the GOST hash function.

SECRYPT 2011 - International Conference on Security and Cryptography

328

3.1 Collision Attacks on GOST and
other Hash Functions

As explained before, attacks on hash functions are ei-
ther generic high-level structural attacks, or more spe-
cific attacks. In the case of generic or high-level at-
tacks the hash function or a smaller component of it is
treated as a black box and the running time of this type
of attacks is evaluated in terms of how many time the
hash function or another component of the hash func-
tion needs to be evaluated. An example of a generic
attack but of very high complexity is a brute force at-
tack in the case of finding a second preimage.

Specific attacks depend on what is inside specific
components. For a hash function based on a block ci-
pher, one example of a specific attack is a weak-key
attack (Schneier, 1996). A weak key is a key with a
specific structure which when used in a specific ci-
pher makes the cipher to behave in a particular way.
Weak keys do not matter that much in attacks on con-
fidentiality encryption because very keys are usually
random and weak keys will very rarely be able to oc-
cur in any realistic scenario. However weak keys do
matter a lot in attacks on hash functions, where the
attacker is able to somewhat choose the keys to be not
random, and exploit the special cases where they be-
come weak. Thus many weak-key attacks on block
ciphers, hardly in encryption, can potentially become
a serious threat when these ciphers are used to build
hash functions.

Another important type of attacks on block ci-
phers which are by extension applicable and applied
in hash function cryptanalysis are the fixed-point at-
tacks. This was exploited at Crypto 2008 to break the
GOST hash function.

3.2 Fixed Point Attacks in
Cryptanalysis of GOST Hash

In the particular case of GOST interesting fixed points
are those which are also symmetric plaintexts. This is
due to a so called Reflection property (Courtois, b;
Kara, 2008). This is what allows Mendelet al(2008)
at Crypto 2008 to propose a first attack on the GOST
hash function found so far. Their attack belongs to
the category of the specific attacks exploiting the un-
derlying GOST cipher and specifically the ability of
the attacker to efficiently construct specific types of
symmetric fixed points for the GOST cipher. Overall
it allows to construct a collisions fro the full GOST
hash with a total complexity of 2105 evaluations of the
compression function. In what follows we are going
to summarize this attack and look at particular struc-
tural and time complexity aspects of this attack. The

attack consists of the following three main steps:

First Step. Find a collision on the underlying com-
pression function of the GOST hash function. The
objective of this attack is to fixs0 wheres0 =E(k0,h0)
is the first instance of GOST encryption and fix some
other linear combinations of inputs of the compres-
sion function, so that overall we will be able to reduce
the entropy ofX = ψ−74(Hi) by 64 bits which is to be
achieved by fixing 64 rightmost bits ofX, which is
calledx0 to some constant value. In order to obtain
this constant valuex0 a specific construction of fixed
points for the fist instance of GOST block cipher is
proposed with a third added condition which will be
specified in terms of linear constraints on GOST key
bits, and a forth condition that in all these fixed points
the input is a fixed value,

Finally their construction leads to an enumeration
of 296 GOST keysk0 which are all guaranteed to work
for our fixed and chosen fixed points0. Then the at-
tacker computes the compression function in each of
these cases where the choice ofk0 also implies other
conditions and allows him to choose pairsHi−1,Mi
which give thisk0, and additional conditions to im-
pose that the input of the first GOST instance is the
exact symmetric fixed point, and that the outputs of
s0 and 64 bits ofHi are meaningfully related.

In each of these 296 pairs Hi−1,Mi we need to
compute the GOST hash function, however since we
are able to fix the input of the first GOST instance
out of 4 and make it always produce the same output,
it is easy to see that the cost of their attack isLESS
than 296 compression function evaluations as claimed
in the paper, but only 3/4 ·296 = 295.58 compression
function evaluations. The same cost saving will be
obtained in our attack.

Then by exploring collisions in the space where
the compressed output valueX = ψ−74(Hi) lies in a
linear space of dimension 256−64= 192, we can fi-
nally construct a collision for the compression func-
tion with the complexity of about 2192/2 = 296 evalu-
ations.

Second Step.Use the collisions on the compression
function to construct collisions in the iterative struc-
ture. To achieve these they use a standard technique
with multicollisions. The result of this construction is
a 2128 multicollision of about 128· (296+232) = 2103

evaluations of the compression function.

Third Step. Construct a collision for the fi-
nal sum exploiting multicollisions and the Camion-
Patarin-Wagner generalized birthday paradox method
(P. Camion, 1991; Wagner, 2002) and get a collision
attack on the GOST hash function with an overall to-
tal complexity of 2105 evaluations of the underlying
compression function.

BLACK-BOX COLLISION ATTACKS ON THE COMPRESSION FUNCTION OF THE GOST HASH FUNCTION

329

3.3 A New Black-box Collision Attack
on the Compression Function of the
GOST Hash Function

In this section, we present a new collision attack on
the GOST compression function with the same com-
plexity of about 295.58 evaluations of the compression
function. The major novelty here is that the attack
which we present is a generic attack and it does not
exploit any weaknesses in the design or construction
of the GOST cipher. Our attack works also if the
GOST cipher is replaced by any other cipher with the
same block size and the same key size.

First we establish our notation. We represent the
compression function by the following map:

C : (Mi ,Hi−1)→ Hi , (16)

whereMi ,Hi ,Hi−1 ∈ {0,1}256 represent elements in
the message space(M), compression function output
space(G) and intermediate hash values space(H) re-
spectively.

Then our aim is to find two distinct pairs
(Mi ,Hi−1) which give the same hash value. In our
construction we will construct a linear subspace of
M×H which is mapped under the compression func-
tion C to another linear output subspace ofG with
a small enough dimension. As in the previous at-
tack, the dimension of this output space will be small
enough so that the birthday attack allow us to find col-
lisions. Unlike in the previous attack by Mendelet
al(2008) the input space is also a linear space.

We do this by considering the subspace ofM×H
described by the following relations:

k0 = k1 (17)

h0 = h1 (18)

wherek0,k1 ∈ {0,1}256 are the rightmost bits of the
keyK andh0,h1 ∈ {0,1}64 the rightmost bits ofHi−1.
Equating bits of the key is reasonable since in the
case of attacks on hash functions the attacker has full
control over the key.
The bits of the key are linear functions of the bits
of Hi−1 and M. Thus relation(17) imposes 256
linear equations on the spaceM × H by equating
each bit component ofk0 with the corresponding bit
component ofk1, while relation (18) imposes 64
linear equations overM.
Additionally, if we consider the output transformation
applied on the pair(Hi−1,M) we have that:

ψ−74(Hi) = ψ−13(Hi−1)⊕ψ−12(Mi)⊕S (19)

whereψ is a linear and invertible map, as in the pre-
vious attack.

Considering the encryption component of the cipher
we have thats0 = s1 for the encrypted messageS=
s3||s2||s1||s0 since we have encryption of identical
blocks under identical keys. In our overall attack, the
cost of each step involves 296 evaluations of the com-
pression function, however will be under the condi-
tions where two instances of the GOST cipher have
identical keys and identical data, thus neglecting the
cost of linear operations, very small compared to 4
evaluations of the GOST cipher done in each com-
pression function, the actual cost of our construction
construction will be only 3/4 ·296 evaluations of the
compression function.
The fact thats0 = s1 induces a set of 64 linear equa-
tions which are satisfied by the bits of the output of the
compression function. Thus this forces the dimension
of the image to be 192.
In total we have 384 linear equations onM ×H. So
the kernel of the linear mapA which has as entries the
coefficients of these linear equations has dimension
at least 128 so there exist at least 2128 solutions to the
system of these linear equations.
Hence we have constructed the restriction of the map
C to a smaller subspace ofM ×H which contains at
least 2128 elements. The resulting image of this sub-
space under the mapC has dimension 192 since the
dimension of the full space is 256 and we added an-
other 64 linear relations. Hence by the birthday para-
dox if we sample 2192/2 = 296 elements in this proper
subspace ofM×H we get a collision with a probabil-
ity approximately 1/2.

Figure 4: The restriction map that we have constructed from
{0,1}128 to {0,1}192.

However, equations(17) and (18) suggest that
only 3/4 of the input-message needs to be encrypted
sinces0 = s1. This shows that our attack has complex-
ity of 296×3/4 of the compression function which is
approximately 295.58.

Note that it should be possible to prove that
the map that we have constructed from{0,1}128 to

SECRYPT 2011 - International Conference on Security and Cryptography

330

{0,1}192 which is a restriction map of the compres-
sion function to the subspace given by the equations
above is not injective. It seems that the probability
that it is not injective is very small. If we assume
GOST is a pseudorandom permutation, then every bit
of this map can be seen as a XOR of linearly inde-
pendent linear combinations of the bits coming from
three active blocks of the GOST block cipher, XORed
with some linear combinations of input bits. A sim-
pler way to actually check that this map is not injec-
tive will be to run our complete attack only once.

The attack can be summarized as follows:
1. Consider the following system of 384 equations

overGF(2):

(a) k0 = k1

(b) h0 = h1

(c) s0 = s1 in ψ−74(Hi) = ψ−13(Hi−1) ⊕
ψ−12(Mi)⊕S

2. Form the matrixA which has as entries the coef-
ficients of the solutions(M,H) found for the sys-
tem above.

3. Find a basis for the kernel of this matrix which
has dimension at least 128. The kernel contains at
least 2128 elements so there are at least so many
solutions to the system of equations above.

4. Sample 296 elementsr1, r2, ..., r296 which belongs
to the space of solutions randomly.

5. Compute the corresponding hash values of these
elementsH(r1),H(r2), ...,H(r296). Storing these
outputs in a data structure such as a hash table
which allows to search for collisions on the go and
in constant time per every new value.

6. Output a collision. Because of the complexity and
pseudo-random behaviour of the GOST encryp-
tion, the resultsH(r i) are expected to behave like
random elements of our output space of dimen-
sion 192. Then the birthday paradox states that
there is a high probability for a collision to be
found by random sampling.

4 CONCLUSIONS

The GOST 34.11-94 hash function is an important na-
tional Russian government standard and a key com-
ponent in the national Russian digital signature stan-
dard. At Crypto 2008 a collision attack on the GOST
compression function requiring 296 evaluations of this
function was found. It was based on a specific weak-
ness in the GOST block cipher such as the possibil-
ity to efficiently enumerate fixed-points for plaintexts
with special properties and for 8 rounds of GOST, and

the fact that this leads to a construction of many ap-
propriate fixed points for 32 rounds of GOST. This
attack on the compression function was extended to a
collision attack with a complexity of 2105 evaluations
for the whole GOST hash function.

In this paper we presented a new collision attack
on the GOST compression function which is funda-
mentally different and more general than the attack
published at Crypto 2008. Our new attack is a generic
black-box attack which does not need any particu-
lar weakness to exist in the GOST block cipher, and
works also if we replace GOST by another cipher with
the same block and key size. In this way it is pos-
sible to see that from the strict point of view of the
GOST compression function, the problem is not that
much the GOST cipher itself which is now known to
be weak in more than one way (Isobe, 2011; Cour-
tois, b; Courtois, a). We have demonstrated that there
is also a definite flaw in the way in which the cipher is
used here. This in particular is really due to the self-
similarity of the high level structure, with 4 identical
encryption blocks, where the attacker can try to ex-
ploit the self-similarity to force these blocks to be in
the same state. The attack is also helped by the lin-
earity of certain components such as the internal key
derivation function. Thus we are able to find colli-
sions on the GOST compression function which do
not exploit the internal structure of any particular ci-
pher.

The importance of self-similarity in symmetric
cryptanalysis remains under-estimated by designers,
and it is a source of plenty of new cryptographic at-
tacks every year. For example in the numerous very
recent attacks which allow to break the GOST ci-
pher in encryption (Isobe, 2011; Courtois, b; Cour-
tois, a). In attacks on hash functions the attacker has
even more freedom to exploit this self-similarity. The
easiest way to avoid this type of attacks in the de-
sign of hash functions will be to remove this structural
self-similarity, for example by using a block cipher
with large blocks, rather than four copies of the same
block cipher. However a block cipher with very large
blocks would be very costly while GOST is a block
cipher which is exceptionally economical in imple-
mentation, see (A. Poschmann, 2010). There is an-
other simple way to avoid this type of self-similarity
attack: simply to use a different set of S-boxes in each
instantiation of the GOST block cipher.

Our new attack is also slightly faster than the pre-
vious attack, and the complexity is only 295.6 eval-
uations of the compression function. Moreover we
also slightly improve the complexity of the previous
attack by remarking that each compression in their at-
tack can also be computed more efficiently.

BLACK-BOX COLLISION ATTACKS ON THE COMPRESSION FUNCTION OF THE GOST HASH FUNCTION

331

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees of this
paper who helped us a lot to improve it.

REFERENCES

A. Poschmann, S. Ling, H. W. (2010). 256 bit standard-
ized crypto for 650 ge gost revisited. InCHES 2010
Proceedings.

Courtois, N. Algebraic complexity reduction
and cryptanalysis of gost. Unpublished
manuscript, 17 February 2011. 28 pages.
MD5=d1e272a75601405d156618176cf98218.

Courtois, N. Security evaluation of gost 28147-89 in
view of international standardisation. Unpublished
manuscript, 2011. Available: http:// www.nicolas
courtois.com/papers/gostreport.pdf (2011/05/01).

Damgård, I. (1990). A Design Principle for Hash Func-
tions. In Brassard, G., editor,Advances in Cryptology
– CRYPTO ’89, Proceedings, volume 435 ofLNCS,
pages 416–427. Springer.

F. Mendel N. Pramstaller, C. Rechberger, M. K. J. S. (2008).
Cryptanalysis of the GOST Hash Function. In Wag-
ner, D., editor,Advances in Cryptology – CRYPTO
2008, Proceedings, volume 5157 ofLNCS, pages
162–178. Springer.

GOST, C. R. F. (1994). GOST R 34.11-94, the Rus-
sian hash function standard.Government Standard
of the Russian Federation, Government Committee of
Russia for Standards, in Russian. English transla-
tion by Michael Roe available as gost34.11.ps inside:
http://www.autochthonous.org/crypto/gosthash.tar.gz.

I.A. Zabotin, G.P. Glazkov, V. I. (1989). Gost
28147-89, cryptographic protection for informa-
tion processing systems. Government Standard
of the USSR, Government Committee of the USSR
for Standards, in Russian. English translation
gost28147.ps by Aleksandr Malchik available inside:
http://www.autochthonous.org/crypto/gosthash.tar.gz.

Isobe, T. (2011). A single-key attack on the full gost block
cipher. InFast Software Encryption 2011, Proceed-
ings, LNCS. Springer.

J. Talbot, D. W. (2006). Complexity and Cryptography.
Cambridge University Press, Cambridge, 1st edition.

Kara, O. (2008). Reflection cryptanalysis of some ci-
phers. InIndocrypt 2008 Proceedings, volume 5365
of LNCS, pages 294–307. Springer.

P. Camion, J. P. (1991). The Knapsack Hash Function
proposed at Crypto’89 can be broken. In Davies,
D. W., editor,Advances in Cryptology – EUROCRYPT
’91, Proceedings, volume 547 ofLNCS, pages 39–53.
Springer.

P. Gauravaram, J. K. (2008). Linear-XOR and Additive
Checksums Don’t Protect Damgård-Merkle Hashes
from Generic Attacks. In Malkin, T., editor,Topics
in Cryptology – CT-RSA 2008, volume 4964 ofLNCS,
pages 36–51. Springer.

Schneier, B. (1996).Applied Cryptography: Protocols, Al-
gorithms and Source Code in C. John Willey, New
York, 2nd edition.

Wagner, D. (2002). A Generalized Birthday Problem. In
Yung, M., editor,Advances in Cryptology – CRYPTO
2002, Proceedings, volume 2442 ofLNCS, pages
288–303. Springer.

SECRYPT 2011 - International Conference on Security and Cryptography

332

