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Abstract: In this paper, we first look at the biometric authentication scheme as an extension of Shannon’s secrecy system
with an error-prone key, and derive the necessary condition for the perfect secrecy. Furthermore, we show
that the Juels-Wattenberg scheme is optimal by fulfilling such a condition once the biometric key and its
error pattern satisfy certain statistical distributions; otherwise, it is possible to improve its performance by
coding on basis of the biometric. We further confirm this proposition by reformulating the Juels-Wattenberg
scheme with a smart encoder to a specific model of wiretap channel with side information, where the side
information is the enrolled biometric template and assumed to be known at the encoder. The idea of the smart
encoder is inspired by the fact that the authorities are collecting the biometric information from people since
years, and this knowledge could in turn be used to better design the biometric systems for people’s good.
From an information theoretic perspective, we explore the secrecy capacity of this specific wiretap channel
and demonstrate that the knowledge of the enrolled biometric template at the smart encoder does provide an
advantage so as to enhance the performance of the biometric authentication scheme.

1 INTRODUCTION

Traditional user authentication systems are mostly
based on something one knows but one may forget
(e.g.: a password), or something one has but one may
lose (e.g.: a passport), whilst the new biometric sys-
tems are based on people’s biometric characteristics
which represent who one really is. Thus the new sys-
tems overcome the disadvantages of the traditional
ones and provide an attractive solution to do user au-
thentication in a fast, easy and convenient manner.

The biometric characteristics can be physiological
(such as fingerprint, DNA, iris or face), or behavioral
(such as typing rhythm, gait and voice). All of them
are (or rather should be) unique, not duplicable or
transferable. So it is important that no biometric im-
age or template is stored. What is stored is so-called
“encrypted biometric template”. To do this, one can
bind a random key to a biometric such that neither the
random key nor the biometric can be retrieved from
the stored data. We note that in practice, the bio-
metric representations of a person vary dramatically
depending on the acquisition method, acquisition en-
vironment and user’s interaction with the acquisition
device. Thus it arises the challenge how to tolerate
the fuzziness of biometric readings and ensure the ex-

actitude at the same time so as to fulfill the system
requirements.

Among the emerging biometric authentication
systems, fuzzy commitment (Juels and Wattenberg,
1999) and fuzzy vault (Juels and Sudan, 2006) are
two of the most representative. In particular, ac-
cording to a thorough study presented in (Cavoukian
and Stoianov, 2009), the fuzzy commitment scheme,
whose main spirit is to employ error correcting codes
(J.MacWilliams and Sloane, 1977) to tackle the fuzzi-
ness problem of biometric templates, is conceptually
the simplest, but also one of the best for the biomet-
rics where the proper alignment of images is possi-
ble. Whilst when the biometric data is unordered
or with arbitrary dimensionality (such as fingerprint
minutiae), it is more suitable to apply the fuzzy vault
scheme. As observed by (Y. Dodis and Smith, 2008),
the fuzzy commitment scheme and the fuzzy vault
scheme are essentially secure sketches in Hamming
metric space and set difference metric space, respec-
tively. In (Y. Dodis and Smith, 2008), the authors also
introduced a scheme based on the constant-weight
code and permutations. Balakirsky et al. in (V. B. Bal-
akirsky and Vinck, 2009) reviewed this permutation
block coding scheme and pointed out that most of the
permutations could be “bad” in the manner that a ran-
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dom choice of permutations may result in a poor per-
formance in secrecy. They further demonstrated that
proper assignment of the permutations on the basis of
the biometric and the employed constant-weight code
could significantly reduces the probability of a suc-
cessful attack.

In this paper, we take a fresh look into biometric
authentication from an information-theoretic perspec-
tive. As a general model, we reconsider the biometric
authentication as an extension of Shannon’s secrecy
system. Similarly to the results for Shannon’s secrecy
system, we derive a necessary condition for obtaining
perfect secrecy, which do not depend on any specific
metric spaces. More specifically, we put our focus on
the fuzzy commitment scheme, i.e., Juels-Wattenberg
scheme as referred in the rest of the paper, as the
Hamming distance is perhaps the most natural met-
ric to consider. We show that the Juels-Wattenberg
scheme can be optimal in transmission/storage effi-
ciency under some idealized settings.

Going one step further, we notice that since years
the authorities have been collecting the biometric in-
formation from people. For instance, in most coun-
tries to apply for a visa, a digital photograph needs
to be submitted; and when one enters the border of
a country, she/he might be required to have her/his
fingerprint scanned. So we could assume that there
is a smart encoder which learns the enrolled biomet-
ric templates, and in turn may use this knowledge to
improve the performance of the current biometric au-
thentication scheme. Inspired by this observation and
previous work, we investigate the Juels-Wattenberg
scheme with a smart encoder which learns the en-
rolled biometric template. By remodeling it to a spe-
cific model of wiretap channel, we establish insights
into limitations and possible improvement on the cur-
rent biometric system.

There are two kinds of errors that biometric sys-
tems do:false rejectionoccurs when a legitimate user
is rejected andfalse acceptanceoccurs when an im-
poster is accepted as a legitimate user. So the perfor-
mance of the system is often illustrated by thefalse
rejection rate(FRR) andfalse accept rate(FAR). The
less are both rates, the better is the system perfor-
mance. In the reformulated systems present in this pa-
per, we use the terminologiesaverage probability of
error at the legitimate user and theinformation leak-
age rateto the eavesdropper to evaluate the accuracy
and privacy performance. The former concept is by
definition the FRR; whilst the latter, as its name sug-
gests, characterizes the amount of information leak to
a third party. If the best an attacker can do is to try to
obtain the biometric template/key from the database
of the “encrypted biometric templates”, then due to

Fano’s inequality it can be shown that the FAR is up-
per bounded by the information leakage rate. One can
refer to the Appendix for a detailed proof of this.

In this paper, we useb to denote the master bio-
metric template, which is mostly generated from mul-
tiple biometric samples from the user at the enroll-
ment phase;b′ denotes the biometric template ob-
tained at the time of authentication; whilee repre-
sents the difference of the biometric readings of the
same user at two different phases. For simplicity, the
analysis of this paper is based on the following as-
sumptions.

• information is represented and transmitted in bits.

• biometric characteristics contain enough random-
ness which can be extracted to guarantee the sys-
tem performance in terms of accuracy and se-
crecy.

• variation in the biometric readingse is indepen-
dent of the master biometric templateb.

Throughout this paper, between two binary se-
quences, the bitwise addition is carried out modulo
2. Besides, when the dimension of a sequence is clear
from the context or to be defined, we denote the se-
quences in boldface letters for simplicity. A simi-
lar convention applies to random variables, which are
denoted by upper-case letters. For the readers’ con-
venience, we also provide a list of notations in Ap-
pendix.

The rest of the paper is organized as follows: in
Section 2, we briefly review the Juels-Wattenberg
scheme. In Section 3, we look into the biomet-
ric authentication scheme from the perspective of an
extension of Shannon’s secrecy system. In Section
4, we reformulate the Juels-Wattenberg scheme with
a smart encoder to a specific wiretap channel with
side information. We demonstrate how the knowl-
edge of the enrolled biometrics can be employed
to improve the performance of the Juels-Wattenberg
scheme through both theoretical results and numeri-
cal examples. Finally we conclude in Section 5.

2 JUELS-WATTENBERG
SCHEME

The Juels-Wattenberg scheme (Juels and Wattenberg,
1999) is described as follows:

At enrollment,

• choose a random vectorsand accordingly con-
struct a codewordc by a prespecified error cor-
recting code.
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• calculate and store Hash(s) andr = c+b. Here
Hash(·) is a cryptographic hash function.

At the authentication phase,

• inputb′ and calculatec′ = b′+ r = b′+b+c=
c+e. Heree= b′+b.

• decodêc and recover̂s. Correct decoding deliv-
ersŝ= s.

• compare Hash(ŝ) with Hash(s). Accept if they
are equal and reject otherwise.

3 PERSPECTIVE OF SHANNON’S
SECRECY SYSTEM

In this section, we first briefly review Shannon’s se-
crecy system (Shannon, 1949). Then we take the bio-
metric authentication scheme as an extension of Shan-
non’s secrecy system, addressing its performance
limit in terms of efficiency at perfect secrecy.

Encoder Decoder

Eavesdropper

S ŜX

K

?

Figure 1: Shannon’s secrecy system.

The model of Shannon’s secrecy system (Shan-
non, 1949) is illustrated in Fig. 1. A sender (Alice)
wants to communicate a messages to a receiver (Bob)
over a public channel in the presence of an eavesdrop-
per (Eve) who observes the channel output. Alice and
Bob share a keyk, which is unknown to Eve. So to
each messages and keyk, the encoder assigns a ci-
phertextx, and to each ciphertextx andk, the decoder
assignŝsas a decoded message corresponding tos.

Suppose that a(2nR,n) secrecy code is used to en-
codes intox,where 2nR is the number of the messages
s andn is the length of the sequencex. Clearly R is
the transmission ratefrom the sender to the receiver.
Further we denote theinformation leakage rateasso-
ciated with the(2nR,n) secrecy code to be

R(n)
l =

1
n

I(S;X); (1)

and theaverage probability of errorto be

P(n)
e = Pr{S 6= Ŝ}. (2)

Here I(·) is themutual informationfunction, which
measures the amount of information shared by two

variables. For its definition, one can refer to (Cover
and Thomas, 2005).

The communication system shown in Fig. 1 is said
to haveperfect secrecyif

• P(n)
e = 0, i.e., the message is decoded correctly,

and

• R(n)
l = 0, i.e., theinformation leakage I(S;X) =

0, the ciphertext reveals no information about the
message.

By Shannon’s perfect secrecy theorem (Shannon,
1949), the necessary condition for perfect secrecy
is H(K) ≥ H(S). HereH(·) is the entropyfunction
(Cover and Thomas, 2005), which measures the un-
certainty associated with a random variable.

3.1 An Extension of Shannon’s Secrecy
System

Now let us take a fresh look at the biometric authen-
tication scheme from the point of view of Shannon’s
secrecy system. Alice and Bob can be considered as
the same user at the enrollment phase and the authen-
tication phase. The user uses his/her biometric prop-
erty as a key. In Shannon’s secrecy system model, the
key used at the encoder and the decoder is the same.
However, in the biometrics authentication scheme, the
biometric key varies slightly in each reading:b at en-
rollment whilstb′ at the authentication phase. There-
fore, we could formulate the biometric authentication
scheme as an extension of Shannon’s secrecy system,
as shown in Fig. 2. Similarly to Shannon’s perfect se-
crecy theorem, we have the following theorem for the
Shannon’s secrecy system with an error-prone key.

Encoder Decoder

Eavesdropper

S ŜX

B B′
B ≈ B′

?

Figure 2: An extension of Shannon’s secrecy system.

Theorem 3.1. Consider the extension of Shannon’s
secrecy system as shown in Fig. 2. The necessary
condition for perfect secrecy is H(S)≤ I(B;B′).

Proof. The proof uses definitions of entropy, mutual
information as well as their properties such as chain
rule, data-processing inequality and so on (Cover and
Thomas, 2005). We consider
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H(S)
(a)
= H(S|X)

= H(S,B′|X)−H(B′|S,X)

(b)
= H(B′|X)−H(B′|S,X)

(c)
≤ H(B′|X)−H(B′|S,B)
(d)
≤ H(B′|X)−H(B′|B)

≤ H(B′)−H(B′|B)

= I(B;B′),

where (a) follows by definitions of entropy and mu-
tual information: H(S) = H(S|X) + I(S;X); and by
the secrecy constraintI(S;X) = 0; (b) follows that
by chain rule of entropy:H(S,B′|X) = H(B′|X) +
H(S|X,B′); further by data-processing inequality:
H(S|X,B′) ≤ H(S|Ŝ), sinceS→ (X,B′) → Ŝ forms
a Markov chain; and by definition of entropy and
the communication constraint Pr{S 6= Ŝ} = 0, we
have H(S|Ŝ) = 0; (c) follows that H(B′|S,X) ≥
H(B′|S,X,B) = H(B′|S,B) sinceB′ → (S,B) → X
forms a Markov chain; and (d) follows the fact that
givenB, B′ is independent ofS.

As one can see in next subsection, the equality in
Theorem 3.1 can be achieved under some idealized
settings. In fact, the achievability is largely depending
on the statistical behavior of the error patterne.

We also note that the results we have obtained in
this subsection are general, do not depend on any par-
ticular metric space. However, from next subsection
on, our discussion will be mainly in Hamming metric
space. Special focus will be on the Juels-Wattenberg
scheme and its variants.

3.2 Juels-Wattenberg Scheme can be
Optimal

Let k be the length of sequences; n be the length of
sequencesb,b′ (thuse) andx. Recall thate= b+b′

represents the difference of the two readings of the
same biometric property at two different phases. It
is reasonable to assume that there existst, such that
hw(e) ≤ t always holds, wherehw(·) is the Ham-
ming weightfunction, representing the number of the
non-zero bits in a sequence. Under this assumption,
we can use an error correcting code to tackle the
fuzziness problem of the biometric key as the Juels-
Wattenberg scheme does.

Suppose that there exists an(n,k,d) linear code
C of lengthn, dimensionk and minimum distanced,
whered = 2t +1. For anyk-bit secrets, first we en-
code it into ann-bit sequencec, wherec ∈ C. Then
takex = c+b.

To recover the secrets from the ciphertextx, we
simply addb′. Thus we havec′ = x+b′ = c+e. Due
to the fact thathw(e)≤ t andc∈C, swill be correctly

decoded. Thus we haveP(n)
e = 0.

If the key B is uniformly distributed overC, it
can be readily checked thatX is also uniformly dis-
tributed overC and Pr{s} = Pr{s|x}. ThusS andX
are independent and we haveH(S|X) = H(S) = k,

i.e.,R(n)
l = 0.

Furthermore, if the error sequenceE is uniformly
distributed among the sequences, which are of length
n, have Hamming weight≤ t and are in totalM =
∑t

i=0

(n
i

)

of them, then it is easy to check thatB′ =B+

E has a uniform distributions amongM ·2k different
n-bit sequences. Straightforwardly we have

I(B;B′) = H(B′)−H(B′|B)

= H(B′)−H(E)

= log{M ·2k}− logM

= k= H(S).

Therefore, in order to toleratet errors in the key
b, the amount of information can be carried inn bits
is bounded by the largest dimensionk of at-error cor-
recting linear code of lengthn, which turns out to be
a coding problem. If we characterize the transmis-
sion/storage efficiencyR of the above scheme by the
information ratek/n of the linear codeC, then ac-
cording to the Singleton bound (J.MacWilliams and
Sloane, 1977), we easily derive an upper boundR≤
1− d−1

n = 1− 2t
n . Besides, if we allown to grow since

we have assumed that the biometric under considera-
tion has enough randomness, then due to the Gilbert-
Varshamov bound (J.MacWilliams and Sloane, 1977),
the rateR≥ 1− h(d

n) is achievable ford/n < 1/2.
Hereh(·) is the binary entropy function.

Recall that in the Juels-Wattenberg scheme, the
biometric vectorb is assumed to be uniformly dis-
tributed among vectors of a given lengthn. In that
case, the published vectorc+ b is also uniformly
distributed among then-bit vectors and thus yields
no information on the secrets or the biometric tem-
plateb. In the extension of Shannon’s secrecy system
discussed above, we see that the Juels-Wattenberg
scheme is still optimal onceb is uniformly distributed
over a linear(n,k,2t + 1) codeC ande is uniformly
distributed overn-bits sequences of Hamming weight
≤ t.

However, in reality, the statistical distributions of
the extracted biometrics and its error pattern can be
far different (one can refer to (A. Pankanti and Jain,
2002) for a comprehensive survey on the probability
of the fingerprint configuration). The equality in The-
orem 3.1 can be hard to achieve or not achievable at
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all. So open problems are challenging up to the real
biometric readings and the real error patterns.

3.3 Improvement of Juels-Wattenberg
Scheme

In last subsection, we show that onceb,e satisfy
certain statistical distributions, the Juels-Wattenberg
scheme provides with optimal performance by em-
ploying an error correcting code. However, we won-
der if this still holds otherwise. We further notice
that in the Juels-Wattenberg scheme, the choice of the
codewordc (not necessarily from a linear code) is in-
dependent of the enrolled biometric readingb. In the
following, we present an example and show that by
exploring their dependency, i.e., taking codewordc
on the basis ofb, it is possible to improve the secrecy
performance of the Juels-Wattenberg scheme.

Example 3.2. Consider the Juels-Wattenberg
scheme. We letC ,B be sets of the codewordsc and
master biometric templatesb, respectively. Suppose
C = {c1,c2,c3} and B = {b1,b2,b3,b4,b5,b6}.
In particular, we specifyc and b by the following
matrices:





c1
c2
c3



=





00110011
01010101
10101010



 ,















b1
b2
b3
b4
b5
b6















=















00001111
00110011
01010101
10101010
11001100
11110000















.

For simplicity we assume thatb is uniformly dis-
tributed overB .

In the original Juels-Wattenberg scheme,c is cho-
sen randomly independent ofb. Thusc is uniformly
distributed overC . It is easy to check thatc+b has a
non-uniform distribution over 8 different sequences.
In fact, c+ b is 00111100 or 11000011 either with
probability 1/18; 01011010 or 10100101 with either
probability 1/9; and 00000000, 01100110, 10011001
or 11111111 each with probability 1/6.

In particular, we notice that ifc+b turns out to be
either 00111100 or 11000011, then it corresponds to
one possibilityc = c1. Besides, with the observation
c+b, one can easily calculate that the probability of
correct guess ofc (thusb) is

2∗
1
18

+2∗
1
9
∗

1
2
+4∗

1
6
∗

1
3
= 0.4444;

the information leakage fromc+b onc is

I(C;C+B) =H(C)+H(C+B)−H(C,B)
(a)
=H(C+B)−H(B)

=2∗
1
18

∗ log18+2∗
1
9
∗ log9

+4∗
1
6

log6− log6

=0.3061;

and the information leakage fromc+b onb is

I(B;C+B) =H(B)+H(C+B)−H(C,B)
(a)
=H(C+B)−H(C)

=2∗
1
18

∗ log18+2∗
1
9
∗ log9

+4∗
1
6

log6− log3

=1.3061;

where (a) is due to the fact that the choice ofc is in-
dependent ofb. The logarithm is to the base 2.

Now we slightly modify the Juels-Wattenberg
scheme by introducing a bit dependency to the choice
of c on the basis ofb. Whenb = b1 or b6, we do not
takec1 as a candidate ofc so as to avoid the output
00111100 or 11000011 ofc+b. That is, ifb 6= b1 or
b6, we choosec randomly from setC ; and if b = b1
or b6, we choosec randomly from setC \ {c1}. Then
it is easy to check thatc+b is uniformly distributed
among 6 different sequences, 01011010, 10100101,
00000000, 01100110, 10011001 and 11111111, each
with probability 1/6. ThusC+B has the same en-
tropy asB. In this case, with the observationc+ b,
one can calculate and see that the probability of cor-
rect guess ofc (thusb) is reduced to

2∗
1
6
∗

1
2
+4∗

1
6
∗

1
3
= 0.3889;

the information leakage onc is reduced to

I(C;C+B) =H(C)+H(C+B)−H(C,B)
(b)
=H(C)−H(C|B)

=
2
9
∗ log

9
2
+2∗

7
18

∗ log
18
7

−
1
6
(2∗ log2+4∗ log3)

=0.1520;

and the information leakage onb is reduced to

I(B;C+B) =H(B)+H(C+B)−H(C,B)
(b)
=H(C+B)−H(C|B)

= log6−
1
6
(2∗ log2+4∗ log3)

=1.1950;

SECRYPT 2011 - International Conference on Security and Cryptography

172



where (b) is due to the fact that the choice ofc is de-
pendent onb, andH(B) = H(C+B).

This example demonstrates how one can enhance
the secrecy performance of the Juels-Wattenberg
scheme by choosing codewords based on knowl-
edge of the biometric template. Clearly, the Juels-
Wattenberg scheme does not always provide optimal
solutions. To achieve a good performance accuracy
and secrecy, the appropriate error correcting code, in
particular the choice of the codeword, should be cho-
sen largely based on the biometric template and its
error pattern.

One may also notice that the example looks very
similar to the one in (V. B. Balakirsky and Vinck,
2009). However, the underneath coding methods are
different, where in our example we use the coding
from Juels-Wattenberg scheme while a permutation
block coding is employed in (V. B. Balakirsky and
Vinck, 2009).

In next section, we build an information theoretic
framework for the Juels-Wattenberg scheme with a
smart encoder which learns the biometric templates
at enrollment, further confirm its advantage in obtain-
ing better trade-offs between the accuracy and secrecy
performance.

4 PERSPECTIVE OF THE
WIRETAP CHANNEL

The concept of the wiretap channel was first intro-
duced by Wyner in (Wyner, 1975). Its goal is to
achieve not onlyefficient, reliable but also secure
communication between the sender and legitimate re-
ceiver. Here being secure is against an eavesdropper,
who is assumed to know the deployed encoding and
decoding scheme and observe a degraded version of
the output at the legitimate receiver. Similarities can
be easily recognized between the model of the wiretap
channel, and a biometric authentication system with
an attacker who is assumed to have access to the en-
crypted biometrics stored in the database. So an in-
formation theoretic approach can be taken by looking
into the biometric authentication system from a per-
spective of the wiretap channel. Such an instance is
first given in (Cohen and Zémor, 2004). Other trials
can be found in (V. B. Balakirsky and Vinck, 2009)
and (Vinck and Balakirsky, 2010), etc.

In (Cohen and Zémor, 2004), the authors recon-
sider the Juels-Wattenberg scheme as a Wyner’s wire-
tap channel. The reformulation is shown in Fig. 3,
where S,X serve similar roles ass,c in the Juels-
Wattenberg scheme, respectively, representing the se-
cret chosen randomly and the corresponding code-

Encoder Legitimate User

Eavesdropper

Authentication

Enrollment

S X Y

Z

B

B

B′ = B+E

E

Figure 3: Reformulation of Juels-Wattenberg scheme as a
wiretap channel (Cohen and Zémor, 2004).

word; Y = X + E at the legitimate receiver, is the
sequence recovered by the legal user at the authen-
tication phase;Z = X +B is the encrypted biometric
template stored in database and assumed to be acces-
sible to an attacker.E, as the variation of two biomet-
ric readings, is assumed to beless noisythanB and
independent ofB. That is, the channel fromX to Y,
to the legitimate receiver, isless noisythan the one
from X to Z, to the eavesdropper.

For the model shown in Fig. 3, we recall theinfor-
mation leakage rateassociated with a(2nR,n) secrecy
code

R(n)
l =

1
n

I(S;Z);

and theaverage probability of errorat the legitimate
receiver

P(n)
e = Pr{S 6= Ŝ}.

We note that in most communication systems based
on a statistical channel model, it is often impossible
to achieve a positive transmission rate at the absolute

perfect secrecy (i.e.R(n)
l = P(n)

e = 0). For instance,
the zero-error capacity (maximum transmission rate

atP(n)
e = 0) of a binary symmetric channel is zero. So

it is necessary to consider a weaker concept: asymp-
totic perfect secrecy.

A communication system is said to haveasymp-
totic perfect secrecy, if for any arbitrary smallε,ε′ >
0, there exists a secrecy code(2nR,n) such that

• P(n)
e < ε, i.e., decoding error occurs only with ar-

bitrarily small probability;

• R(n)
l < ε′, i.e., the information leakage can be

made arbitrarily small.

We say a secrecy rateR∗ achievableif for any arbi-
trary smallε,ε′,ε′′ > 0, there exists a secrecy code
(2nR,n) such that

R> R∗− ε′′, P(n)
e < ε, R(n)

l < ε′. (3)

The maximum secrecy rate is calledasymptotic se-
crecy capacityor for shortsecrecy capacity.

A FRESH LOOK INTO THE BIOMETRIC AUTHENTICATION - Perspective from Shannon's Secrecy System and a
Special Wiretap Channel

173



As a direct consequence of Wyner’s result (Wyner,
1975), the (asymptotic) secrecy capacity:C1

s , of the
model in Fig. 3 is

C1
s = max

Pr{x}
{I(X;X+E)− I(X;X+B)}. (4)

4.1 A Special Wiretap Channel with
Side Information

Motivated by the observation that the authorities col-
lect the biometric information from people since
years, we introduce a smart encoder into the biomet-
ric authentication scheme. The smart encoder learns
the enrolled biometric templates, and in turn uses its
knowledge to enhance the performance of scheme. To
explore how much gain can be achieved, we can re-
formulate the Juels-Wattenberg scheme with a smart
encoder to 1): a wiretap channel with two-sided infor-
mation, one (i.e.,b) available at the encoder and the
other (i.e.,b′) at the decoder of the legitimate receiver;
2) a wiretap channel with side information available
at the encoder, where the side informationb, is at the
same time, the noise in the eavesdropper channel, as
shown in Fig. 4. The idea 2) is originally proposed in
(Vinck and Balakirsky, 2010).

Encoder Legitimate User

Eavesdropper

Authentication

Enrollment

S X Y

Z
B

B

B

B′ = B+E

E

Figure 4: Reformulation of Juels-Wattenberg scheme with
a smart encoder as a wiretap channel with side information.

Following the results from (Chen and Vinck,
2008) and (Liu and Chen, 2007), one can obtain some
direct results on the secrecy rate (achievable transmis-
sion rate at asymptotic perfect secrecy) of the refor-
mulated model. However, the single-letter characteri-
zation of the secrecy rate for both models involves an
auxiliary parameter, and at present its calculation still
remains an unsolved problem. To avoid this, we take
a new approach and investigate the reformulation 2).

In this subsection, we consider the secure com-
munication problem via the channel shown in Fig.
4. We note that bothS and B are known at the
encoder. We look at the extreme case, whereX is
chosen totally based on knowledge ofB. In particu-
lar, we takeX = B. Then the legitimate receiver re-
ceivesY = B+E; whilst the eavesdropper receives

Z = X +B. Since the information is transmitted in
bits, Z results in a zero sequence. That is, the eaves-
dropper constantly receives a zero sequence no matter
whatB is. Clearly it does not help him to have a better
guess of the information being transmitted. Therefore
in this case, according to Shannon’s coding theorem
for noisy channels,I(X;Y) = I(B;B+E) bits infor-
mation can be reliably transmitted to the legitimate
receiver while keeping it ignorant to the eavesdrop-
per. If the length of the codeword isn, then we obtain
a secrecy rate

R2
s =

1
n

I(B;B+E). (5)

If we let C2
s be the secrecy capacity of the chan-

nel shown in Fig. 4, then we haveR2
s ≤ C2

s . Next we
will show the converseR2

s ≥ C2
s and thus prove the

following theorem.

Theorem 4.1. C2
s = R2

s.

Proof. The proof uses the definitions of entropy,
mutual information, data-processing inequality and
Fano’s inequality, for which one can refer to (Cover
and Thomas, 2005).

Consider a(2nR,n) secrecy code with a secrecy

constraint:R(n)
l = 1

nI(S;Z)≤ ε0 and a communication

constraintP(n)
e = Pr{S 6= Ŝ} ≤ ε1.

nC2
s ≤ H(S)
(a)
≤ H(S|Z)+nε0

= H(S,B′|Z)−H(B′|S,Z)+nε0

= H(B′|Z)+H(S|B′,Z)−H(B′|S,Z)+nε0

(b)
≤ H(B′|Z)+H(S|Y)−H(B′|S,Z)+nε0

(c)
≤ H(B′|Z)−H(B′|S,Z,X)+nε0+nε1

(d)
≤ H(B′|Z)−H(B′|B)+nε0+nε1

≤ H(B′)−H(B′|B)+nε0+nε1

= I(B;B′)+nε0+nε1,

where (a) follows by the definitions of entropy and
mutual information:H(S) = H(S|Z) + I(S;Z); and
by the secrecy constraintI(S;Z) ≤ nε0; (b) follows
by the data-processing inequality thatH(S|B′,Z) ≤
H(S|Y) sinceY = Z +B′; (c) follows the fact that
H(B′|S,Z) ≥ H(B′|S,Z,X) andH(S|Y)≤ H(S|Ŝ)≤

nP(n)
e +h(P(n)

e )−1≤ nε1, where the last two inequal-
ities are due to the Fano’s inequality and the commu-

nication constraintP(n)
e ≤ ε1, respectively; (d) follows

thatH(B′|S,Z,X) = H(B′|S,X,B) = H(B′|B).
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As a conclusion, we have proven that the special
wiretap channel with side information as shown in
Fig. 4 has secrecy capacityC2

s = 1
nI(B;B′). Besides,

if B,E andB′ are sequences of i.i.d random variables
B,E andB′, respectively, whereB′ = B+E (this cor-
responds a discrete memoryless channel with additive
noises scenario), we have the following single-letter
characterization of the secrecy capacity:

C2
s =

1
n

I(B;B+E) = I(B;B+E). (6)

Remarks on the secrecy constraint:It is easy
to see that the above proof also applies to a
stricter secrecy constraint1nI(S,B;Z) ≤ ε0, since
I(S;Z) ≤ I(S,B;Z). Although the stricter constraint
1
nI(S,B;Z) ≤ ε0 is more suitable for biometric secu-
rity concerns, we still use1nI(S;Z) ≤ ε0 since it is
enough for the proof of the converse and consistent
with the terminology used in the study on wiretap
channels.

4.2 Advantage of Knowing the Noise in
the Eavesdropper Channel

In this subsection, we will show that knowing the
noise in the eavesdropper channel provides an advan-
tage, in the manner that the secrecy capacity of com-
munication model in Fig. 4 is no less than the one in
Fig. 3. Intuitively this is true, since any secrecy rate
achievable for the model in Fig. 3 is also achievable
for the model in Fig. 4 (because the encoder can al-
ways ignore the side information). Theoretically we
confirm this by the following theorem and further pro-
vide numerical comparisons in next subsection.

Theorem 4.2. C1
s ≤C2

s , i.e.,

I(X;X+E)− I(X;X+B)≤ I(B;B+E). (7)

Proof. First we consider the termI(X;X + B). By
chain rule of the mutual information (Cover and
Thomas, 2005), we have

I(X;X+B) = I(X,B;X+B)− I(B;X+B|X)

= I(B;X+B)+H(X|B)−H(B|X).

Similarly we have

I(X;X+E)
(a)
= I(E;X+E)+H(X)−H(E);

I(B;B+E)
(a)
= I(E;B+E)+H(B)−H(E),

where (a) follows thatE is independent ofX andB.
Applying the above equalities to (7), we derive the

following inequality, which is equivalent to (7).

I(E;X+E)− I(B;X+B)≤ I(E;B+E).

So in order to prove the theorem, it is enough to show

I(B;X+B)≥ I(E;X+E)− I(E;B+E).

This inequality is valid, since

I(B;X+B)
(b)
≥ I(B;X+B|B+E)

= H(B|B+E)−H(B|B+E,X+B)

= H(E|B+E)−H(E|B+E,X+E)

(c)
≥ H(E|B+E)−H(E|X+E)

= I(E;X+E)− I(E;B+E),

where (b) is due to Lemma 4.3; (c) follows the fact
thatH(E|B+E,X+E)≤ H(E|X+E).

Lemma 4.3. I(B;X+B)≥ I(B;X+B|B+E).

Proof. First we note thatX +B → (X,B) → B+E
forms a Markov chain. Thus we have

I(X,B;X+B)≥ I(X,B;X+B|B+E).

In addition, by chain rule of the mutual information
(Cover and Thomas, 2005), we have

I(X,B;X+B) =I(B;X+B)+ I(X;X+B|B);

I(X,B;X+B|B+E)
(a)
= I(B;X+B|B+E)

+ I(X;X+B|B),

where (a) is due to the fact thatE is independent ofX
andB. As a direct consequence, we obtainI(B;X +
B) ≥ I(B;X+B|B+E) and thus complete the proof.

4.3 Numerical Examples

In this subsection, we give two examples where the
secrecy capacity of communication model in Fig. 4 is
strictly larger than the one in Fig. 3.

Example 4.4. Suppose that the channel shown in
Fig. 4 is an additive white Gaussian noise (AWGN)
wiretap channel, i.e., E and B are white Gaussian
noises added into the main channel and the eaves-
dropper channel, respectively. Further we assume
that E∼ N (0,N) and B∼ N (0,Q), whereN (a,b)
stands for a Gaussian distribution with mean a and
variance b. In addition, the average power constraint
on X is P.

It is easy to calculate

C2
s = I(B;B+E)

=

{ 1
2 log(1+ P

N) if P< Q
1
2 log(1+ Q

N) if P≥ Q
;

C1
s = max

Pr(x)
{I(X;X+E)− I(X;X+B)}

=
1
2

log(1+
P
N
)−

1
2

log(1+
P
Q
),
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whereC1
s is in fact the difference of the capacities of

the main channel and the eavesdropper channel. Easy
comparison shows us thatC2

s >C1
s holds always.

Example 4.5.Suppose that the channel shown in Fig.
4 is a binary memoryless symmetric wiretap channel,
i.e., both main channel and the eavesdropper channel
are binary symmetric channels (BSCs). We further
assume that E and B have the following probability
distributions: Pr(E = 1) = 1− Pr(E = 0) = e and
Pr(B= 1) = 1−Pr(B= 0) = p, where0< e, p< 1/2.

It is easy to calculate

C2
s = I(B;B+E) = H(B+E)−H(E)

= h(p∗e)−h(e);

C1
s = max

Pr(x)
{I(X;X+E)− I(X;X+B)}

= h(p)−h(e),

where C1
s is in fact the difference of the capaci-

ties of the main channel and the eavesdropper chan-
nel; h(·) is the binary entropy function (Cover and
Thomas, 2005), andp∗e= p+e−2peis the value of
Pr(X+E = 1). ClearlyC2

s >C1
s holds due to the fact

that p∗e> p and thush(p∗e)> h(p).
For this specific example, it is easy to see that the

gain on the secrecy capacity ish(p∗e)−h(p), which
is increasing with respect toe while decreasing with
respect top, and equal to 0 at eithere= 0 or p= 1/2.

5 CONCLUSIONS

In this paper, we reformulate the biometric authen-
tication scheme to an extension of Shannon’s se-
crecy system with an error-prone key, and the Juels-
Wattenberg scheme with a smart encoder to a specific
model of wiretap channel, where the encoder knows
the noise in the eavesdropper’s channel.

From the point of view of an extension of Shan-
non’s secrecy system, we provide theoretical limits
on the maximal randomness of the secret that can be
concealed and revealed by an error-prone key while
hidden perfectly from a third party. Since the code
rate of the employed error correcting code reflects the
storage efficiency, one can easily derive lower bounds
and upper bounds on the storage efficiency by the nu-
merous results on the error correcting codes. Further-
more, we show that the Juels-Wattenberg scheme is
optimal if the biometric key and the biometric error
pattern satisfy certain statistical distributions; other-
wise, it is possible to improve the performance of the
Juels-Wattenberg scheme by choosing the codeword
from a prespecified error correcting code on the basis
of the biometric template.

We further reformulate the Juels-Wattenberg
scheme with a smart encoder to a specific model of
wiretap channel with side information, where the side
information is the noise of the eavesdropper’s chan-
nel and known at the encoder. The idea of the smart
encoder is inspired by the fact that the authorities
are collecting the biometric information from peo-
ple since years and this knowledge could in turn be
used to better design the biometric system for peo-
ple’s good. From an information theoretic perspec-
tive, we demonstrate that the knowledge of the en-
rolled biometric template at the smart encoder does
provide an advantage so as to enhance the perfor-
mance of the biometric authentication scheme. As a
byproduct, we derive the secrecy capacity of this spe-
cial wiretap channel with side information and pro-
vide two numerical examples showing that strictly
larger secrecy capacities can be achieved when both
the main channel and the eavesdropper’s channel are
AWGN channels or BSCs.

Our work also inspires research problems on the
extension of Shannon’s secrecy system with an error-
prone key and the general wiretap channels with
side/two-sided (asymmetric) information, where the
key or the side information subjects to a certain con-
straint in any particular metric space.
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APPENDIX

Fano’s Inequality

Let Pe = Pr{Ŝ(Z) 6= S}, whereŜ(Z) is an estimate of
S based on the observationZ. Then

H(Pe)+Pelog|S | ≥ H(S|Z), (8)

whereS is the set ofS and|S | is the cardinality ofS .

Upper Bound on FAR

Fano’s inequality gives a lower bound on the ‘error’
probability of decodingPe on secretS. However, in
the context when we consider FAR, we talk about the
probability of ‘correct’ decoding onSgiven the eaves-
dropper’s observationZ, where

FAR= Pr{Ŝ(Z) = S}= 1−Pe. (9)

The information leakage fromZ onS is by definition
I(S;Z). By Fano’s inequality, we have

H(Pe)+Pelog|S | ≥ H(S|Z),

i.e.,

H(1−FAR)+ (1−FAR) log|S | ≥ H(S)− I(S;Z).

Note thatH(1−FAR)≤ 1. Easy calculation gives us

FAR≤
1+ log|S |+ I(S;Z)−H(S)

log|S |
. (10)

In particular, if the secretS is uniformly distributed
overS , thenH(S) = log|S |. The above upper bound
can be simplified to

FAR≤
1+ I(S;Z)

log|S |
. (11)

List of Notations

b biometric template at enrollment phase

b′ biometric template at the authentication phase

e variation in biometric readings

c a codeword

R transmission rate

Rn
l information leakage rate

Pn
e average probability of error

R2
s secrecy rate for model in Fig. 4

C1
s secrecy capacity for model in Fig. 3

C2
s secrecy capacity for model in Fig. 4

(2nR,n) a secrecy code of 2nR codewords of lengthn

(n,k,d) a linear code, of lengthn, dimensionk and
minimum distanced

hw(·) Hamming weight function, numbers of non-
zeros in a sequence

Pr{·} probability function

h(·) binary entropy function

H(·) entropy function, uncertainty associated with a
variable

I(·) mutual information function, amount of informa-
tion shared by two variables
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