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Abstract: In this paper, a novel learning methodology is presented and discussed with reference to the application of vir-
tual sensors in the semiconductor manufacturing environment. Density estimation techniques are used jointly
with Renyi’s entropy to define a loss function for the learning problem (relying on Information Theoretic
Learning concepts). Furthermore, Reproducing Kernel Hilbert Spaces (RKHS) theory is employed to handle
nonlinearities and include regularization capabilities in the model. The proposed algorithm allows to estimate
the structure of the predictive model, as well as the associated probabilistic uncertainty, in a nonparametric
fashion. The methodology is then validated using simulation studies and process data from the semiconduc-
tor manufacturing industry. The proposed approach proves to be especially effective in strongly nongaussian
environments and presents notable outlier filtering capabilities.

1 INTRODUCTION

Virtual sensors are employed in many industrial set-
tings to predict the result of an operation (most often a
measurement) when the implementation of an actual
sensor would be uneconomic or impossible (Rallo
et al., 2002). In general, a virtual sensor finds and
exploits a relation between some easily collectible
variables (input) and one or moretarget (output)
variables. Virtual sensor modeling techniques range
from purely physics-based approaches (Popovic et al.,
2009) to machine learning and statistical methodolo-
gies (Wang and Vachtsevanos, 2001). This paper
is motivated by a specific class of virtual sensors
used in semiconductor manufacturing, namely Vir-
tual Metrology (VM) tools. The measurement op-
erations on processed silicon wafers are particularly
time-consuming and cost-intensive: therefore, only a
small subset of the production is actually evaluated
(Weber, 2007). Conversely, Virtual Metrology tools
are able to predict metrology results at process time
for every wafer, relying only on process data: such
predictions are expected to reduce the need for ac-
tual measurement operations and, at the same time,
establish positive interactions with metrology-related
equipment tools (such as Run-to-Run controllers and
decision aiding tools).

A Virtual Metrology tool is expected to(i) find
and exploit complex, nonlinear relations between pro-
cess data and metrology results, and(ii) assess pre-
diction uncertainty in a meaningful way; in order to
achieve such goals, it is key to make the right assump-
tions on the observed data. Remarkably, a precise
characterization of the process variability is in gen-
eral hard to obtain: for instance, the observed data
might be distributed according to fat-tailed or strongly
non-Gaussian distributions, be affected by outliers or
present signs of multimodality; it is to note that such
difficulties are shared among many disciplines (Ack-
erman et al., 2010). It is intuitive that suboptimal as-
sumptions are likely to result in ineffective predictive
models. In this paper, we present a novel methodol-
ogy, inspired by Information Theoretic Learning the-
ory (Principe, 2010), to tackle such an issue employ-
ing a regularized Reproducing Kernel Hilbert Space
(RKHS) framework jointly with nonparametric den-
sity estimation techniques. The proposed approach is
able to simultaneously estimate nonlinear predictive
models and the associated prediction uncertainty, en-
abling the delivery of probabilistic predictions. The
paper is structured as follows:

• Section 2 introduces the needed elements of ma-
chine learning and Kernel methods.
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• Section 3 presents and justifies the proposed ap-
proach from a theoretical point of view.

• Section 4 tests the proposed methodology against
simulation studies and data from the semiconduc-
tor manufacturing environment.

Appendix A is devoted to numerical techniques
used to solve the proposed problem, while Appendix
B contains mathematical proofs.

2 MACHINE LEARNING AND
KERNEL METHODS

The goal of a learning task is to estimate, from data, a
relationship between an input spaceX and an output
spaceY . In order to achieve such result, it is neces-
sary to rely on a set of observationsS = {xi ∈ X ,yi ∈
Y , i = 1, . . . ,N}. In other words, the goal is to find
a mapf : X → Y such that, given a new observation
{xnew ∈ X ,ynew ∈ Y }, f (xnew) will adequately pre-
dict ynew. In this framework,S is called atraining set
and the functionf is an estimator. In the follow-
ing, let f depend on a set of parametersθ, such that
f (x) := f (x;θ); the optimization ofθ with respect to
some suitable criterion (function ofS andθ) leads to
the creation of a predictive model.

2.1 Regularized Machine Learning

In this paper, a regularized machine learning setting is
employed to introduce and test the proposed method-
ology: the estimatorf is found by minimizing some
loss functionJ (θ) with respect toθ. Such loss func-
tion is usually the sum of aloss termL and aregular-
ization termR , so that

J (θ) = L (θ)+λR (θ) (1)

In this framework, given a model specified byθ, L
measures the quality of approximation on the train-
ing setS andR is a measure of the complexity of the
model. Intuitively, the coexistence ofL andR relates
to a tradeoff between model regularity and perfor-
mances onS . The regularization parameterλ ∈ R

+

acts as a tuning knob for such tradeoff: asλ grows, the
order of the selected model gets lower and lower. In
this paradigm, a learning algorithm is entirely speci-
fied by (i) the loss termL (θ), (ii) the regularization
term R (θ) and (iii) the estimator structuref (x;θ).
Remarkably, this structure assumes that the prediction
of a genericyi can be obtained, at best, up to a random
uncertainty (depending onL ). In other words, adopt-
ing an additive error paradigm, it is implied that

yi = f (xi)+ εi

whereεi is a random variable whose distribution
depends onL .

In the following, letX ≡ R
p and, with no loss of

generality,Y ≡ R. The goal is to build a mapf :
R

p → R of the relationship between an input dataset
X ∈R

N×p and an array of target observationsY ∈R
N.

Furthermore, letxi be thei-th row of X, andyi be the
i-th entry ofY.

2.2 Linear Predictive Models

Perhaps the most notable example of estimation tech-
nique is the method of Least Squares, that can be
traced back to Gauss and Legendre. Such method-
ology assumes a linear relationship between the input
and output spaces, so that

f (xi) := f (xi ;w) = xiw (2)

wherew is a p-variate vector of parameters. Fur-
thermore, letL be the sum of squared residuals

L (w) =
N

∑
i=1

(yi − f (xi))
2 (3)

and letR (w) ≡ 0. The optimalw∗ (minimizer of
L (w)) is then

w∗ = (X′X)−1X′Y

When a new input observationxnew is available,
the optimal least squares prediction ofynew is

ŷnew= E[ynew|xnew] = xneww∗

Equation (3) implies a Gaussian distributedεi with

εi ∼ N(0,σ2)

whereσ2 is the variance of the observation un-
certainty. Notably, ˆynew is independent ofσ2: it is
necessary to tune the variance term only if a prob-
abilistic output is needed (such as prediction confi-
dence intervals). Least squares is a simple yet pow-
erful method that suffers from two main drawbacks,
namely(i) overfitting in high-dimensional spaces (p
close toN) and (ii) possible ill-conditioning of the
matrixX′X. In order to overcome such issues, a regu-
larization term is employed: by using (2) and (3), and
letting

R (w) =
N

∑
i=1

w2
i

Ridge Regressionis obtained. More and more sta-
ble (low sum of squared coefficients) models are se-
lected asλ grows, at the cost of worsening the per-
formances on the training set. The idea behind Ridge
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Regression is that the optimalλ allows to build a pre-
dictor that includes all and only the relevant informa-
tion. The optimal Ridge Regression coefficient vector
is

w∗ = (X′X+λI)−1X′Y

Similarly to least squares, it is not necessary to
explicitly address the tuning of the error varianceσ2

unless a probabilistic output is needed.

2.3 Nonlinear Predictive Models

It is apparent that (2) defines a linear relationship be-
tween thep-variate input space and the output space.
In a wide variety of applications, however, a lin-
ear model is not complex enough to obtain the de-
sired prediction performances. An unsophisticated
approach would be to adopt anexpanded basis(aug-
menting the input setX with nonlinear functions of its
columns - for instance, polynomials) to tackle such
issue. It is to note, however, that this simple ap-
proach would yield computationally intractable prob-
lems also for a relatively small values ofp (Hastie
et al., 2005): nonlinearities are more efficiently han-
dled using kernel-based methodologies. In the case
of Ridge Regression, consider a symmetric positive
definite matrixK ∈ R

N×N whose entries arise from
a suitable positive definite inner productK (kernel
function), such that

Ki j = K (xi ,x j) (4)

Furthermore, consider the model structure

f (xi) = Kic (5)

whereKi is the i-th row of K, and the regulariza-
tion term

R (c) = c′Kc

In this framework,c ∈ R
N is the coefficient vec-

tor of the so-calleddual form of the learning prob-
lem, andR is the norm of f in a nonlinear Hilbert
space. The resulting modelf exploits a nonlinear re-
lationship (specified byK ) betweenX andY. This re-
sult arises from RKHS (Reproducing Kernel Hilbert
Spaces) theory and Riesz Representation Theorem:
the kernel functionK is used to establish a rela-
tionship between thep features and theN examples.
Among the most popular kernel functions, the inho-
mogeneous polynomial kernel

K (xi ,x j ;d) = (xix
′
j +1)d

incorporates the polynomial span ofX up to the
d-th grade, and the exponential kernel

K (xi ,x j ;ξ) = e
− ||xi−xj ||2

ξ2

relates to an infinite-dimensional feature space
whose bandwidth is controlled byξ2. The optimal
Kernel Ridge Regression coefficient vector is

c∗ = (K +λI)−1Y

and the predictor is

ŷnew= knewc∗

with knew= [K (xnew,x1) . . .K (xnew,xN)]. A thor-
ough review of kernel-based methodologies is beyond
the scope of this section: the interested reader can find
more information in (Scholkopf and Smola, 2002).

2.4 Learning in Nongaussian Settings

It is to note that the methodologies reviewed in this
section rely on Gaussian assumptions: the probabilis-
tic interpretation of the loss function (3) is thatynew
can be predicted, at best, with an additive Gaussian-
distributed uncertainty with fixed variance. The rea-
sons for adopting such an assumption are both histor-
ical (linking to the concept of Least Squares estima-
tion) and methodological (Central Limit Theorem and
closed form solution), but other choices are possible.
For instance, the Huber loss function (used in robust
statistics) implies a Gaussian distribution near the ori-
gin with Laplace tails and allows to reduce the weight
of outliers in the learning process. Another notable
example is theε-insensitive loss function, that relates
to a uniform distribution between[−ε,ε] with Laplace
tails, and is mainly used in Support Vector Machines
(SVM).

Remarkably, all the loss terms described in this
section rely on parametric assumptions: the uncer-
tainty is assumed to follow a specific (known) distri-
bution depending on a set of unknown parameters. In
a real setting, however, it is often not possible (and
sometimes not even desirable) to identify the uncer-
tainty distribution in a parametric way: in such situ-
ations, a more flexible characterization is needed to
achieve the best performances. In the next section, a
learning method that achieves such flexibility is pre-
sented using Density Estimation techniques jointly
with Entropy-related criteria.

3 REGULARIZED ENTROPY
LEARNING

In this section, an entropy-based learning technique
that makes no assumptions about the uncertainty
distribution is presented and discussed. The novel
methodology will be referred to as ”Regularized En-
tropy Learning”.
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Figure 1: Density estimation of uniform and lognormal dis-
tributions, using Gaussian densities.

3.1 Density Estimation and Learning

Consider a real-valued arrayε = [ε1, . . . ,εN]
′, where

everyεi is assumed to be independently drawn from
the same unknown distribution. In order to obtain a
nonparametric estimate of the probability density of
ε, it is convenient to resort todensity estimationtech-
niques (Parzen, 1962).

Remark: it would be more correct to use the term
”kernel density estimation” (KDE). In order to
avoid confusion (the word ”kernel” has different
meaning in KDE and Kernel Methods), KDE will
be referred to asdensity estimation(DE).

DE techniques are able to estimate a probability
density from a set of observations, using a mixture of
predetermined distributions. Given the vectorε, the
underlying distribution is estimated as

pε(x) =
1
N

N

∑
i=1

g(εi ;x) (6)

whereg(·;x) is a nonnegative function such that

∫ +∞

−∞
g(·;x)dx= 1

It is immediate to prove that (6) is a probability
distribution. In this paper, we employ the Gaussian
density

G(µ,σ2;x) =
1√

2πσ2
e
−
(x−µ)2

2σ2 (7)

so thatg(z;x) := G(z,σ2;x). Herebyσ2 is the
bandwidthof the estimator, related to the smoothness
of the estimated density: its tuning will be discussed
in a later subsection. The densitypε is rewritten as

pε(x) =
1
N

N

∑
i=1

G(εi ,σ2;x) (8)

that is, a Gaussian density of varianceσ2 is cen-
tered on every observationεi . With reference to the
learning setting presented in the previous section, let
εi be the estimation error (residual) on thei-th sample
of S , for some value ofc:

εi := εi(c) = yi −Kic (9)

whereKi is the i-th row of the kernel matrixK.
In the next subsection, (8) and (9) are used to define
a loss term related to the concept of information en-
tropy.

3.2 Entropy-based Loss Term

In information theory, entropy is a measure of the un-
certainty of a random variable: while an high entropy
is associated to chaos and disorder, a quiet and pre-
dictable random variable is characterized by low en-
tropy (Gray, 2010). Notably, by minimizing the en-
tropy of a random variable, a constraint is imposed
on all its moments (Erdogmus and Principe, 2002).
For this reason, the definition of an entropy-based loss
term is desirable with respect to the Least Squares
loss term, that involves only the second moment (vari-
ance). More interesting properties of such a loss term
are investigated in (Principe et al., 2000).

Shannon’s entropy, perhaps the most notable en-
tropy measure, is defined as the expected value of the
information contained in a message. Renyi’s entropy
generalizes this concept to a family of functions de-
pending on a parameterα ≥ 0. Consider a continuous
random variableε; its Renyi’s entropyHα(ε) is

Hα(ε) =
1

1−α
log

∫ +∞

−∞
pε(x)

αdx (10)

We consider the quadratic Renyi’s entropyH2(·)
of the random variableε|c, as

H2(ε(c)) =−log
∫ +∞

−∞
pε|c(x)

2dx (11)

It is easily noted thatH2(ε) reaches its infimum
whenpε(x) is a Dirac Delta (complete predictability),
and its supremum whenpε(x) is flat overR (complete
uncertainty). In order to define the desired loss term,
we consider the following

Theorem 1. Let A∈R
s×s, a∈R

s, B∈R
t×t , b∈R

t

andQ∈R
s×t . Letx∈R

t be an input variable. It holds
that

G(a,A;Qx)G(b,B;x) = G(a,A+QBQ′;b)G(d,D;x)
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with

D = (Q′A−1Q+B−1)−1

d = b+DQ′A−1(a−Qb)

It is possible to expressH2(ε) in function of a
weighted sum of Gaussian densities: this result is
summarized in the following

Proposition 1. Applying Theorem 1 (Miller, 1964)
and using (8) and (11), it holds that

H2(ε(c)) =− log

(

1
N2

N

∑
i=1

N

∑
j=1

G(yi −y j ,2σ2;(Ki −K j )c)

)

Exploiting the symmetry of the Gaussian density,
we define

H (c) :=
2

N2

N

∑
i=1

N

∑
j=i+1

G(yi − y j ,2σ2;(Ki −K j)c)

and observe thatH (c) is equal toe−H2(ε(c)) up
to an additive constant. Since the exponential trans-
formation is monotonic,

argmax
c
H (c) = argmin

c
H2(ε(c)) (12)

Equation (12) states that a minimum entropy es-
timator can be obtained by maximizing a mixture of
Gaussian densities with respect to the parameters vec-
tor c. In the following, sinceε is entirely specified by
c, we letH2(c) := H2(ε(c)).

3.3 Regularized Entropy Learning

In this section, we consider the properties of the learn-
ing algorithm for which

L (c) = H2(c)

R (c) = c′Kc

f (yi) = kic

The novelty of the proposed approach lies in the
RKHS regularization of an entropy-related loss term.
Consider the following

Proposition 2. Given the loss function

J (c) = H2(c)+λc′Kc (13)

it holds that

e−J (c) ∝ H (c)G

(

0N,
K−1

λ
;c

)

(14)

that is, applying an exponential transformation to
J (c), it is possible to write it as the product between
a weighted sum of Gaussian densities (H (c)) and a
Gaussian density dependent onλ.

Furthermore, it has to be considered thatH2(c) is
shift-invariant: this result is discussed in the following

Proposition 3. Let ε(c) be a real valued vector of
residuals associated to a coefficient vectorc, and let
ε(c∗) = ε(c)+ z, wherez is a real constant. It holds
that

H2(c)≡ H2(c
∗)

Following Proposition 3, the expected value of the
residuals represents an additional degree of freedom
to be set in advance. Without loss of generality we
choose to ensure that, given a random variableγ,

(p(γ|c) = pε(x))→ (E[γ] = 0) (15)

According to Proposition 2, it is possible to write
J (c), upon a monotonic transformation, as a sum of
products of Gaussian densities. In order to define an
efficient minimization strategy forJ , we consider the
following

Proposition 4. It holds that

e−J (c) ∝
N

∑
i=1

N

∑
j=i+1

αi j G(di j ,Di j ;c) (16)

with

αi j = G(yi ,2σ2+
Kii −2Ki j +K j j

λ
;y j)

Di j =

(

(Ki −K j)
′(Ki −K j)

2σ2 +λK

)−1

di j = Di j
(Ki −K j)

′(yi − y j)

2σ2

whereKst is the{s, t} entry ofK, and therefore

J (c) =− log

(

N

∑
i=1

N

∑
j=i+1

αi j G(di j ,Di j ;c)

)

up to an additive constant.
Proposition 4 straightforwardly applies Theorem

1 to state that it is possible to writeJ (c) as the loga-
rithm of a weighted sum of Gaussian densities. The
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Figure 2: Graphical representation of the matrix{αi j } (sur-
face plot).

multiplicative coefficientsαi j admit an interesting in-
terpretation:αi j , for which

0≤ αi j ≤ G(0,2σ2;0) (17)
gets monotonically closer to its supremum as two

conditions are met: (i) yi is close toy j and (ii)
Kii + Ki j is close to 2Ki j . Using the definition of
Ki j = K (xi ,x j), it is immediately verified that con-
dition (ii) occurs whenxi is close tox j . Therefore, the
multiplicative coefficientαi j relates to theinforma-
tion consistencybetween thei-th and j-th sample: in
other words, it is a measure of the similarity between
the i-th and j-th observations. This allows for two
interesting properties:(i) given a training setS , it is
possible to identify the most consistently informative
pairs of examples (Figure 2). This information can be
subsequently used, for instance, as a pruning criterion
to obtain a minimal representative dataset. Further-
more,(ii) it is possible to use{αi j } to discover mix-
tures inS : indeed, if it is possible to identify two sets
S1 ⊂ S andS2 ⊂ S such that, for all(i, j ∈ S1) and
(k,z∈ S2),

αi j ≫ αik

αkz ≫ αik

the information conveyed byS1 and S2 are sig-
nificantly decoupled. Figure 3 depicts a colormap of
{αi j } for a toy dataset withN = 30, obtained by con-
catenating two decoupled sets of observations. As ex-
pected, the upper-left and lower-right 15x15 subma-
trices show the highest values ofαi j .

3.4 Model Estimation

In the previous subsection, we have shown that the
loss function of the proposed method is monotoni-
cally related to a weighted sum ofN-variate Gaus-
sian densities. In this subsection, an optimal (entropy-
wise) regularized estimator ofc is derived and em-
ployed to build a predictor for new observations. In
order to obtainc∗, it is necessary to solve the follow-
ing

Mixture detection with N=30

5 10 15 20 25 30

5

10

15

20

25

30

Figure 3: Mixture recognition capabilities of the coeffi-
cientsαi j : the bright areas are self-consistent groups of ho-
mogeneous observations.

Problem 1. (Minimization of J (c)): find

c∗ = argmin
c

eJ (c)

with

J (c) =− log

(

N

∑
i=1

N

∑
j=i+1

αi j G(di j ,Di j ;c)

)

Since the exponential transformation is monotonic,
the minimizer ofeJ (c) minimizes alsoJ (c); the expo-
nential formulation yields, however, simpler deriva-
tives. Implementation details about the solution of
Problem 1 are reported in Appendix A. The esti-
matec∗ represents a compromise between the RKHS
norm of f , R (c), and Renyi’s second order entropy of
the estimation errors,H2(c). Additionally, H2(c∗) is
the minimum reachable entropy configuration for the
datasetS for a given value ofλ. As c∗ is obtained by
solving Problem 1, it is necessary to set the additional
degree of freedom discussed in Proposition 3: the bias
termB is computed as

B := mean({εi}) =
1
N

N

∑
i=1

(yi −Kic
∗)

It is then possible to compute predictions when-
ever a new observationxnew is available. Using the
real-valued array

knew= [K (x̃new,x1) . . .K (x̃new,xN)]

the estimator ˆynew is

ŷnew= E[ynew|xnew] = knewc∗ (18)

ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics

354



Furthermore, the prediction uncertaintyγ can be es-
timated using a Leave-One-Out approach: let

p(γ) =
1
N

N

∑
i=1

G(yi −Kic
∗
(i)−B (i),σ2;x) (19)

wherec∗(i) andB (i) solve Problem 1 using the re-
duced datasetS (i)= S \{xi,yi}. The probabilistic form
of the predictor is then

ynew= ŷnew+ γ (20)

whereŷnew is deterministic andγ is a random vari-
able.

It is to be noted that the solution of Problem 1
was obtained for fixed bandwidthσ2 and regulariza-
tion parameterλ. In practice, however, it is generally
needed to estimate such parameters from data as well.
In the presented univariate case, the tuning of such
parameters was efficiently performed by means of a
Generalized Cross Validation (GCV) approach. It is
also possible, if there is not enough data to perform
GCV, is to tuneσ2 relying on some theoretical crite-
rion, such as Silverman’s rule (Silverman, 1986).

4 RESULTS

In this section, Regularized Entropy Learning (REL)
is tested against simulated datasets and data com-
ing from the semiconductor manufacturing industry.
In order to understand the potential of the proposed
approach, its performances are compared with Ker-
nel Ridge Regression (KRR). The performance gap
between Regularized Entropy Learning and Kernel
Ridge Regression is expected to vary: intuitively, if
the real uncertainty distribution is strongly nongaus-
sian, REL is expected to outperform KRR. For all the
experiments, RMSE was used as metric; the parame-
ters of both methods were tuned by means of GCV.

4.1 Simulated Datasets

Two datasets (100 training, 50 validation and 50 test
observations) were generated using strongly nongaus-
sian uncertainty distributions. In the first case, a uni-
form random variable was employed; in the second
case, the uncertainty was modeled as a Laplace dis-
tribution. Multiplicative (5x) outliers were inserted
(with 10% probability) in each dataset to test the
robustness of the proposed methodology. Table 1
presents the RMSE ratios for the four simulated ex-
periments: as expected, the best results are obtained
with the Laplace distribution (whose power law is
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Error distributions

 

 

Regularized Entropy Learning (p( γ))

Kernel Ridge Regression

Real Distribution

Figure 4: Error distributions for the prediction of a simu-
lated dataset with uniform uncertainty: the nonparametric
estimation ofp(γ) allows the proposed methodology to out-
perform KRR.
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Regularized Entropy Learning (p( γ))

Kernel Ridge Regression

Real Distribution

Figure 5: Error distributions for the prediction of a simu-
lated dataset with Laplace-distributed uncertainty: the fat
tails of the Laplace distribution are correctly recognized
by REL, while the Gaussian assumptions of KRR fail to
achieve the best prediction results.

hardly approximated by a Gaussian). Figures 4 and 5
show the uncertainty distributions considered by REL
and KRR: the advantage of the proposed approach in
such situations is clear.

4.2 Semiconductor Dataset

REL was tested against a set of homogeneous obser-
vations from the semiconductor manufacturing envi-
ronment (courtesy of the Infineon Austria facility in
Villach). Specifically, a homogeneous dataset con-
sisting of 239 measured wafers was collected from a
Chemical Vapor Deposition (CVD) equipment. Ev-
ery wafer is characterized by 30 input variables and 9
thickness measurements (associated to different sites
on the wafer). Four experiments were conducted:
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Figure 6: Error distributions for the prediction of average
thickness with no outliers: notably, in this case the Gaussian
assumptions are verified, and KRR performs better than the
proposed methodology.
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Figure 7: In the prediction of standard deviation, the density
estimated distribution is skewed and strongly nongaussian
(both the distributions in this Figure has expected value 0).
Thanks to this better understanding of the uncertainty dis-
tribution, the proposed methodology performs well in this
setting.

• Predict the average layer thickness (with and
without outliers).

• Predict the standard deviation (9 points) of layer
thickness (with and without an outliers).

In order to produce outlier-free experiments, a
standard outlier elimination technique based on Ma-
halanobis distance was employed. The original
dataset was split in 3 consecutive groups: a train-
ing dataset of 150 wafers, a validation dataset of 50
wafers and a test dataset of 39 wafers. The validation
dataset was used to tune the hyperparameters, while
the algorithms were compared on the test dataset.

The results of this experiment are reported in Ta-

ble 1. Notably, the Gaussian assumptions are verified
for the average thickness without outliers (Figure 6):
in this case, KRR performs better than REL. On the
other hand, the presence of outliers in the dataset sig-
nificantly degrades the performances of KRR, while
the proposed methodology proves to be naturally ro-
bust. Perhaps the most interesting result comes from
the prediction of standard deviation: thanks to the
skewed uncertainty distribution associated to the stan-
dard deviation measurements (Figure 7), REL outper-
forms KRR.

Table 1: RMSE ratios REL/KRR: the proposed methodol-
ogy shows natural robustness with respect to outliers, and
performs better than KRR when Gaussianity assumptions
are less realistic. The best result is in bold, while the worst
result is in red.

With outliers Without outliers
Uniform 0.61 0.67
Laplace 0.52 0.56

Thickness Avg. 0.98 1.17
Thickness Std. 0.73 0.89

5 CONCLUSIONS

In this paper, a novel learning methodology is pro-
posed relying on information theory concepts in a
regularized machine learning framework. This study
is motivated by the application of Virtual Metrology
in semiconductor manufacturing. The estimation of
a nonlinear predictive model, jointly with the associ-
ated uncertainty distribution, is achieved in a nonpara-
metric way using a metric based on Renyi’s entropy
and regularized with a RKHS norm. The proposed
methodology, namely Regularized Entropy Learning
(REL), has been tested with promising results on sim-
ulated datasets and process data from the semiconduc-
tor manufacturing environment. Specifically, the pro-
posed approach presents a clear advantage in outlier-
intensive and strongly nongaussian environments: for
this reasons, REL is a strong candidate for the use in
an industrial setting, where a flexible assessment of
data variability is key to achieve good predictive per-
formances.
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APPENDIX A

Problem 1 is an unconstrained global optimization
problem. In order to derive a solution, we consider
the features ofc∗ in the following

Proposition 5. Let c∗ be the global minimum of a
negatively weighted sum of Gaussian densitiesJ(c).
Thanks to the properties ofJ(c), there exists a realm
such that

||c∗−di j ||2D−1
i j

≤ m

for at least one mean vectordi j . Furthermore,

m≤ log

(

C0

J̃

)

whereC0 is a negative constant and

J̃ = min
i, j

J(di j )

That is, m is superiorly limited by a decreasing
function of the minimum value ofJ evaluated in the
mean vectorsdi j .

Proposition 5 has two notable implications:(i)
there is at least one mean vectordi j that serves as suit-
able starting point for a local optimization procedure,
and(ii) the global minimum gets closer to one of the
mean vectors as the computable quantityJ̃ increases.
Using these results,c∗ is found by means of the fol-
lowing

Algorithm 1: solution of Problem 1.

1. Setc∗ = 0N

2. Fori = 1, . . . ,N
(a) For j = i +1, . . . ,N

• Use a Newton-Raphson algorithm to solve
the local optimization problem

c∗i j = argmin
c

J(c)

usingdi j as starting point.
• If J(c∗i j )< J(c∗)
• c∗ = c∗i j
• End if

(b) End for
3. End for

Algorithm 1 was originally proposed in (Carreira-
Perpiñán, 2002), and guarantees to find all the modes
of a mixture of Gaussian distributions. It is to be
noted, however, that the exhaustive search performed
by Algorithm 1 might be computationally demanding,
and only the global minimum ofJ is of interest in the
presented case. It is convenient, if an approximate
optimal solution is acceptable, to perform convex op-
timization using a reduced number of starting points.
In our experiments, the best performances were ob-
tained using thedi j associated to the least (1% to 5%)
values of{J(di j )}. It is to be noted that this reduced
version of Algorithm 1 does not guarantee to reach
the global minimum (although it has been verified, via
simulation studies, that the global optimum is found
with a very high success rate). In order to set up the
Newton-Raphson algorithm used in Algorithm 1, it is
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necessary to know the Jacobian and Hessian matrices
associated toJ(c). Letting

Qi j (c) = −1
2
(c−di j )

′D−1
i j (c−di j )

αi j =
αi j |D−1

i j |1/2

(2π)N/2

it is possible to write

J(c) =−
N

∑
i=1

N

∑
j=i+1

αi j e
Qi j (c)

Therefore, the Jacobian ofJ(c) is

∂J
∂c

=−
N

∑
i=1

N

∑
j=i+1

αi j e
Qi j

∂Qi j

∂c

and the Hessian is

∂2J
∂2c

=−
N

∑
i=1

N

∑
j=i+1

αi j e
Qi j

[

∂Qi j

∂c

∂Qi j

∂c′
+

∂2Qi j

∂2c

]

with

∂Qi j

∂c
= D−1

i j (di j − c)

∂2Qi j

∂2c
= −D−1

i j

Considering the Taylor series ofJ(c)|c=ck trun-
cated to the second order

J(c)|c=ck ≈ J(ck)+ (c− ck)
′ ∂J
∂c

|c=ck

+
1
2
(c− ck)

′ ∂2J
∂2c

|c=ck(c− ck)

the nextck+1 is

ck+1 = xk−
(

∂2J
∂2c

|c=ck

)−1 ∂J
∂c

|c=ck

Remark: in order to evaluateJ(c), as well as its Ja-
cobian and Hessian, it is not necessary to explicitly
compute any matrix inversion: indeed,

D−1
i j =

(Ki −K j)
′(Ki −K j)

2σ2 +λK

APPENDIX B

Proof of Proposition 3. It is apparent that a global
shift of x does not influence the value ofH2, thanks to
the infinite integration interval:

∫ +∞

−∞
pε(x)

2dx≡
∫ +∞

−∞
pε(x+ τ)2dx

The result follows.

Proof (by contradiction) of Proposition 5. Con-
sider, without loss of generality, the problem of find-
ing the global maximumx∗ of a weighted sum of
Gaussian densitiesL(x), such that

L(x) =
N

∑
i=1

αiG(µi ,Σi ; x)

Letting

αi =
αi

(2π)N/2|Σi |1/2

||x−µi||2Σ−1
i

=
1
2
(x−µi)

′Σ−1
i (x−µi)

we writeL(x) as

L(x) =
N

∑
i=1

αie
−||x−µi||2Σ−1

i

Consider then the best function value among the
{µi} as

L̃ = max
i

L(µi)

and letx∗ be far from everyµi so that

||x∗−µi||2Σ−1
i

≥ m∀i

wherem is a lower bound. It is apparent that

L̃ ≤ L(x∗)≤ Ne−m
N

∑
i=1

αi (21)

and it is immediately verified that if

m> log

(

N∑N
i=1 αi

L̃

)

inequality (21) does not hold: by contradiction,x∗

is not the global maximum. Therefore, there exists at
least one mean vectorµi such that

||x∗−µi||2Σ−1
i

< log

(

N∑N
i=1 αi

J̃

)
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