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Abstract: In this paper, a novel learning methodology is presented and discussed with reference to the application of vir-

tual sensors in the semiconductor manufacturing environment. Density estimation techniques are used jointly
with Renyi's entropy to define a loss function for the learning problem (relying on Information Theoretic
Learning concepts). Furthermore, Reproducing Kernel Hilbert Spaces (RKHS) theory is employed to handle
nonlinearities and include regularization capabilities in the model. The proposed algorithm allows to estimate
the structure of the predictive model, as well as the associated probabilistic uncertainty, in a nonparametric
fashion. The methodology is then validated using simulation studies and process data from the semiconduc-
tor manufacturing industry. The proposed approach proves to be especially effective in strongly nongaussian

environments and presents notable outlier filtering capabilities.

1 INTRODUCTION A Virtual Metrology tool is expected ti) find

and exploit complex, nonlinear relations between pro-
Virtual sensors are employed in many industrial set- cess data and metrology results, g}l assess pre-
tings to predict the result of an operation (most often a diction uncertainty in a meaningful way; in order to
measurement) when the implementation of an actualachieve such goals, it is key to make the right assump-
sensor would be uneconomic or impossible (Rallo tions on the observed data. Remarkably, a precise
et al.,, 2002). In general, a virtual sensor finds and characterization of the process variability is in gen-
exploits a relation between some easily collectible eral hard to obtain: for instance, the observed data
variables (input) and one or mortarget (output) might be distributed according to fat-tailed or strongly
variables. Virtual sensor modeling techniques range non-Gaussian distributions, be affected by outliers or
from purely physics-based approaches (Popovic et al.,present signs of multimodality; it is to note that such
2009) to machine learning and statistical methodolo- difficulties are shared among many disciplines (Ack-
gies (Wang and Vachtsevanos, 2001). This papererman et al., 2010). It is intuitive that suboptimal as-
is motivated by a specific class of virtual sensors sumptions are likely to result in ineffective predictive
used in semiconductor manufacturing, namely Vir- models. In this paper, we present a novel methodol-
tual Metrology (VM) tools. The measurement op- ogy, inspired by Information Theoretic Learning the-
erations on processed silicon wafers are particularly ory (Principe, 2010), to tackle such an issue employ-
time-consuming and cost-intensive: therefore, only a ing a regularized Reproducing Kernel Hilbert Space
small subset of the production is actually evaluated (RKHS) framework jointly with nonparametric den-
(Weber, 2007). Conversely, Virtual Metrology tools sity estimation techniques. The proposed approach is
are able to predict metrology results at process time able to simultaneously estimate nonlinear predictive
for every wafer, relying only on process data: such models and the associated prediction uncertainty, en-
predictions are expected to reduce the need for ac-abling the delivery of probabilistic predictions. The
tual measurement operations and, at the same timepaper is structured as follows:
establish positive interactions with metrology-related
equipment tools (such as Run-to-Run controllers and
decision aiding tools).

e Section 2 introduces the needed elements of ma-
chine learning and Kernel methods.
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e Section 3 presents and justifies the proposed ap- whereg; is a random variable whose distribution
proach from a theoretical point of view. depends omr.

e Section 4 tests the proposed methodology against " the following, letx = RP and, with no loss of

simulation studies and data from the semiconduc- 9enerality,o” = R. The goal is to build a may :
tor manufacturing environment. RP — R of the relationship between an input dataset

o _ _ X € RN*P and an array of target observations RN.
Appendix A is devoted to numerical techniques Furthermore, lek; be thei-th row of X, andy; be the
used to solve the proposed problem, while Appendix ;_i, entry ofY.

B contains mathematical proofs.
2.2 Linear Predictive Models

2 MACHINE LEARNING AND Perhaps the most notable example of estimation tech-

KERNEL METHODS nique is the method of Least Squares, that can be
traced back to Gauss and Legendre. Such method-
The goal of a learning task is to estimate, from data, a 0l0gy assumes.a linear relationship between the input
relationship between an input spaceand an output ~ and output spaces, so.that
spacey . In order to achieve such result, it is neces-
sary to rely on a set of observatians= {x € x.y; € f(x) = f(x;w) =xw 2
o,i=1... N} In other words, the goal is to find wherew is a p-variate vector of parameters. Fur-

amapf:x — 9" suchthat, givena new observation thermore, letc be the sum of squared residuals
{Xnew € X ,Ynew € 7 }, T (Xnew) Will adequately pre-
dict ynew In this framework,s is called araining set N

and the functionf is an estimator In the follow- L(w) = Z(Yi — f(x))? 3)
ing, let f depend on a set of paramet&ssuch that = . o
f(x) := f(x;8); the optimization o® with respect to and letx (w) = 0. The optimal* (minimizer of

some suitable criterion (function sfand6) leadsto ~ £(W)) is then
the creation of a predictive model.
wh = (X'X)"IXY
2.1 Regularized Machine Learning When a new input observatiofey is available,
the optimal least squares predictionygfy is
In this paper, a regularized machine learning setting is
employed to introduce and test the proposed method- Ynew= E [YnewXnew] = XnewW"
ology: the estimatof is found by minimizing some

loss functiony (8) with respect td. Such loss func- Equation (3)implies a Gaussian distribugediith

tion is usually the sum of Bpss termz and aregular- 2
. . & ~ N(0,0- )
ization termg_, so that
wherea? is the variance of the observation un-
7(8) =L(8)+A% (6) @ certainty. Notablyysew is independent ob?: it is
In this framework, given a model specified By £ necessary to tune the variance term only if a prob-

measures the quality of approximation on the train- abilistic output is needed (such as prediction confi-
ing sets and® is a measure of the complexity of the dence intervals). Least squares is a simple yet pow-
model. Intuitively, the coexistence afand® relates  erful method that suffers from two main drawbacks,
to a tradeoff between model regularity and perfor- namely(i) overfitting in high-dimensional spacep (
mances ors. Theregularization parameteh € R+ close toN) and (i) possible ill-conditioning of the
acts as a tuning knob for such tradeoffAsgrows, the matrix X’X. In order to overcome such issues, a regu-
order of the selected model gets lower and lower. In larization term is employed: by using (2) and (3), and
this paradigm, a learning algorithm is entirely speci- letting

fied by (i) the loss termc (8), (ii) the regularization N

term % (8) and (iii) the estimator structuré(x;0). R (W) = 5 WP

Remarkably, this structure assumes that the prediction i; !

of a generigy; can be obtained, at best, up to a random
uncertainty (depending an). In other words, adopt-
ing an additive error paradigm, it is implied that

Ridge Regressiois obtained. More and more sta-
ble (low sum of squared coefficients) models are se-
lected as\ grows, at the cost of worsening the per-
yi = f(X)+& formances on the training set. The idea behind Ridge
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Regression is that the optimakllows to build a pre- relates to an infinite-dimensional feature space
dictor that includes all and only the relevant informa- whose bandwidth is controlled b§?. The optimal
tion. The optimal Ridge Regression coefficient vector Kernel Ridge Regression coefficient vector is

is ¢ = (K+A)"Yy

and the predictor is

w = (XX 4+ A1)~ IXY

Similarly to least squares, it is not necessary to
explicitly address the tuning of the error variara® Ynew= KneuC"

unless a probabilistic output is needed. )
With Knew = [K (Xnew; X1) - - - K (Xnews XN )]. A thor-

2.3 Nonlinear Predictive Models ough review of kernel-based methodologies is beyond
' the scope of this section: the interested reader can find

It is apparent that (2) defines a linear relationship be- ™°"® information in (Scholkopf.and Smola, 2002).

tween thep-variate input space and the output space.
In a wide variety of applications, however, a lin-

ear model is not complex enough to obtain the de- . ) , o
sired prediction performances. An unsophisticated It is to note that the methodologies reviewed in this

approach would be to adopt @axpanded basitug- section rely on Gaussian assumptions: the probabilis-
menting the input st with nonlinear functions ofits ~ tiC intérpretation of the loss function (3) is thew
columns - for instance, polynomials) to tackle such €&n be predicted, at best, with an additive Gaussian-

issue. It is to note, however, that this simple ap- distributed uncertainty with fixed variance. The rea-
proach would yield computationally intractable prob- SONnS for adopting such an assumption are both histor-
lems also for a relatively small values pf (Hastie - 1@l (linking to the concept of Least Squares estima-
et al., 2005): nonlinearities are more efficiently han- 10n) and methodological (Central Limit Theorem and
dled using kernel-based methodologies. In the caseclosed form solution), but other choices are possible.

of Ridge Regression, consider a symmetric positive FOT Instance, the Huber loss function (used in robust
definite matrixk ¢ RN*N whose entries arise from statistics) implies a Gaussian distribution near the ori-

a suitable positive definite inner produst (kernel gin wit_h Laplace tails apd allows to reduce the weight
function), such that of outliers in the learning process. Another notable
’ example is the-insensitive loss function, that relates

2.4 Learning in Nongaussian Settings

Kij = K (%, X;j) (4) to a uniform distribution betwedn-¢, €] with Laplace
Furthermore, consider the model structure g{?fvl?nd is mainly used in Support Vector Machines
f(x) = Kic (5) Remarkably, all the loss terms described in this

) ) ) section rely on parametric assumptions: the uncer-
_ wherek; is thei-th row ofK, and the regulariza-  ainty is assumed to follow a specific (known) distri-
tion term , bution depending on a set of unknown parameters. In
R.(c) = cKe a real setting, however, it is often not possible (and
In this framework.c € RN is the coefficient vec-  sometimes not even desirable) to identify the uncer-
tor of the so-callecdual formof the learning prob-  tainty distribution in a parametric way: in such situ-
lem, and®_ is the norm off in a nonlinear Hilbert ations, a more flexible characterization is needed to
space. The resulting modélexploits a nonlinear re-  achieve the best performances. In the next section, a
lationship (specified by ) betweernX andY. This re- learning method that achieves such flexibility is pre-
sult arises from RKHS (Reproducing Kernel Hilbert sented using Density Estimation techniques jointly
Spaces) theory and Riesz Representation Theoremwith Entropy-related criteria.
the kernel functionx is used to establish a rela-
tionship between the features and th8l examples.

Among the most popular kernel functions, the inho- 3 REGUL ARIZED ENTROPY
mogeneous polynomial kernel LEARNING

K (%,%);d) = (6 +1)°

incorporates the polynomial span Xfup to the
d-th grade, and the exponential kernel

In this section, an entropy-based learning technique
that makes no assumptions about the uncertainty
distribution is presented and discussed. The novel

Ixjli2 methodology will be referred to as "Regularized En-
X (%.X;8) =e & tropy Learning”.
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Figure 1: Density estimation of uniform and lognormal dis-
tributions, using Gaussian densities.

3.1 Density Estimation and Learning

Consider a real-valued array= [€1,...,&en]’, where
everyg; is assumed to be independently drawn from
the same unknown distribution. -In order to obtain a
nonparametric estimate of the probability density of
€, itis convenient to resort tdensity estimatiotech-
niques (Parzen, 1962).

Remark: it would be more correct to use the term
"kernel density estimation” (KDE). In order to
avoid confusion (the word "kernel” has differgnt
meaning in KDE and Kernel Methods), KDE wiill
be referred to adensity estimatio(DE).

1 s 2.
Pe(X) = N ZG(Ei,G iX) (8)
=

that is, a Gaussian density of variar@eis cen-
tered on every observatian. With reference to the
learning setting presented in the previous section, let
&i be the estimation error (residual) on fkih sample
of s, for some value of:

9)

whereK; is thei-th row of the kernel matrix.
In the next subsection, (8) and (9) are used to define
a loss term related to the concept of information en-

tropy.
3.2 Entropy-based Loss Term

€ =& (C) =Vi— Kic

In information theory, entropy is a measure of the un-
certainty of a random variable: while an high entropy
is associated to chaos and disorder, a quiet and pre-
dictable random variable is characterized by low en-
tropy (Gray, 2010). Notably, by minimizing the en-
tropy of a random variable, a constraint is imposed
on all its moments (Erdogmus and Principe, 2002).
For this reason, the definition of an entropy-based loss
term is desirable with respect to the Least Squares
loss term, that involves only the second moment (vari-
ance). More interesting properties of such a loss term
are investigated in (Principe et al., 2000).

Shannon'’s entropy, perhaps the most notable en-
tropy measure, is defined as the expected value of the

DE techniques are able to estimate a probability information contained in a message. Renyi's entropy

density from a set of observations, using a mixture of
predetermined distributions. Given the vectoithe
underlying distribution is estimated as

1N
mm:N;mwm (6)

whereg(+;X) is a nonnegative function such that

+o00
g(;x)dx=1

It is immediate to prove that (6) is a probability
distribution. In this paper, we employ the Gaussian
density

(x—W?
202

e

G(W,0%x) = @)

1
V2102
so thatg(zx) := G(z,0%;x). Herebyo? is the
bandwidthof the estimator, related to the smoothness
of the estimated density: its tuning will be discussed

in a later subsection. The densfly is rewritten as

352

generalizes this concept to a family of functions de-
pending on a parametar> 0. Consider a continuous
random variable; its Renyi's entropyHy (€) is

1 o
Ha(e) = mbg[m Pe(X)" dx

We consider the quadratic Renyi's entroidy(-)
of the random variable|c, as

oo )
*|Og/_m ps\c(x) dx

It is easily noted thaH,(€) reaches its infimum
whenpg(x) is a Dirac Delta (complete predictability),
and its supremum whem (X) is flat overR (complete
uncertainty). In order to define the desired loss term,
we consider the following

(10)

Ha(g(c)) (11)

Theorem 1. LetAc RS acRS BcR™ beR!
andQ e R, Letx € R! be an input variable. It holds
that

G(a,A; Qx)G(b,B;x) = G(a,A+ QBQ;b)G(d, D; x)
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with

(QA'Q+B ™)™
b+DQA 1(a—Qb)
O
It is possible to expresklz(¢) in function of a

weighted sum of Gaussian densities: this result is
summarized in the following

Proposition 1. Applying Theorem 1 (Miller, 1964)
and using (8) and (11), it holds that

Exploiting the symmetry of the Gaussian density,
we define

lNN

Ha(g(c)) = —log (W Z _ZlG(yi —Yj,20% (Ki —Kj)c)
I=1]=

2 N N o
H(©) =35 i;j:IZHG(yi =Y}, 20% (Ki =Kj)c)

and observe that (c) is equal toe~H2(€(€)) up
to an additive constant. Since the exponential trans-
formation is monotonic,

argmaxs( (c)=arg rrginHz(e(c)) (12)

O
Equation (12) states that a minimum entropy es-
timator can be obtained by maximizing a mixture of

Gaussian densities with respect to the parameters vec-

tor c. In the following, since is entirely specified by
¢, we letHz(c) := Hz(g(c)).

3.3 Regularized Entropy Learning

In this section, we consider the properties of the learn-
ing algorithm for which

L{c) = Hz(c)
®(c) = CcKc
fly) = kc

The novelty of the proposed approach lies in the
RKHS regularization of an entropy-related loss term.
Consider the following

Proposition 2.  Given the loss function

7(c) = Ha(c) + Ac'Ke (13)

Theoretic Learning and Kernel Machines

it holds that

e’ (© 0 (oG <oN, (14)

K—l
=
that is, applying an exponential transformation to
7(c), it is possible to write it as the product between
a weighted sum of Gaussian densities(€)) and a
Gaussian density dependentan [
Furthermore, it has to be considered tHatc) is
shift-invariant: this resultis discussed in the following

Proposition 3. Let g(c) be a real valued vector of
residuals associated to a coefficient veatoand let
g(c*) = g(c) + z, wherezis a real constant. It holds
that

Hz(C) = Hz(C*)
O
Following Proposition 3, the expected value of the
residuals represents an additional degree of freedom
to be set in advance. Without loss of generality we
choose to ensure that, given a random varigple

(p(yle) = pe(x)) = (E[y] = 0) (15)
According to Proposition 2, it is possible to write
7(c), upon a monotonic transformation, as a sum of
products of Gaussian densities. In order to define an
efficient minimization strategy for, we consider the
following

Proposition 4. It holds that
N N
e’ (©) O C(ijG(dij,Dij ;C) (16)
i=1j=1+1
with
Kii — 2Kij + Kjj
aj = G(y,20°+ —— )\”+ Liyi)
(K Ky (K —Kp)
Dij = ( — o tAK
(Ki —Kj)'(vi —yj)
. = D
4 ! 202

whereKg; is the{s,t} entry ofK, and therefore

N N

o33

up to an additive constant. O

Proposition 4 straightforwardly applies Theorem
1 to state that it is possible to writg(c) as the loga-
rithm of a weighted sum of Gaussian densities. The

J(c)

aij G(dij, Dij; C))
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Figure 2: Graphical representation of the mafax; } (sur-
face plot).
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multiplicative coefficientsrj; admit an interesting in-
terpretationaij, for which

0 < ajj < G(0,20%0) (17)
gets monotonically closer to its supremum as two
conditions are met: (i) y; is close toy; and (ii)
Kii + Kjj is close to Kjj. Using the definition of
Kij = % (Xi,X;), it is immediately verified that con-
dition (ii) occurs wherx; is close tax;. Therefore, the
multiplicative coefficienta;; relates to thénforma-
tion consistencypetween thé-th andj-th sample: in
other words, it is a measure of the similarity between
the i-th and j-th observations. This allows for two
interesting properties(i) given a training ses, it is
possible to identify the most consistently informative
pairs of examples (Figure 2). This information can be
subsequently used, for instance, as a pruning criterion
to obtain a minimal representative dataset. Further-
more, (ii) it is possible to us€ai;; } to discover mix-
turesins: indeed, if it is possible to identify two sets
51 C S andsz C s such that, for all(i, j € $1) and
(k,z€ $2),
ajj > ik
Okz > Qg

the information conveyed by; and s, are sig-
nificantly decoupled. Figure 3 depicts a colormap of
{aij } for a toy dataset wittN = 30, obtained by con-
catenating two decoupled sets of observations. As ex-
pected, the upper-left and lower-rightxl% subma-
trices show the highest valuesaf .

3.4 Mode Estimation

In the previous subsection, we have shown that the
loss function of the proposed method is monotoni-
cally related to a weighted sum of-variate Gaus-
sian densities. In this subsection, an optimal (entropy-
wise) regularized estimator afis derived and em-
ployed to build a predictor for new observations. In
order to obtairc*, it is necessary to solve the follow-

ing
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Mixture detection with N=30
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Figure 3: Mixture recognition capabilities of the coeffi-
cientsa;j: the bright areas are self-consistent groups of ho-
mogeneous observations.

Problem 1. (Minimization of 7 (c)): find

¢ =arg nginej (©
with

Z ai;G dl]vDIj: c)

j=1+1

o k(33 )

Since the exponential transformation is monotonic,
the minimizer ofe’(© minimizes alsy (c); the expo-
nential formulation yields, however, simpler deriva-
tives. Implementation details about the solution of
Problem 1 are reported in Appendix A. The esti-
matec* represents a compromise between the RKHS
norm of f, ® (c), and Renyi’s second order entropy of
the estimation errorg;lz(c). Additionally, Ha(c*) is

the minimum reachable entropy configuration for the
datasets for a given value oh. Asc* is obtained by
solving Problem 1, it is necessary to set the additional
degree of freedom discussed in Proposition 3: the bias
term is computed as

N

= %;(m —Kic")

It is then possible to compute predictions when-
ever a new observatiox,ey is available. Using the
real-valued array

B :=mearn{s})

Knew= [K (Knews X1) - - - K (Knews XN )]

the estimatoynew is

E [Ynew Xnew] = KnenC" (18)

Ynew=
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Furthermore, the prediction uncertaityan be es- 0ss - Eror distributions
timated using a Leave-One-Out approach: let ‘

031

13 * 2. 25 - . N A= —
p(y) = Ni;G(yi —Kicj) —33),0%%x)  (19) > '
wherec?i) and 3 solve Problem 1 using the re- =
duced dataset;) = s\ {x;,yi }. The probabilistic form o
of the predictor is then oif

= Regularized Entropy Learning (p(
= Kernel Ridge Regression

V)

Ynew = Ynew+ Y (20) 0051

whereynhewis deterministic ang is a random vari- of
able.

It is to be noted that the solution of Problem 1 Figure 4: Error_distrit_)utions for the_ prediction of a simu-_
was obtained for fixed bandwidti? and regulariza- lated dataset with uniform uncertainty: the nonparametric
tion parameteh. In practice, however, it is generally eSt'fmat'Oé‘RoFfzp(y) allows the proposed methodology to out-

. ' ’ erform .
needed to estimate such parameters from data as weIII.O

i
[ !
i = == = « Real Distribution |
’ i i i F

-2 -1 0 1 2 3

In the presented univariate case, the tuning of such Error distributions
parameters was efficiently performed by means of a . A
Generalized Cross Validation (GCV) approach. lItis 045

also possible, if there is not enough data to perform 04t

GCYV, is to tunea? relying on some theoretical crite- 03s |

rion, such as Silverman’s rule (Silverman, 1986).

03
Q 025

02

4 RESULTS

015 -

0.1

In this section, Regularized Entropy Learning (REL)
is tested against simulated datasets and data com-  Requiarized Entropy Leaming (o v)
ing from the semiconductor manufacturing industry. o 5 Kernel Ridge Regression S
In order to understand the potential of the proposed ~ " Fea Ditbetton
approach, its performances are compared with Ker- Figure 5: Error distributions for the prediction of a simu-
nel Ridge Regression (KRR). The performance gap lated dataset with Laplace-distributed uncertainty: tie f
between Regularized Entropy Learning and Kernel tails of the Laplace distribution are correctly recognized
Ridge Regression is expected to vary: intuitively, if by REL, while the Gaussian assumptions of KRR fail to
the real uncertainty distribution is strongly nongaus- achiéve the best prediction results.

sian, REL is expected to outperform KRR. For all the
experiments, RMSE was used as metric; the parame-
ters of both methods were tuned by means of GCV.

0.05

hardly approximated by a Gaussian). Figures 4 and 5
show the uncertainty distributions considered by REL
and KRR: the advantage of the proposed approach in

41 Simulated Datasets such situations is clear.

Two datasets (100 training, 50 validation and 50 test 4.2 Semiconductor Dataset

observations) were generated using strongly nongaus—REL tested inst tof h b
sian uncertainty distributions. In the first case, a uni- was tested against a set ot nNomogeneous obser-

form random variable was employed; in the second vations from the semiconductor manufacturing envi-

case, the uncertainty was modeled as a Laplace disfonment (court_e_sy of the Infineon Austria facility in
tribution. Multiplicative (5x) outliers were inserted Villach). Specifically, a homogeneous dataset con-

. SN isting of 239 measured wafers was collected from a
(with 10% probability) in each dataset to test the >'SUN9 " .
robustness of the proposed methodology. Table 1Chem|cal .Vapor Dep93|t|on (CV.D) equ_ment. Ev-
presents the RMSE ratios for the four simulated ex- ery wafer is characterized by 30 input variables and 9
periments: as expected, the best results are obtaine&hiCkneSS measurements (associated to different sites

with the Laplace distribution (whose power law is on the wafer). Four experiments were conducted:
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. Error distributions ble 1. Notably, the Gaussian assumptions are verified
‘ ——— Regularized Entropy Learning (p( V) for the average thickness without outliers (Figure 6):
o6 | —— Kernel Ridge Regression in this case, KRR performs better than REL. On the

other hand, the presence of outliers in the dataset sig-
nificantly degrades the performances of KRR, while
the proposed methodology proves to be naturally ro-
bust. Perhaps the most interesting result comes from
the prediction of standard deviation: thanks to the
skewed uncertainty distribution associated to the stan-
dard deviation measurements (Figure 7), REL outper-
forms KRR.

0.5

04 -

03

0.1

Table 1: RMSE ratios REL/KRR: the proposed methodol-
ogy shows natural robustness with respect to outliers, and
performs better than KRR when Gaussianity assumptions
Figure 6: Error distributions for the prediction of average are less realistic. The best result is in bold, while the wors
thickness with no outliers: notably, in this case the Gaussi  result is in red.

assumptions are verified, and KRR performs better than the

proposed methodology. | [ With outliers | Without outliers]

o N Uniform 0.61 0.67
14 rror distributions Laplace 052 056

= Regularized Entropy Learning (p( V)

Kernel Ridge Regression Thickness Avg. 0.98 1.17
Thickness Std. 0.73 0.89

Thickness average

0.8 -

5 CONCLUSIONS
0al : . In this paper, a novel learning methodology is pro-
posed relying on information theory concepts in a
oz : ’ regularized machine learning framework. This study
‘ ‘ is motivated by the application of Virtual Metrology
% -2 Tl 2 3 in semiconductor manufacturing. The estimation of
e a nonlinear predictive model, jointly with the associ-
Figure 7: In the prediction of standard deviation, the dgnsi  ated uncertainty distribution, is achieved in a nonpara-
estimated distribution is skewed and strongly nongaussian metric way using a metric based on Renyi's entropy
(both the dlst_rlbutlons in this Figure has expected v_alue (_)) and regularized with a RKHS norm. The proposed
Thanks to this better understanding of the uncertainty dis- . .
tribution, the proposed methodology performs well in this methodology, namely Re_gularlzeq _Entmpy Learnl_ng
setting. (REL), has been tested with promising results on sim-
ulated datasets and process data from the semiconduc-
g tor manufacturing environment. Specifically, the pro-
posed approach presents a clear advantage in outlier-
i o ) intensive and strongly nongaussian environments: for
* Predict the standard deviation (9 points) of layer thjs reasons, REL is a strong candidate for the use in
thickness (with and without an outliers). an industrial setting, where a flexible assessment of

In order to produce outlier-free experiments, a data variability is key to achieve good predictive per-
standard outlier elimination technique based on Ma- formances.
halanobis distance was employed. The original
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APPENDIX A

Problem 1 is an unconstrained global optimization
problem. In order to derive a solution, we consider
the features of* in the following

Proposition 5. Let c* be the global minimum of a
negatively weighted sum of Gaussian densifigs.
Thanks to the properties dfc), there exists a reah
such that

Ic” *dijlléﬁl <m

Theoretic Learning and Kernel Machines

for at least one mean vectdy;. Furthermore,

m < log (%)

whereCy is a negative constant and

That is, m is superiorly limited by a decreasing
function of the minimum value o evaluated in the
mean vectorsj. [

Proposition 5 has two notable implicationgi)
there is at least one mean veatiyrthat serves as suit-
able starting point for a local optimization procedure,
and(ii) the global minimum gets closer to one of the
mean vectors as the computable quantitycreases.
Using these resultg* is found by means of the fol-
lowing

Algorithm 1: solution of Problem 1.

1. Setc* =0y
2. Fori=1,...,N
(@ Forj=i+1,...,N
e Use a Newton-Raphson algorithm to so
the local optimization problem

Ilve

cj = arg nginJ(c)

usingd;j as starting point.
e If J(cj) < J(c")
o C' = Ci*j
e Endif
(b) End for
3. End for

Algorithm 1 was originally proposed in (Carreira-
Perpifian, 2002), and guarantees to find all the modes
of a mixture of Gaussian distributions. It is to be
noted, however, that the exhaustive search performed
by Algorithm 1 might be computationally demanding,
and only the global minimum af is of interest in the
presented case. It is convenient, if an approximate
optimal solution is acceptable, to perform convex op-
timization using a reduced number of starting points.
In our experiments, the best performances were ob-
tained using thej associated to the least (1% to 5%)
values of{J(d;j)}. Itis to be noted that this reduced
version of Algorithm 1 does not guarantee to reach
the global minimum (although it has been verified, via
simulation studies, that the global optimum is found
with a very high success rate). In order to set up the
Newton-Raphson algorithm used in Algorithm 1, it is
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necessary to know the Jacobian and Hessian matriceAPPENDI X B

associated td(c). Letting

1 _
Qj(©) = —35(c—dy)Dj*(c—dy)
aijj = 7(21_[),\‘/2

it is possible to write
N N
J(C) = — GijeQiJ' (C)
2,2,
Therefore, the Jacobian dfc) is

aJ N N~ Qi
pc= "y, > e
i=1j=1+1

and the Hessian is

62J N N . |:5Q aQ.. aZQ..
_ 7. Qi L) 1 g

= == ajj e~ ok
0% ;UZIZH E oc oc | 0%
with

0Qjj _

—aéj = Dijl(dij -

0*Q; 1

e~ Di

Considering the Taylor series d{C)|c—¢, trun-
cated to the second order

3J
J(€)[e=q, = I(ck) + (C— Ck)/% le—cx
1 ,02]
2l g

the nextcy, 1 is

le=ac(€— )

2] oy
Cit1 = Xk — % |c:ck &|c:ck

Remark: in order to evaluatéc), as well as its Jg
cobian and Hessian, it is not necessary to explicitly
compute any matrix inversion: indeed,

(Ki —Kj)'(Ki = Kj)

oo +AK

Dt =
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Proof of Proposition 3. It is apparent that a global
shift of x does not influence the value g, thanks to
the infinite integration interval:

+o00 +00
/ pg(x)zdx;/ pe (X +1)%dx

—o00

The result follows. O

Proof (by contradiction) of Proposition 5. Con-
sider, without loss of generality, the problem of find-
ing the global maximunx* of a weighted sum of
Gaussian densitidgx), such that

N

L(x) = ZlaiG(M’zi; X)

Letting
I R
! (2T[)N/2|Zi|1/2
1 -
bemls = S0zt
we writeL(X) as
N =2
L0 — S e Wl

1=
Consider then the best function value among the
{W}as
L = maxL(w)
|
and letx* be far from everyy; so that

3 — |24 > mi
1
wheremis a lower bound. It is apparent that

N
L<L(x)<Ne My

and it is immediately verified that if

N .
m> |og (%)

inequality (21) does not hold: by contradictiod,
is not the global maximum. Therefore, there exists at
least one mean vectgy such that

. NyN, a
I - 2+ <log (~25:% )

(21)



