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Abstract: Ad hoc networks are dynamic and scalable entities that autonomously adapt to nodes entering the network 
(i.e. increasing interference) or exiting the network (i.e. due to energy depletion), poor connectivity among 
others. In such networks, nodes exhibit individualistic behaviours where nodes selfishly compete for the 
limited network resources (i.e. energy and bandwidth) to maximize their own utilities. This consequently 
degrades network performance leading to low data rates, poor power efficiency, loss of connectivity 
etcetera. This paper considers a network utility maximization (NUM) strategy based on coupled interference 
minimization to adapt the transmission power and data rates in ad hoc networks. The proposed distributive 
joint power and rate adaptation (JRPA) algorithm employs costing (and reward) mechanisms to promote 
users’ cooperation such that both users’ local and network global optimum is always attained. This is similar 
to a super-modular game hence the optimality and convergence of JRPA is analysed using super-modular 
game theory. Simulation results show that the proposed algorithm improves network performance since 
users’ are compels to transmit at optimal data rates and power levels just enough to sustain the transmission.

1 INTRODUCTION 

Preference of wireless networks (WNs) to fixed 
networks has incredibly increased in the recent past 
due to their cost efficiency and ease of setting-up 
and integrating them with other networks. This has 
since led to introduction of IEEE standards that 
support higher data rate e.g. 802.11a/g. However, 
transmitting at higher data rates reduces connectivity 
due to decline in communicating range and hence 
requires that the transmission power be increased to 
sustain transmission. 

To attain spectrum efficiency in WNs, resource 
sharing and management is critical. Nonetheless, 
this is not easily attainable in ad hoc networks due to 
dynamic topology and time-variant channel 
conditions in such networks hence need for adaptive 
approaches. 

Though reducing the transmit power allows 
multiple simultaneous transmissions, this results to 
decrease in SINR performance owing to either weak 
received signal strength (RSS) or increased 
interference. As a result, transmissions are sustained 
at lower data rates. Moreover, such scenarios are 

vulnerable to hidden node problems resulting from 
high interference range created by the reduced 
transmit power. On the converse, transmitting at 
high power impedes concurrent transmissions. 
Nonetheless, this mitigates hidden terminal 
problems and improves SINR thence higher data 
rates are achievable. In a nutshell, to attain high data 
rates at minimum transmission power in WNs is a 
contradictive objective. Huang et al in (Huang and 
Letaief, 2005) shows that adapting transmission 
parameters (data rate and power) based on link 
dynamics can solve the aforementioned objective. In 
such a case, the link dynamics can be estimated 
based on the RSS, acknowledgment (ACK) history 
(Kim and Huh, 2006) or SINR (Olwal et al., 2009, 
Grilo and Nunes, 2003, del Prado Pavon and Choi, 
2003). However, SINR based schemes has better 
performance compared to RSS and ACK since it 
responds faster to link variations (Olwal et al., 
2009). 

We propose a joint power and rate adaptation 
scheme based on NUM problem formulated as a 
coupled interference minimization such that nodes 
determine their data rates and transmit power based 
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on presumed coupled interference at the receiver. In 
such a case, users are always aware of channel 
conditions as they choose their transmission 
parameters. Further, costing (pricing) effect is 
imposed on users’ choices to encourage cooperation 
and deter selfish behaviors hence both local and 
global utility are attainable. 

The reminder of this paper is organized as 
follows:  Section 2 reviews related works; Section 3 
gives the system model; JRPA algorithm is 
presented in Section 4 while simulation results are 
given in Section 5 and finally, conclusion is drawn 
in Section 6. 

2 RELATED WORK 

Most protocols proposed in literature ((Luo et al., 
2010, Hayajneh and Abdallah, 2004, Grilo and 
Nunes, 2003) and references therein) considers 
power control, rate adaptation or joint rate-power 
control in centralized infrastructures WNs where a 
centralized station determines and dictates the 
power/rate for data transmission in the network. 
Such protocols may not be applicable in ad hoc 
networks where all stations are at free will to choose 
their transmission parameter based on their own 
preferences. This may lead to greedy behavior 
wherein users adapt their transmission power with 
sole objective of achieving individual desired 
throughput without considering others users’ 
interests (Olwal et al., 2009). Such schemes require 
much power to sustain a stable SINR in deep fading 
environment and causes high interference. 
Furthermore, such algorithms tend to diverge in case 
of no feasible power allocation due to hard SINR 
requirements. However, this divergence problem is 
easily solved by adaptive SINR based on coupled 
interference at the receiver. 

Due to the distributed and heterogeneous nature 
of ad hoc network, it is often challenging to design 
distributed algorithms that can achieve the global 
optimal NUM solution. The difficulty in distributed 
algorithm design often lies in the coupling nature of 
the NUM problem. NUM problems generally 
assume that user’s utilities are uncoupled, i.e., each 
utility depends only on local variables (Li Ping et al., 
2009). However, in problems where cooperation or 
competition is modeled using the objective function, 
each user’s utility depends on both its local variables 
and local variables of other users in the network 
(Hayajneh and Abdallah, 2004, Wang et al., 2006). 
In (Chee Wei et al., 2006, Palomar and Mung, 
2006), these NUM problems are formulated as 

coupled optimization. Dual decomposition with 
significant message passing is used to solve such 
coupled NUM problems where the coupling in the 
objective function is transferred to coupling in the 
constraints. However this requires strict convexity 
and exhibits slow convergence. In (Huang, 2005, 
Huang et al., 2006), “reverse engineering” with 
limited message passing is proposed that solves 
coupled NUM problems without need for strict 
convexity. 

Similar to (Huang, 2005, Huang et al., 2006), our 
proposed algorithm considers limited message 
passing strategy based on “reverse engineering” to 
solve the formulated coupled interference NUM 
problem. The proposed JRPA dynamically adjust the 
users’ choices of transmission power to curb the 
influence of coupled interference. Such dynamic 
adjustments exploit the locally observable network 
channel conditions and cost charges attached to that 
transmit power choice. The users are hence 
cognizant of the current link condition while 
determining their data rates. Moreover, due to the 
ineluctable cooperation, every user’s strategy to 
maximize its utility maximizes the utility of other 
network users, thus improving global network 
performance. 

Supermodular game theory is used to show the 
existence, convergence and optimality of user’s 
utility functions (Saraydar et al., 1999) since in such 
games, each player strives to increase its strategy 
while increases other players’ strategies as well. 
Such a game contains Nash Equilibrium (NE), and 
does not necessarily require assumption of convexity 
in order to attain NE (Ozdaglar, 2010, Levin, 2003). 

3 SYSTEM MODEL 

3.1 Problem Formulation 

Consider an ad hoc network with N  stations where 
node i  transmits to node j  on a single hop 

subjected to path loss, shadowing and multi path 
fading dynamics (Olwal et al., 2009). Assume 
further that all the nodes in the network are within 
the transmission range of their neighbors such that a 
node’s transmission interferes with other nodes in 
the network.  Consider a set of transmission power 
levels p  and set of data rates r  defined as follows: 

{ }min 2 3 max, , , ...,p p p p p= and { }min 2 3 max, , , ...,r r r r r=  

where minr and maxr are the minimum and maximum 

data rates while minp and maxp  are the minimum and 
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maximum transmit power levels possible in the 
network. These sets are assumed identical to all 
users in the network. The channel gain on link ij  

given by ijG  derived as below: 

j ij ip G p=  (1)
 

where ip  is i ’s transmit power and jp
 
is received 

power at j . Notably, ijG  is not necessarily equal to 

jiG  since the channel condition is time variant. Half 

duplex model is assumed i.e. a user can either 
receive or transmit but not both simultaneously. 

The objective is to determine i ’s power 
allocation that maximizes its utility given the 
coupled interference perceived at j . Utility function 

( ( ))n nu pγ  for user n N∈  is differentiable, concave 

and increasing function of the received SINR 
(Saraydar et al., 1999, Huang et al., 2006) and hence 
NUM problem based on coupled interference can be 
formulated as follows:  

 

max ( ( ))n n
n N

u pγ
∈
  (2)

such that 

min maxr r r N≤ ≤ ∀  

(3)

min maxp p p N≤ ≤ ∀  (4)

where SINR, ( )n pγ is given by 
 

,

ij i

ij

kj k o
k i j

G p

G p n
γ

≠

=
+  (5)

    

 

where 
,

kj k
k i j

G p
≠
 is the sum of interference power ijI

 

at node j  due to communication of other users in 

the network other than i . on is the thermal noise, ijG

is the channel gain while ip is the transmit power 

used by i to transmit to j . 

3.2 Optimal Power based on Coupled 
Interference 

Due to existence of mutual interference, network 
users have coupled utility function that depends on 
both the user’s local decision and decisions of other 
users in the network. The global NUM problem can 
therefore be formulated from (2) as  
 

{ } ( )( ):
1

max
i

N

n np p P n
n

u pγ∈ ∀
=
 s.t. (3) and (4) (6)

 

To solve the coupled objective function in (6), 
(Palomar and Mung, 2006) proposes consistency 
pricing which requires significant message passing 
to attain optimal decision. Moreover, this approach 
requires convexity in (6) but ܷ௞(. ) in (6) is concave 
in nγ . Therefore we adopt reverse-engineering 

based on KKT conditions (Huang et al., 2006, 
Huang, 2005)  to solve (6) by localizing the network 
objective function and updating users on their 
neighbors’ utility choices by means of limited 
message passing. 

Define ip as the power profile of user i  in the 

network and ip− as the power profile for user 'i s  

opponents i.e. ( )1 1 1,..., , ,..., ni i ip p p p p− − += such 

that { };i ip p p−∈ . Then this utility maximization can 

be modeled as a power control game 

,{ },{ }i iG N p u  = where all the players selects 

transmit power ip  that maximize their utility iu

whereby ( )iu i  represents user 'i s pay-off or 

reward. User 'i s optimal response is ip
 

that 

maximizes its utility iu given by ( )( ),i i i iu p pγ −

formulated as (7) (Huang, 2005, Huang and Letaief, 
2005, Li Ping et al., 2009). 

(௜ି݌)௡ߚ  = ݃ݎܽ m ax ( ( , ))
i

i i i i
p p

u p pγ −
∈  

(7)

 

Assuming that ip−  is fixed, the reward 

( ( , ))ii i iu p pγ −  in (7) is strictly increasing with

ip . 

In view of a Non Cooperative Game (NCG) 
where players select optimal power levels to 
maximize their rewards at the expense of others, 
then a fixed point p= *p  defined by (8) would be 

the NE.  
 

( )( ) ( )( )* * ' ', ,i i i i i i i iu p p u p pγ γ− −≥  (8)
 

where 'p p∈  is any power chosen by any user i
other than *p  in view of the fact that each user’s 

reward ( ( , ))ii i iu p pγ − is strictly increasing with 

ip  for fixed ip− (Huang, 2005, Huang et al., 2006, 

Li Ping et al., 2009). 
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We seek to improve the NE in (8) by introducing 
pricing in users’ choices since pricing discourages 
users’ selfish behaviors. In effect, every user strives 
to maximize its pay-off or reward ( )i if γ  in (9) by 

minimizing the cost c attached to its transmission 
power choice ip . 
 

( , ) ( )i i i i i iu p p f cpγ− = −  (9)
 

Considering (9) as cost or penalty imposed on i  for 
generating interference to other network users, user 
i  has to minimize c in (9) to be able to maximize its 
utility. Since c depends on channel gain ijG  and 

network factor jε , surplus function is derived from 

(9) as follows: 

( ; , )i i i iS p p ε− − =  

( ( ; ))i i i i i j ij
j i

u p p p Gγ ε−
≠

−   (10)

Lemma 1 (KKT conditions) (Huang et al., 2006): 
For any local optimal *p  of problem (6), there exist 

unique lagrange multipliers μଵ,୳∗ , . . . , μ୍,୳∗  and μଵ,୥∗ , . . . , μ୍,୥∗  such that for all n N∈ , 
 

( )( ) ( )( )* *

* *
, ,

i i k k

i u g u
k ii k

u p u p

p p

γ γ
μ μ

≠

∂ ∂
+ = −

∂ ∂  (11)

where 

( )* * max
, 0,i u i ip pμ − = ( )* max *

, 0,i g i ip pμ − =
* *
, ,, 0i u g uμ μ ≥  

(12)

 

The KKT set of problem (6) need to contain all 
the solutions that satisfy (11) and (12) hence we 
design a distributed algorithm that converges to this 
set. Substituting (11) in (6), the KKT condition for i  
can be expressed as follows 
 

( )( ) ( )
*

* * * *
, , ,,

i i

j j j i j i u g u
k ii

u p
p p G

p

γ
ε μ μ−

≠

∂
= −

∂   (13)

 

where 
 

( )( ),
( , )

( )

j j j j

j j j
j j

u p p
p p

I p

γ
ε −

−
−

∂
= −

∂
 (14)

 

In equation (14), ( )j jI p− is the total interference 

received by user j  given by
i i j

i j

p G
≠
 . Notably, the 

cost function in (14) is always nonnegative and 

represents j ’s marginal increase in utility per unit 

decrease in total interference. The reward is the 
product of user’s transmission power p and the 

weighted sum of other users’ costs in (10) where 
weights equal to the channel gains between 
transmitter i  and the other users’ receivers. If jε  is 

the penalty obtruded to other users for generating 
interference to user i  defined in (9), then (14) is an 
acceptable optimal condition for the problem in 
which each user i  chooses a power level ip p∈  to 

maximize (i.e. the surplus function  in (10)) (Huang, 
2005). 

At an instance of time t , network users 
announce their cost in reference to (14) and adjust 
their transmit power taking into account network 
dynamics according to (10). The chosen power is 
constrained to (13) and as a result, an optimal 
localized distributive power algorithm with costing 
constrains is derived. The surplus in (10) and cost 
function (14) are formulated as function of the 
desired power pi and SINR as in (14) and (15) 
respectively. 

 

( , )
i i iS p ε− − =  

min max
min max , ,

( ) ( )

i i

i i

j ij
j i

p p
p p

p p
G

γ γ
ε

≠

     
     

     
  

(15)

 

2( ( )) ( ( ))
( )

( )
i i i

i
i i ij

u p p
p

p p G

γ γε
γ β

∂
=

∂
 (16)

 

where β is the spreading factor while 

( )i i

i

du

d

ω
ω

 is 

given by . 

3.3 Convergence and Optimality 

Lemma 2 (Ozdaglar, 2010): Let X ⊆  and 
kT ⊂  for some k, a partial ordered set with the 

usual vector order. Let :f X T× →  be a twice 

continuously differential function. Then, the 
following statements are equivalent: (i) The function 
f has increasing differences in (x,t), (ii) For all t’ ≥ t 

and x ∈ X, we have 
'( , ) ( , )f x t f x t

x x

∂ ∂≥
∂ ∂

 and, (iii) For 

all x ∈ X, t ∈ T, and all i=1,…,k, we have 
2 ( , )

0
i

f x t

x t

∂ ≥
∂ ∂

. 

 1

1

( ) ( )t t
i i i i

t t
i i

u uω ω
ω ω

−

−

−
−
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Theorem 1: Define X ⊆  as a compact set and T 
as some partially ordered set. Assume that the 
function :f TΧ × →  is upper semicontinuous in x 

for all 1and has increasing differences in (x,t). 

Define ( ) arg max ( , )xx t f x t∈Χ= . Then, we have: for 

all t T∈ , x(t) is nonempty and has a greatest and 

least element, denoted by ( )x t and ( )x t respectively 

and, for all t’≥ t, we have ( ')x t ≥ ( )x t and ( ')x t and

( )x t  
From lemma 2 and theorem 1, every user’s utility 

function ( , )i i iu p p− has increasing differences in 

( , )i ip p−  
given that

''

'

( )
1, 0

( )
i i i

i
i i

f

f

γ γ γ
γ

− ≥ ∀ ≥  

hence the convergence.  
Assume ( ), ( ), ( )iI p u is a supermodular game. 

Then ( )i ipβ −  in (7) as a greatest and least element, 

denoted by ( )i ipβ −  and ( )i ipβ − , and If ' i ip p− −≥

then ( ' ) ( )i i i ip pβ β− −≥  and ( ' ) ( )i i i ip pβ β− − − −≥  

(Levin, 2003).
 This implies that each player’s best response is 

increasing in the actions of other players. The set of 
strategies that survive iterated strict dominance (i.e. 
iterated elimination of strictly dominated strategies) 
has greatest and least elements p and p , which are 

both pure strategy in Nash Equilibrium. 
Definition and formulation of supermodular 

game theory can be found in (Huang, 2005, 
Ozdaglar, 2010, Hayajneh and Abdallah, 2004, 
Levin, 2003).

 

3.4 Rate Adaptation 

From the SINR’s of the distributive pricing power 
control algorithm above, best constellation size for 
M-QAM modulation is determined that is supported 
by the SINR level. From Shannon theory of 
communication ((Yu-Chee et al., 2001)) we can 

deduce the following: 1

2

1
( )

M SINR
ln BER

ϑ
ϑ

 −
= +  − 

where BER is the bit error rate while 1ϑ  and 2ϑ are 

modulation type dependent constants. Let

1

2ln( )BER

ϑδ
ϑ
−

= , then data rate ir  for transmit power 

pi between the sender i and receiver j is a function of 
SINR estimated as 1M SINRδ= +  and hence 
 

( ) ( )2 2

1 1
log 1 logi ir SINR r SINR

T T
δ δ= + ≈ =  (17)

 

where 1SINRδ  while 
1

T
 is the bandwidth of the 

channel used for data transmission. When the signal 
level is much higher than the interference level or 
when the spreading gain is large then ir  lies within 

(3). 

4 JOINT POWER AND RATE 
CONTROL ALGORITHM 
(JRPA) 

The outline of joint power and rate control algorithm 
is presented as follows: 

1. Initialization Stage: Initialize power ip  and cost 

jε −  
to some non-negative value, and then calculate 

ir  
from (17). 

2. Cost Advertisement and Transmit Power 
Adjustment 

a. Cost Announcing: interferers 1i−  update and 

advertise their cost jε − according to (16). 

b. Power Updating: based on network cost, user 
i  updates its transmission power ip according to 

(15). 
c.  Determine data rate according to (17). 
d. Repeat 2 while not end of communication 

5 SIMULATION TEST AND 
RESULTS 

Simulation is performed in MATLAB with 32 nodes 
randomly placed in a 20 20m m×  field free of 
obstacles. It’s assumed that only Tx communicates 
with Rx while other network users are actively 
interfering. Performance metrics are evaluated for 50 
independent runs (transmissions). For all the 
simulations, we assume single hop with the 
following simulation parameters: path loss model 
exponent = 1, AWGN = -96dB, Pmax = 10dB, Pmin 
=1dB, Initial cost = 0.1 and utility function, ( )i iu γ  

is given by log( )iγ . It is further summed that all 

transmissions are successful, channel bandwidth = 
20MHz and spreading factor, β  = 5.  We consider 2 

scenarios: scenario 1 is a stationary network where 
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users are static while scenario 2 reflects a mobile 
network where users randomly move after every 2 
transmissions at a velocity 20kmph. In addition, all 
transmissions are assumed to be successful. The 
performance of JRPA is compared to IEEE 802.11 
and adaptive auto response joint power and rate 
control algorithm – LP proposed by (Chevillat et al., 
2005). 

 

Figure 1: Stationary users. 

In all the runs, it’s observed that JRPA attains the 
highest data rates at minimal transmission power 
followed by LP and the legend 802.11 protocols. 
The costing mechanism drives the power selection 
response in JRPA to the most cost effective option. 
At the beginning, transmission power hikes due to 
limited information available at Tx about the channel 
conditions. As the other network users advertise 
their network costs, Tx determines the most feasible 
transmission power for the subsequent transmissions 
till most optimal transmission power is attained. 
This is the NE. LP and 802.11 transmit at higher 
power levels and hence achieve higher SINR than 
JRPA. Nonetheless, JRPA attains highest data rate. 
The improvement on JRPA compared to LP and 
802.11 is that JRPA operates at optimal power just 
enough to sustain the required transmission and to 
decode data packets at the receiver Rx. 

Figure 2 shows the performance of JRPA in an 
environment where the network users are assumed to 
be in random movement. Similar to figure 1, 
performance of JRPA in terms of data rates and 
power efficiency is relatively better compared to LP 
and 802.11. However, low data rates are experienced 
due to fast fading channel conditions resulting from 
user mobility. The power level that JRPA settles on 
is apparently the most optimal power that maximizes 
both local and global utility considering the network 
dynamics during data transmission. At such power 
choices, interference cost function is always 

minimized while the reward function (data rate) is 
maximized hence improving network performance. 

 

 

Figure 2: Partial mobility. 

6 CONCLUSIONS 

This paper proposes distributive algorithm that 
jointly adapts transmission powers and data rates in 
ad hoc networks by formulating NUM as a coupled 
interference minimization problem. The simulation 
results have shown that penalizing users’ selfish 
behaviors promotes cooperation such that user aim 
to optimize both global and local utilities. Future 
work may consider cross layering optimization to 
incorporate packet routing in the proposed model. 
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