
ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS
FOR SECURITY PROTOCOL ANALYSIS

M.-Camilla Fiazza, Michele Peroli and Luca Viganò
Department of Computer Science, University of Verona, Strada le Grazie 15, Verona, Italy

Keywords: Non-collaborative attackers, Attack interference, Dolev-Yao attacker, Attack mitigation, Security protocols.

Abstract: In security protocol analysis, the traditional choice to consider a single Dolev-Yao attacker is supported by the
fact that models with multiple collaborating Dolev-Yao attackers have been shown to be reducible to models
with one Dolev-Yao attacker. In this paper, we take a fundamentally different approach and investigate the
case of multiple non-collaborating attackers. After formalizing the framework for multi-attacker scenarios, we
show with a case study that concurrent competitive attacks can interfere with each other. We then present a
new strategy to defend security protocols, based on active exploitation of attack interference. The paper can
be seen as providing two proof-of-concept results: (i) it is possible to exploit interference to mitigate protocol
vulnerabilities, thus providing a form of protection to protocols; (ii) the search for defense strategies requires
scenarios with at least two attackers.

1 INTRODUCTION

1.1 Context

The typical attacker model adopted in security pro-
tocol analysis is the one of (Dolev and Yao, 1983):
the Dolev-Yao (DY) attackercan compose, send and
intercept messages at will, but, following the perfect
cryptography assumption, he cannot break cryptogra-
phy. The DY attacker is thus in complete control of
the network — in fact, he is often formalized as be-
ing the network itself — and, with respect to network
abilities, he is actually stronger than any attacker that
can be implemented in real-life situations. Hence, if a
protocol is proved to be secure under the DY attacker,
it will also withstand attacks carried out by less pow-
erful attackers; aside from deviations from the spec-
ification introduced in the implementation phase, the
protocol can thus be safely employed in real-life net-
works, at least in principle.

Alternative attacker models have also been con-
sidered. On the one hand,computational modelsfor
protocol analysis consider attackers who can indeed
break cryptography, as opposed to thesymbolic mod-
elswhere cryptography is perfect (as we will assume
in this paper). See, for instance, (Abadi et al., 2009)
for a survey of models and proofs of protocol secu-
rity, and (Basin and Cremers, 2010) for a protocol-
security hierarchy in which protocols are classified

by their relative strength against different forms of at-
tacker compromise.

On the other hand, different symbolic models have
been recently proposed that considermultiple attack-
ers, instead of following the usual practice to consider
a single DY attacker, a choice that is supported by
the fact that models with multiple collaborating DY
attackers have been shown to be reducible to mod-
els with one DY attacker (see, e.g., (Caleiro et al.,
2005) for a detailed proof, as well as (Basin et al.,
2011; Comon-Lundh and Cortier, 2003; Syverson
et al., 2000) for general results on the reduction of
the number of agents to be considered). For instance,
(Basin et al., 2009; Schaller et al., 2009) extend the
DY model to account for network topology, trans-
mission delays, and node positions in the analysis of
real-world security protocols, in particular for wire-
less networks. This results in a distributed attacker, or
actually multiple distributed attackers, with restricted,
but more realistic, communication capabilities than
those of the standard DY attacker.

Multiple attackers are also considered in the mod-
els of (Arsac et al., 2009; Arsac et al., 2011; Bella
et al., 2003; Bella et al., 2008), where each protocol
participant is allowed to behave maliciously and inter-
cept and forge messages. In fact, each agent may be-
have as a DY attacker, without colluding nor sharing
knowledge with anyone else. The analysis of security
protocols under this multi-attacker model allows one

144 Fiazza M., Peroli M. and Viganò L..
ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS.
DOI: 10.5220/0003516801440156
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 144-156
ISBN: 978-989-8425-71-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

to consider scenarios of agents competing with each
other for personal profit. Agents in this model may
also carry outretaliation attacks, where an attack is
followed by a counterattack, andanticipation attacks,
where an agent’s attack is anticipated, before its ter-
mination, by another attack by some other agent.

The features of the models of (Basin et al., 2009;
Schaller et al., 2009) and of (Arsac et al., 2009; Arsac
et al., 2011; Bella et al., 2003; Bella et al., 2008) rule
out the applicability of then-to-1 reducibility result
for the DY attacker, as the attackers do not necessar-
ily collaborate, and might actually possess different
knowledge to launch their attacks. They might even
attack each other. In fact, retaliation and anticipation
allow protocols to cope with their own vulnerabilities,
rather than eradicating them. This is possible because
agents are capable of doing more than just executing
the steps prescribed by a protocol: they can decide
to anticipate an attack, or to counter-attack by acting
even after the end of a protocol run (in which they
have been attacked). Still, retaliation may neverthe-
less be too weak as honest agents can retaliate only
after an attack has succeeded, and cannot defend the
protocol during the attack itself.

1.2 Contributions

In this paper, we take a fundamentally different ap-
proach: we show that multiple non-collaborating DY
attackers may interfere with each other in such a man-
ner that it is possible to exploit interference to miti-
gate protocol vulnerabilities, thus providing a form of
protection to flawed protocols.

In the approach we propose, instead of looking
for attacks and reacting to the existence of one by re-
designing the vulnerable protocol, we look for strate-
gies for defending against existing known attacks.
We would be performing protocol analysis to identify
possibledefenses, rather than attacks.

To investigate non-cooperation between attackers,
we propose a (protocol-independent) model in which:
(i) a protocol is run in the presence of multiple attack-
ers, and (ii) attackers potentially have different ca-
pabilities, different knowledge and can interfere with
each other. This, ultimately, allows us to create a be-
nign attacker for system defense: honest agents can
rely on anetwork guardian, an ad-hoc agent whose
task is diminishing the frequency with which dishon-
est agents can succeed in attacking vulnerable pro-
tocols. This methodology moves the focus away
from an attack-based view of security and towards a
defense-based view.

We proceed as follows. In Section 2, we formal-
ize models for the network and the agents, including,

in particular, agent attitude, goals, and disposition.
We then consider in Section 3 a vulnerable protocol
from (Boyd and Mathuria, 2003) as a case study and
focus on the interactions between attack procedures,
interactions which cannot be observed in classical set-
tings. In Section 4, we explain how interference be-
tween attacks leads to a methodology that can be used
for defending vulnerable protocols against attacks. In
Section 5, we conclude by discussing our approach
and current and future work. The Appendix provides
additional details about the case study.

2 SYSTEM MODELS: NETWORK,
AGENTS, ATTITUDE

2.1 Goals of Modeling and Approach

Network models for security protocol analysis typi-
cally either replace the communication channel with
a single attacker or build dedicated channels for each
attacker (e.g. (Basin et al., 2011; Caleiro et al., 2005;
Dilloway and Lowe, 2007; Kamil and Lowe, 2010;
Syverson et al., 2000)). Traditional modeling strate-
gies are not adequate to describe the non-collaborative
scenario under consideration. The main shortcoming
is the fact that the ability to spy the communication
on a particular channel is hard-wired in the network
model and may depend critically on network topology
or attacker identity; the result is that an information-
sharing mechanism (or a partial prohibition for it) is
structurally encoded in the network. We would like,
instead, to (i) abstract from positional advantages and
focus solely on how attackers interfereby attacking;
(ii) treat information-sharing (also as a result of spy-
ing) as a strategic choice of the agents.

For simplicity, in this paper we restrict our atten-
tion to two non-collaborative attackers (E1 and E2),
in addition to the two honest agentsA and B and
a trusted third-party serverS, whose presence is re-
quired by the protocol under consideration. In the fol-
lowing, letEves= {E1,E2} be theset of attackersand
Agents= {A,B,E1,E2} the set of all network agents
(honest and dishonest, server excluded). LetX, Y, Z
andW be variables varying inAgentsandE a vari-
able inEves; j takes value in{1,2}, whereasi ∈ N is
reserved for indexing states.

We are aware that, in situations with more than
two (dis)honest agents, further types of interactions
can arise; however, a full comprehension of the in-
teractions depends on building a clear picture of in-
terference. Such a picture necessarily starts with the
elementary interaction between two attackers.

ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS

145

In order to focus on the raw interference between
two attackers, both directing their attack towards the
same target, it is important for all attackers to have
access to the same view of what is taking place with
honest agents and possibly different views of what is
taking place with the other attacker(s). If attackers
do not all have the same information, it is possible to
conceive of strategies in which some attackers can be
mislead by others on purpose.

If the knowledge1 available to an attacker affects
his view of the system, attacker capabilities and effec-
tiveness can be diversified, without needing to con-
struct asymmetric attackers or hardwire constraints
that may hold for some attackers and not for oth-
ers. We find it relevant that a network model for
non-collaborative scenarios — besides reflecting this
stance — also support a form of competition for ac-
cess to messages, especially if attacks rely on erasing
messages.

If it is possible in principle to actively interfere
with an attack, it should be possible to do so even if all
attackers have the same knowledge. However, differ-
entiating attackers with respect to their understanding
of the situation — in particular with respect to aware-
ness of other attackers — may bring into focus the
conditions, if any, that allow an attacker to interfere
with another without being interfered with.

We diversify the activity of our attackers by ad-
mitting that attackers may choose to selectively ig-
nore some messages, on the basis of the sender’s and
receiver’s identifiers. This choice reflects actual situa-
tions in which attackers pay attention to only a subset
of the traffic through a network, focusing on the activ-
ity of some agents of interest. Regardless of whether
this selection is caused by computational constraints
or by actual interest, real attackers filter messages on
the basis of the sender’s or receiver’s identity. In the
following, we will use the setAttendE to model the
agents to which attackerE is attentive; the predicate
ofInterestE(X) (see Table 1) models the decisional
process of attackerE as he considers whether he
wishes to augmentAttendE with X, i.e. ofInterestE(X)
implies thatX is added intoAttendE.

Honest agents are interested insecurity proper-
ties (such as authentication or secrecy) being upheld
through the use of protocols. Dishonest agents, on
the other hand, are interested in changing or negat-
ing such properties. The characteristic feature of the
attackers we consider is their attitude. In particular,
in the case study presented in Section 3, dishonest

1Note that we do not attach any epistemic interpretation to the
knowledge we consider in this paper. We simply consider the in-
formation initially available to the agents, together withthe infor-
mation they acquire during protocol executions.

agents wish to attack the security protocol and are
ready, should they encounter unforeseen interference,
to take countermeasures with respect to the interfer-
ence as well. In a sense, each attacker is exclusively
focused on attacking the protocol and becomes aware
of other attackers through their effect on his success.

Our target is capturing the behavior ofequal-
opportunitydishonest agents that do not cooperate in
the classical sense. By equal-opportunity attackers
we mean agents that have the same attack power and
that may differ with respect to the information content
of their knowledge bases. Such differentiation arises
out of attentional choices and not out of intrinsic con-
straints. Strategic and attitude considerations should
not be derivable explicitly from the attacker model —
rather, they should configure it.

The driving hypothesis of our work is that study-
ing non-collaboration requires a complex notion of
attacker, whose full specification involves attentional
choices, decisional processes pertaining to the net-
work environment and to other agents, cooperation-
related choices and decisional processes pertaining to
the attack strategy. To support this type of attacker,
we extend the usual notions of protocol and role by
introducing a control — a mechanism to regulate the
execution of the steps prescribed by the attack trace in
accordance with the attacker’s strategy. In our model,
honest agents perform a controlled execution of the
protocol as well, so as to support in-protocol detec-
tion of attacks. Honest agents behave according to the
protocol’s prescription, expect things to go exactly in
accordance with the protocol and interpret deviations
in terms of the activity of dishonest agents.

2.2 Agent Model

Agent knowledge is characterized in terms of a pro-
prietary dataset. To eachX in Agents, we associate
the datasetDX, which we assume to be monotoni-
cally non-decreasing. Our agents, in particular dis-
honest agents, collect information but do not forget it.
When it is important to highlight that the dataset is to
be considered at a particular moment, we will useDi

X
instead.

The networknet is also formalized through a
dataset, which is namedDnet and indexed in the same
manner asDi

X. A dataset is a simple network model
that can be configured to support complex attackers;
we believe it can successfully meet all of our model-
ing requirements for non-collaboration. We postpone
to Section 2.3 the discussion of how datasets evolve
and how indexing and evolution are related to actions
and message transmission.

We adapt the notion of DY attacker (Dolev and

SECRYPT 2011 - International Conference on Security and Cryptography

146

Table 1: Dolev-Yao attacker model for non-collaborative
scenarios: internal operations (synthesis and analysis of
messages), network operations (spy, inject, erase) and
system configuration (True-Sender-ID, DecisionalProcess,
NetHandler). NetHandlerdescribes the set of attackers who
are allowed to spy by applying one of thespyrules. We omit
the usual rules for conjunction. The rules employed in the
case study are marked in boldface.

m1 ∈ Di
E m2 ∈ Di

E

(m1,m2) ∈ Di
E

(Comp)
m∈ Di

E k∈ Di
E

{m}k ∈ Di
E

(Encr)

(m1,m2) ∈ Di
E

mj ∈ Di
E for j ∈ {1,2}

(Proj)
{m}k ∈ Di

E k−1 ∈ Di
E

m∈ Di
E

(Decr)

< X,m,Y >∈ Di
net sender(< X,m,Y >) ∈ Di

E Y ∈ Di
E ψ

m∈ Di+1
E

(Restricted-Spy)

< X,m,Y >∈ Di
net ofInterestE(X) Y ∈ Di

E ψ

m∈ Di+1
E ∧sender(<X,m,Y >) ∈ Di+1

E

(Inflow-Spy)

< X,m,Y >∈ Di
net sender(< X,m,Y >) ∈ Di

E ofInterestE(Y) ψ

m∈ Di+1
E ∧Y ∈ Di+1

E

(Outflow-Spy)

whereψ = E ∈canSee(< X,m,Y>, i)

m∈ Di
E X ∈ Di

E Y ∈ Di
E

< E(X),m,Y >∈ Di+1
net

(Injection)

< X,m,Y >∈ Di
net sender(< X,m,Y >) ∈ Di

E

< X,m,Y >/∈ Di+1
net

(Erase)

sender(< X,m,Y >) =







E if there existsZ such thatX = E(Z)

X otherwise
(True-sender-ID)

ofInterestE(X) =







true if E decides to pay attention toX

false otherwise
(DecisionalProcess)

canSee(< X,m,Y>, i) = {Z ∈ Eves| Z can spy< X,m,Y > on Di
net} (NetHandler)

Yao, 1983) to capture a non-collaborative scenario.
We show in Table 1 how one such attacker is formal-
ized within our model, writing rules for attackerE
with respect to the knowledge baseDE and the net-
work modelDnet. Let us specify that the rules in Ta-
ble 1 are transition rules, rather than deduction rules.
Taken altogether, they construct atransition system
– which describes a computation by describing the
states that are upheld as a result of the transition. We
do not intend to carry out in this paper logical infer-
ence to identify defenses against attacks; rather, we
recognize in the system’s evolution what in our eyes
corresponds to a defense.

Attackers are legitimate network agents that can
sendandreceivemessages, derive new messages by
analyzing (e.g. decomposing) known messages, ob-
tain messages transiting on the network (spy) and re-
move them so that they do not reach their intended re-

ceiver (erase). Attackers can also partially imperson-
ate other agents, byinjecting messages under a false
identity; we represent impersonification with the no-
tationE(X), whereE is the impersonator andX is the
identifier of the impersonated agent. This set of abili-
ties describes agents who have control over almost all
facets of a communication; their characteristic lim-
itation is that they cannot violate cryptography (we
assume perfect cryptography). Note that further rules
could be added in Table 1 for other forms of encryp-
tion, digital signatures, hashing, creation of nonces
and other fresh data, and so on. For conceptual clar-
ity, we explicitly pair anerase-rule with theinjection-
rule, to emphasize that an attacker can modify mes-
sages (by erasing them and injecting a substitute) or
send messages under a false identity (partial imper-
sonification).

The most significant feature concerns spying. Our
attackers can employ three differentspyrules, adapted
to formalize the fact that attackers do not pay atten-
tion to all of the traffic on the network. Thespyrules
rely on an interpretation for “send” that is modified
with respect to the denotational semantics in (Caleiro
et al., 2006), to reflect the attentional focus of attack-
ers. The defaultspy is theRestricted-Spy: only the
messages involving known agents in both sender and
receiver roles, regardless of hypotheses on their hon-
esty, become part of the attacker’s dataset. Note that
in our model what matters is the actual sender and not
the declared sender (True-Sender-ID). This mecha-
nism prevents total impersonification and allows fil-
tering messages on the basis of the agent’s attentional
choices.

The attentional filter we use is meant as a choice
of the agents and not as a constraint to which they are
subject; therefore, it must be possible to expand the
set of agents of interest. This role is fulfilled by the
two exploratoryspyrules in Table 1,Inflow-Spyand
Outflow-Spy. Attackers have the option of accepting
or rejecting the newly discovered identifierX, on the
basis of the predicateofInterestE(X), which models
the decisional process for attention.

Note that an attacker cannot apply any of thespy
rules to obtain the messagem without knowing the
identifier of at least one betweenm’s sender andm’s
intended receiver. By not providing a “generalized
spy” rule to waive this requirement, we ensure that
(D0

E ∩ Agents= /0) implies that for alli, (Di
E ∩ Agents

= /0). Although E can augment its knowledge base
DE indefinitely — through internal message genera-
tion and the synthesis rulesCompandEncr —, E’s
network activity is in fact null. One suchE is a
dummy attacker, whose usefulness becomes appar-
ent when considering that proof of reductions for

ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS

147

non-collaboration can involve progressively migrat-
ing identifiers from an attacker’s dataset, until the at-
tacker himself reduces to the dummy attacker.

An attacker’s datasetDE consists of (i) messages
that have transited through the network and that have
been successfully received, analyzed or spied and (ii)
identifiers of the agents to whom the attacker is at-
tentive. The setAttendE of identifiers of interest to
E is further partitioned into three sets: the setHE of
agents believed2 to be honest, the setAE of agents
believed to be attackers, and the setUE of agents
whose attitude is unknown inE’s eyes. Note that,
differently from Dnet, agent datasets do not contain
triplets (〈sender-ID,message, receiver-ID〉), but only
messages or identifiers.

Once a new identifierX enters the knowledge base
of attackerE, E establishes a belief about the hon-
esty ofX and places the identifier in one of the sets
HE, AE or UE. We do not enter details on how the
agents initially build their knowledge base and es-
tablish their belief about the attitude of other known
agents. In fact, this classification is meant to be dy-
namic. Agents are on the watch for suspicious mes-
sages, which may indicate that an attack is ongoing
or may reveal that a certain agent is dishonest. Dy-
namically adapting their beliefs about the honesty of
other agents allows the agents to gather important in-
formation during single protocol runs. The agents we
wish to consider aresmart: they always employ the
available strategic information.

Attackers do not have automatic access to triplets
that relate sender, message and receiver. They must
infer this key piece of information on the basis of the
identifiers of the agents to which they are attentive,
and attempt to relate the identifiers to the messages
they spy. Inference is easier if attackers use only
the Restricted-Spyrule and keep the setAttendE of
known agents small.

2.3 Network Model

All the operations that can change the state of the net-
work datasetDnet (send, receive, inject anderase) are
termedactions, whereas we considerspy simply as
an operation: although it requires interacting with the
network, it does not change its state. Messages in
transit are inserted in the network datasetDnet, where
attackers can spy them before they are delivered to
their intended receivers. Contextually to delivery, the
message is removed from the dataset. Messages tran-
sit on the network dataset in the form of triplets of the

2We do not attach any doxastic interpretation to the beliefs we
consider in this paper.

type 〈sender-ID,message, receiver-ID〉. As a conse-
quence of message delivery or deletion,Dnet is non-
monotonic by construction.

The sequence of actions that takes place during
a protocol run is enumerated and used to index the
evolution of the network datasetDnet; the index of
Di

net is shared with all the proprietary datasetsDi
X,

whose states are synchronized accordingly.Di
net is

the state of the network datasetafter the i-th action.
Customarily, evolutions are indexed per transition

(per rule application), rather than per action. Our cho-
sen indexing strategy reflects three needs: (1) allow-
ing agents to fully analyze newly acquired messages
without having to keep track of the number of internal
operations performed; (2) supporting a form of com-
petition between attackers for access to the network;
(3) supporting a form of concurrence.

Ideally, all attackers act concurrently. However,
the state transitions for the network must be well-
defined at all times, even if attackers try to perform
conflicting actions, such as spying and deleting the
same message in transit. To impose a measure of
order, we introduce anetwork handler, whose task
is to regulate the selection of the next action and
implement the dependencies between selected action
and knowledge available to each attacker. Through
the network handler, it is also possible to keep the
system evolution in accordance with additional con-
straints, e.g. modeling information sharing within
specific subsets of agents or modeling network topol-
ogy.

As soon as the state of the network changes (e.g.
as a result ofinject or send), the network handler
passes the new triplet to each attacker, who thensimu-
latesspying and decides on whether to request erasing
the message or injecting a new one as a consequence,
in accordance with his strategy. The network handler
interprets the application of the inject-rule and of the
erase-rule as requests and selects the next action from
the set of requests. Message deletion, when requested
by any attacker, is always successful.

The outcome of the process governed by the
network handler is described through the function
canSee(), which returns a subset ofEves, highlighting
the identifiers of the attackers who can spy “before”
the message is erased fromDnet. The set of agents
described bycanSee() contains at least the identifier
of the attacker whose erase/inject request was served.

If the network handler does not receive any erase-
or inject- requests, all attentive attackers can ac-
quire the message. If one or more erase-requests are
present, the network handler erases the message and
confirms success in spying only for a subset of at-
tentive attackers. If an attacker is not incanSee(),

SECRYPT 2011 - International Conference on Security and Cryptography

148

the prior (simulated) spy is subject to rollback, along
with all internal operations that have occurred since
the last confirmed action. If no requests are received
from attackers, the network handler oversees message
delivery or selects actions requested by honest agents.

Although the formulation ofcanSee() in terms of
access time is intuitive, the reason why we favor this
mechanism is that time-dependent accessibility is not
the only situation it can model. The function can be
instantiated to model strategic decision-making and
information-sharing, or to capture a particular net-
work topology. In realistic attack scenarios, knowl-
edge of a message that has been erased may depend
more on cooperation and information-sharing than on
timing. For example, ifE j is sharing information with
Ek (but not vice versa), wheneverE j ’s erase requests
are servedEk is automatically incanSee().

The network handler is not an intelligent agent.
Specifying its behavior and instantiating the func-
tion canSee() corresponds to configuring the partic-
ular network environment in which the agents are im-
mersed (i.e.canSee() is a configurable parameter of
our model).

As a result of the network handler and of our cho-
sen indexing strategy, several internal operations can
occur in a proprietary dataset between consecutive
states, whereas only a single action separates consec-
utive states of the network dataset. Attackers deter-
mine the next state of the network dataset with prior-
ity with respect to the actions of honest agents.

In Table 2, we formalize within our model oper-
ations in the Alice&Bob notation used in Section 3;
we writeEI (Y) to denote the subset ofEveswho spy
messagem addressed toY, at least one of which has
requestedm to be erased.

With reference to Table 2, note that the(i+1)th ac-
tion is requested when the state of the network isDi

net
and agent datasets areDi

X ; thus, the senderX must
already know inDi

X both the messagemand the iden-
tifier of the intended recipientY. The message cor-
rectly transits onDi+1

net , immediately after being sent.
The (i +2)th action is eitherreceive(first two cases)
or erase(last case). The availability ofm to attack-
ers is conclusively decided after the network handler
selects the(i +2)th action, and thus pertains toDi+2

W .

2.4 Attacker Goals and Disposition

The notion of cooperation between agents can be
viewed from at least two perspectives of interest:
sharing of information and sharing of success. The
notion of attacker cooperation classically employed
in protocol analysis encompasses both aspects, as it
states the first while assuming that the second holds.

Table 2: Representation of operations in Alice&Bob nota-
tion.

(i +1)th action Formalization

X →Y : m m∈ Di
X and Y ∈ Di

X

< X,m,Y >∈ Di+1
net and < X,m,Y >6∈ Di+2

net

m 6∈ Di+2
W , whereW 6∈ canSee(< X,m,Y>, i+1)

m∈ Di+2
Y

E(X)→Y : m m∈ Di
E and X ∈ Di

E and Y ∈ Di
E

< E(X),m,Y >∈ Di+1
net and < E(X),m,Y >6∈ Di+2

net

m 6∈ Di+2
W , whereW 6∈ canSee(< X,m,Y>, i+1)

m∈ Di+2
Y

X → EI (Y) : m m∈ Di
X and Y ∈ Di

X

< X,m,Y >∈ Di+1
net and < X,m,Y >6∈ Di+2

net

m∈ Di+2
W , whereW ∈ I andI ⊆ canSee(< X,m,Y>, i+1)

In this paper, we examine attackers that exhibit,
with respect to cooperation, the behavior we callcom-
plete non-collaboration: agents voluntarily abstain
from sharing information and do not consider their
goals as met if they do not succeed in attacking. The
dispositionof attackerE1 towardsE2 belongs to one
of the following basic classes: active collaboration,
passive collaboration, competition and conflict3. The
focus of this paper is on competition – a situation in
which the goal is successfully attacking the protocol,
regardless of the disposition of other agents. From
the perspective of a competitive attacker, other attack-
ers are not of interest per se: they are relevant fac-
tors because they are sources of interference. If some
interference is detected while carrying out an attack,
a competitive attacker will take countermeasures, at-
tempting to negate potentially adverse effects.

Our scenario of interest is composed by a set of
two agents that are homogeneous with respect to their
(competitive) disposition.

3 A CASE STUDY

A dishonest agent, aware that other independent at-
tackers may be active on the network, will seek to de-
vise suitable novel attacks, so as to grant himself an
edge on unsuspecting competitors. As the mechanics
of interaction and interference between attackers have
not been exhaustively studied in literature yet, it is not
known a priori how to systematically derive an attack
behavior of this type.

In the following case study, we start from a simple
protocol for which a vulnerability is known; we de-
vise for the known (“classical”) attack a variant that

3In active and passive collaboration there is a common goal
to be pursued; the difference lies in choosing a strategy that helps
another vs. choosing a strategy that does not hinder another. In con-
flict scenarios, the primary focus of interest is the attackers, rather
than the protocol.

ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS

149

Table 3: The Boyd-Mathuria Example protocol and a mas-
querading attack against it.

BME Classical Attack

(1) A→ S : A,B

(2) S→ A : {|kAB|}kAS,{|kAB|}kBS

(3) A→ B : {|kAB|}kBS

(1) A→ E(S) : A,B

(1′) E(A)→ S : A,E

(2) S→ A : {|kAE|}kAS,{|kAE|}kES

(3) A→ E(B) : {|kAE|}kES

explicitly considers the possibility of ongoing inde-
pendent attacks. We describe a possible reasoning for
a competitive attacker in the context of the protocol’s
main features. Due to space limitations, we give ad-
ditional details about the case study in the Appendix.

The protocol we consider as a case study is a key
transport protocol described as an example in (Boyd
and Mathuria, 2003); we name it as the Boyd-
Mathuria Example (BME), and present it in Table 3
together with a classical attack against it. BME relies
on the existence of a trusted third-party serverS to
generate a session keykAB for agentsA andB, where
each agentX is assumed to share a symmetric secret
keykXS with S.

A is subject to a masquerading attack in which, at
the end of a run of BME,A thinks that he shares a
session key with the honest agentB, while in fact he
shares it with the attackerE. Subsequent communi-
cation fromA addressed toB is seen byE through the
spy-rule and removed with an erase request:E has
successfully takenB’s place. This attack preventsB
from receivingany communication fromA. Should
the two agents have prior agreement that such a com-
munication was to take place,B is in the position of
detecting that something has gone wrong.E can pre-
vent detection by staging a dual man-in-the-middleat-
tack.

If more than one attacker is active during a given
protocol run, simultaneous execution of the classical
attack could lead toA receiving multiple session keys
as a response to his (single) request to the server. This
situation clearly indicates toA that an attack is on-
going. A competitive attackerE1, wishing to pre-
vent this situation from occurring, could try remov-
ing from the network all the responses fromS to A
that do not pertain to his own request. However, the
characteristics of the (non-redundant) cryptographic
methods employed here do not allow distinguishing

M1 =
(

{|kAE1|}kAS,{|kAE1|}kE1S

)

(to let through) from

M2 =
(

{|kAE2|}kAS,{|kAE2|}kE2S

)

(to block). E1 can

recognize the format ofM1 andM2 and can success-
fully decrypt M1 to recoverkAE1; by decryptingM2
with the keykE1S, E1 can still recover a value, but
different from the previous one. Not knowingkAE1 a
priori, the attacker is not able to distinguish which of

M1 andM2 contains the answer to his request for a
key withA.

As a consequence, the attackerE1 is not able to
know which messages to remove in order to ensure
thatA acceptskAE1 as a session key to communicate
with B. Competitive attackers cannot rely on step (2)
to enforce their attacks at the expense of their com-
petitors; furthermore, the probability of erasing all
competing messages (while letting one’s own pass)
decreases with the number of active attackers. In this
situation, it becomes fundamental for a competitive
attacker to gain exclusive access to the first message
— to gain control over the messages that reachS, as
opposed to the messages coming fromS4.

After spying the initiator’s opening message, a
competitive attackerE1 will therefore attempt to
mount the classical attack, while keeping watch for
other messages that may be interpreted as attack
traces. Any transiting message of the type(A,Em)
for which Em ∈ AE1 is interpreted as another active
attack;E1 counters by requesting that the message be
erased. IfEm is in HE1, the message may be under-
stood either as a message fromA — who would be
initiating a parallel session of the protocol to obtain a
second session key — or as an indication thatEm has
been incorrectly labeled as honest. In the first case,
E1 will let the message through, as he has chosen to
target specifically the session key for the communi-
cation betweenA andB; in the second case, he will
protect his attack by erasing the message. IfEm is in
UE1, E1 can choose to either play conservatively and
hypothesize the dishonesty ofEm or let the message
through and interpretEm as the culprit in case the cur-
rent attack fails.

BME is such that at most one attackerEd can suc-
cessfully misleadA into accepting the keykAEd as
a session key to communicate withB. Therefore, a
successful attack automatically entails exclusivity of
success. An attack is successful if it goes undetected
by the initiatorA. Our honest agents are intelligent
and they make use of all information available to per-
form in-protocol detection of attacks. With respect
to BME, a clear indication forA consists in receiv-
ing multiple responses fromS after a single session
key request; ifA receives multiple responses, he con-
cludes that there has been a security violation and
thus does not employ any of the keys so received in
his later communications withB – choosing to try a
fresh run of the protocol instead. From the attackers’

4Of course,E1 could guess which message(s) to erase, but he
would have the added difficulty of having to decide whether tolet
the first message pass without knowing how many other messages
will transit, if any at all, and how many session keys were requested
by A (as opposed to by his competitor(s)).

SECRYPT 2011 - International Conference on Security and Cryptography

150

perspective, an ongoing attack can be detected by ob-
serving a message of the type(A,X) transiting on the
network; however, the attack trace is ambiguous to
spying attackers and has to be interpreted on the basis
of current beliefs concerning the honesty ofX. A last
feature of interest is that BME is rather friendly for
attacker labeling. Decisional processes can rely on at
least some conclusive information on the identity of
the agents involved, because identifiers transit in the
clear; attackers would have to infer them otherwise.

We examine the outcome of attacks carried out in
a non-collaborative environment in six cases, corre-
sponding to different conditions of knowledge and be-
lief for E1 andE2. Cases and attack traces are summa-
rized in Table 4. In order to completely specify agent
behavior, we posit the following:

1. If an attackerE spies(A,Em) with Em ∈ HE or
Em ∈ UE, he will not request that the message be
erased. In the latter case, ifE’s attack fails,Em is
immediately placed inAE.

2. BothE1 andE2 spy the opening message and are
interested in attacking the current protocol run;
this allows us to leave aside the trivial cases in
which only one attacker is active for a given pro-
tocol run.

3. Due to space constraints, we detail only the cases
in which canSeefor step (3) yields{E1,E2}.
Cases in which only one of the attackers can ac-
cessA’s response can be found in the Appendix.

Case 1: E1 and E2 Know each other as Honest. E1
andE2 know each other’s identifiers (i.e. they are pay-
ing attention to each other:E1 ∈ DE2 andE2 ∈ DE1),
but they are both mistaken in that they have labeled
the other as honest (E1 ∈ HE2 andE2 ∈ HE1). E1 and
E2 are unaware of active competitors and mount the
classical attack in steps(11) and(12). When the at-
tackers spy two requests to the server transiting on the
network, they both believe thatA wishes to request
keys with the honest agents B andE j .

(1.T1). S sends two messages before A can address
a message to B.With the messages in steps(21) and
(22), A receives two keys instead of the single key
requested.A now knows that at least one attacker is
active and abandons the protocol without sending a
message toB. The attackers do not spy the message
they were hoping for (timeout) and acquire the cer-
tainty that at least another active attacker is around.
The attackers can employ ad-hoc strategies to search
for the mislabeled or unknown attacker. If the attack-
ers are careful to keep track of the messages(A,X)
pertaining to a given session, they can make informed

guesses as to whom, amongst the known agents, they
might have mislabeled.

(1.T2). A receives a reply from S, answers B and
stops listening. Areceives the messages he expects
and closes the current session before receiving the
second response fromS. E1 is successful in his at-
tack, whereasE2 believes that he has succeeded when
he has, in fact, decrypted the wrong key. None of the
agents have an opportunity for detection.

(1.T3). A receives a reply from S, answers B and
keeps listening. Areplies with the message in step
(3), resulting in bothE1 andE2 believing that they
have succeeded. However, after receiving(22), A de-
tects the attack and abstains from employingkAE1 in
his future communications withB. Thus, even if for
different reasons, both attackers in fact fail. Further-
more, they both continue to hold their mistaken belief
that the other attacker is in fact honest.

Case 2: E1 and E2 Know each other as Attackers.
E1 and E2 know each other’s identifier (E1 ∈ DE2

and E2 ∈ DE1) and have correctly understood that
the other is behaving as a dishonest agent (E1 ∈ AE2

and E2 ∈ AE1). Each attacker is aware of the pres-
ence of a competitor, which they have correctly la-
beled. Each attacker is attempting to gain exclusive
access to the initial communication towardsS and to
ensure that only his request reachesS. E1 and E2
erase each other’s request toS. Within our model,
no attacker can be certain that his message has been
received by its intended receiver; the attackers may
wish to replay step(11) and(12) if a message of the
type {|kAEj |}kAS,{|kAEj |}kEj S

is not spied on the net-

work within a reasonable time. This option is marked
with (·)+ in Table 4. However, the active presence of
the competitor ensures that no message reachesS. A
notices that an anomalous situation is occurring, be-
cause his request to the server is not being served in a
reasonable time.A interprets the situation as a denial-
of-service attack and abandons the protocol.

Case 3: E1 and E2 are Unaware of each other. E1
andE2 are unaware of the other’s presence – i.e. they
are not paying attention to the other’s activity (E1 /∈
DE2 andE2 /∈ DE1). Subcases follow closely those de-
scribed for case 1 above. The only significant differ-
ence concerns detection for trace T1: here the attack-
ers must employ exploratory strategies (Inflow-Spyor
Outflow-Spy), because they failed to spy an additional
message of type(A,Em) transiting on the network.
The failure to observe such a message is a strong in-
dicator that the competitor’s identifier is unknown. In
2-attacker scenarios this is the only legitimate conclu-

ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS

151

Table 4: Traces for non-collaborative attacks against BME.
Traces are exhaustive:E1 andE2 have priority over honest
agents andS is honest. Arrows: relative order between(11)
and(12) is irrelevant in determining the outcome.

T1: cases 1, 3, 4, 6 T2 and [T3]: cases 1, 3, 4, 6

(1) A→ E1,2(S) : A,B

↓ (11) E1(A)→ S : A,E1

↑ (12) E2(A)→ S : A,E2

(21) S→ A : M1

(22) S→ A : M2

(1) A→ E1,2(S) : A,B

↓ (11) E1(A)→ S : A,E1

↑ (12) E2(A)→ S : A,E2

(21) S→ A : M1

(3) A→ E1,2(B) : {|kAE1 |}kE1S

[(22) S→ A : M2]

T4: case 2 T5: case 5

(1) A→ E1,2(S) : A,B

↓ (11)
+ E1(A)→ E2(S) : A,E1

↑ (12)
+ E2(A)→ E1(S) : A,E2

(1) A→ E1,2(S) : A,B

↓ (11) E1(A)→ E2(S) : A,E1

↑ (12) E2(A)→ S : A,E2

(2) S→ A : M2

(3) A→ E1,2(B) : {|kAE2 |}kE2S

Where:M1 = {|kAE1 |}kAS,{|kAE1 |}kE1S , M2 = {|kAE2 |}kAS,{|kAE2 |}kE2S

sion, whereas with three or more attackers this situa-
tion may also arise from the interplay between erase
and spy operations.

Case 4: E2 Knows E1 as Honest. Only one out
of the two attackersE1 andE2 is paying attention to
the other and knows his identifier. Here we consider
E1 ∈ HE2 and E2 /∈ DE1. Regardless of the order in
which steps(11) and(12) occur, the attacker in dis-
advantageE1 does not spy the message at step(12);
E2 does spy(11) but, trusting his judgement onE1’s
honesty, does not request it to be erased. As a conse-
quence, similarly to case 1, the traces follow schemes
T1, T2 and T3. Significant differences concern detec-
tion in T1: E1 detects the presence of an unknown at-
tacker, whereasE2 learns of a mislabeled or unknown
attacker. The successful attackers in traces T2 and T3
are those whose requests toSare served first; knowl-
edge does not affect the outcome.

Case 5: E2 Knows E1 as Dishonest. Only one out
of the two attackersE1 and E2 is paying attention
to the other and knows his identifier. Here we con-
siderE1 ∈ AE2 andE2 /∈ DE1 Regardless of the order
in which steps(11) and(12) occur,E1 does not spy
the message at step(12) andE2 uses a direct attack
against the competitor.E2 removesE1’s request to
the server and remains the only attacker in play, lead-
ing A into acceptingkAE2 as a session key.E1 does
not have an opportunity to detect the competitor.

Case 6: E2 Knows E1, but he is Unsure of E1’s Hon-
esty. Only one out of the two attackersE1 andE2 is
paying attention to the other and knows his identifier.
Here we considerE1 ∈ UE2 andE2 /∈ DE1. This case

reduces to case 4, with the only difference thatE2 is
testing the dishonesty ofE1, instead of believing his
honesty. WheneverE2 realizes that he has failed his
attack, he addsE1 into AE2 and deletes it fromUE2.

General Considerations. In traces T2 and T3, the
winning attacker is the one whose request is served
first by S. S is an honest agent but it is not con-
strained to answering requests in the exact order in
which they are received. Attackers do not have con-
trol over which requests are served first, although this
factor determines whether they cannot do better than
acquire the wrong key. Attackers realize in-protocol
that they have failed only when they cannot spy a re-
sponse fromA, i.e. when they do not acquire any keys.
Post-protocol detection, on the other hand, can occur
also when an attacker with a wrong key attempts to
decrypt the later communications addressed byA to
B.

The case study highlights that, ifA keeps the ses-
sion open for a reasonable time after step (3), he can
improve his chances of discovering that the key is
compromised. This is a simple strategy that is ben-
eficial and does not depend on the particular proto-
col. Furthermore, whenA receives two answers from
S in response to his single request, he now has two
keys – at least one of which is shared with an attacker.
If honest agents are immersed in a retaliatory frame-
work (Bella et al., 2003; Bella et al., 2008), such keys
can be used to identify attackers, to feed them false
information or, in general, to launch well-aimed retal-
iatory attacks.

4 DEFENDING PROTOCOLS

Key exchange protocols are amongst the most used
cryptographic protocols. It is a common security
practice to establish a secure channel by first exchang-
ing a session key and then using it to authenticate
and encrypt the data with symmetric cryptography.
The security of all communications occurring during
a session rests on the integrity of the key. In this con-
text, it is not important per se that a key has been ac-
quired by an attacker: what matters is whether a com-
promised key is used. Rather than on preventing the
acquisition of a session key from ever occurring, the
focus is on detecting that the key has been compro-
mised – so as to prevent an attack from spreading to
the entire session traffic.

If a protocol is vulnerable, a single DY attacker
will succeed with certainty. However, if attacks to
the same protocol are carried out in a more com-
plex network environment, success is not guaranteed.

SECRYPT 2011 - International Conference on Security and Cryptography

152

As shown in the case study, in competitive scenarios
with equal-opportunity attackers it is not possible for
a given attacker to ensure that an attack is success-
ful under all circumstances. The outcome depends
on the strategy and knowledge conditions of all ac-
tive agents, on the visibility of erased messages to
other attackers (canSee6= {E1,E2}) and on the order
in which S processes requests. In a sense, the pres-
ence of an independent active attacker constrains the
success of otherwise sure-fire attacks.

In order to make use of the emergent interference
between concurrent attacks, it is necessary to ensure
that attacks mounted by a malicious attacker are im-
mersed in a multi-agent scenario. To this end, we
construct an additional non-malicious attacker, who
carries out attacks against the protocol, discards the
“security secret” whenever he acquires it and reasons
on the basis of what he can observe, to assist honest
agents in detection tasks. In a sense, we are manipu-
lating theexecution environmentof malicious attacks
to gain a chance to thwart them.

The presence of a non-malicious agent that be-
haves as an attacker can be exploited to facilitate de-
tection of attacks against vulnerable protocols. Hon-
est agents should not, in principle, be informed of
the specific attack trace to which they are vulnerable.
Hence, if honest agents can perform detection at all, it
has to be on the basis of flags that are independent of
the specific attack trace – and, in general, independent
also of the protocol in use. Such flags encodelocal
defense criteria and can be as simple as realizing that
no answer has arrived within a time considered rea-
sonable or realizing that two (different) answers have
been sent in response to a single request.

The basic idea is constructing a network agent that
causes protocol-independent flags to be raised – via
deliberate interference with ongoing attacks. In addi-
tion, one suchguardian agentis formally an attacker,
and can therefore be configured with knowledge of
the attack trace(s). The guardian’s task can be formu-
lated as raising protocol-independent flags in corre-
spondence to protocol-dependent indicators.

By using such an ad-hoc competitor as defense,
it is possible, in some cases, to allow detection of
otherwise-undetectable attacks. If no flag is raised for
A, the guardian may be the only attacker at work. In
this case, no ill-intentioned attacker has successfully
concluded an attack; from the standpoint ofA, actual
security is not affected. In Table 5, we show the ef-
fects of introducing a guardianG for BME, config-
ured as the attackers in the case study.

A guardian is a practical solution even when it
is not all-powerful: any attack detected byA thanks
to the guardian’s active presence is an improvement

Table 5: Effects of introducing a guardianG for BME when
attackerE is active.G operates according to the same strat-
egy as the attackers in the case study.G’s active interfer-
ence results inA detecting attacks always (

√
), sometimes

(∼), always ifA commits to listening after step (3) (+). The
guardian is progressively more effective the more his beliefs
and knowledge reflect the actual set of attackers.G can be
effective even when he is not aware ofE’s presence.

canSee Cases Case 2 Case 5: Case 5:
step(3) 1,3,4,6 E ∈AG G∈AE

{E,G} ∼+ √ √

{G}
√ √ √ √

{E} ∼+ √ √

in security. It is not necessary to demand that the
guardian monitor all traffic – which is unrealistic at
best; on the other hand, all monitored traffic enjoys
partial protection.

Attacks failing are, by themselves, markers that
there are other dishonest agents at work; this fact can
be used by the guardianG as a basis for further de-
tection, possibly on behalf of honest agents. Employ-
ing guess-and-test strategies can then lead to an un-
derstanding of the second attacker’s identity; a rudi-
mentary example is the strategy used by our attackers
for BME when they spy(A,Em) andEm ∈ U. Across
multiple iterations of the attack procedure and under
different hypotheses concerning (HG, AG, UG), the at-
tacker’s identity will eventually be revealed.

In actual scenarios, protocols are implemented
through programs in the users’ computers. Protocols
with vulnerabilities have been in use in the past and it
is easy to anticipate that this situation will occur in the
future as well. Even some deployments of important
protocol standards such as Kerberos or Single-Sign
On have been shown to be vulnerable — but only after
entering mass-scale use. Vulnerabilities are known to
attackers or security engineers well before the aware-
ness that the protocol is flawed reaches the users.

It is very difficult to force users to stop using a
protocol as soon as a vulnerability is discovered. The
more widespread the protocol, the more difficult it is
to ensure that it quickly goes out of use. Two aspects
are important: that every user (a) is informed of the
new vulnerability and (b) takes action in switching to
a secure protocol. Statistics on software upgrades are
an unfortunate example of this type of issue.

By designing the user-end software to inform
the user of a security failure whenever protocol-
independent flags are raised, a guardian can help solve
the notification issue as well as raise the likelihood
that the user will take action and upgrade. When the
weakness in the protocol is understood, it may be a

ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS

153

cost-effective investment to design a guardian with
an effective interference strategy, so as to facilitate
restoring network security.

5 CONCLUSIONS

The traditional goal of protocol analysis is discover-
ing attacks, to prompt replacing a vulnerable protocol
with an improved and more secure one. Reductions
are centered on attacks, either to reduce the search
space for attacks (e.g. (Basin et al., 2011; Millen and
Denker, 2002; Mödersheim et al., 2010)) or to reduce
the number of agents (e.g. (Basin et al., 2011; Comon-
Lundh and Cortier, 2003)). In particular, if there ex-
ists an attack involvingn collaborating attackers, then
there exists an “equivalent” attack involving only one.
Within this perspective, it is known thatn-DY attack-
ers equal in attack power a single DY attacker, and
that the same can be said of Machiavelli-type attack-
ers (Syverson et al., 2000). As a result, an exhaus-
tive search for attacks can be performed in a reduced-
complexity model.

With vulnerable protocols, in a single-attacker sit-
uation there is no protocol-independent indicator that
could be used by honest agents to become aware that
security has been compromised. If there is a single
attacker, no simple defense is possible and the pro-
tocol inevitably fails its security goals. On the other
hand, by deploying an additional ad-hoc competitor
(the guardian) as defense, in certain conditions we can
successfully raise protocol-independent indicators of
ongoing attacks and protect the system. Introducing
an appropriate guardian procedure as soon as new at-
tacks are discovered can mitigate the consequences of
flawed protocols still being in use.

In the case study, we have shown a counterexam-
ple to the statement: “if there exists a defense against
an attack in a 2-attacker scenario, then there exists
an equivalent defense in a 1-attacker scenario”. This
statement mirrors the classical result onn-to-1 re-
ducibility and the counterexample shows that exhaus-
tive searches for (guardian-based) defenses cannot be
carried out in reduced-complexity settings, as they re-
quire at least two attackers. Within our proposed ap-
proach, the goal of analysis is finding a strategy to
defend the system against existing attacks, rather than
identifying vulnerabilities to prompt redesigning the
protocol. We would be performing protocol analysis
to identify possibledefenses, rather than attacks.

Future Work. Along the line of work presented in
this paper, we have investigated an additional simple

protocol, the Shamir-Rivest-Adleman three-pass pro-
tocol, which differs significantly from BME in that
success is not necessarily exclusive. The case study
is available as additional material in (Fiazza et al.,
2011).

So far, we have formalized a framework for non-
collaboration, described the notion of competitive at-
tacker, shown a proof-of-concept result on concur-
rent attacks giving rise to interference, delineated a
novel strategy for defending protocols and presented
a proof-of-concept result on the effectiveness of a net-
work guardian configured as a competitive attacker.

We are currently working on realizing an imple-
mentation of our framework for non-collaboration.
One of the key issues is how to systematically gen-
erate competitive attack behaviors, given a vulnera-
ble protocol and a base (“classical”) attack. In the
case studies we have explored so far, this step was
addressed by taking the point of view of an attacker
and observing our reasoning. The ability to construct
competitive attack behaviors rests on our intuitive un-
derstanding of key features in both the protocol and
the attack, as well as on our ability to reason at a high
level of abstraction to anticipate the consequences of
an action. Our chosen approach to enable protocol
analysis for defense identification involves recruiting
techniques from AI and robotics, fields that tradition-
ally have a complex notion of agent.

ACKNOWLEDGEMENTS

The work presented in this paper was partially sup-
ported by the FP7-ICT-2007-1 Project no. 216471,
“AVANTSSAR: Automated Validation of Trust
and Security of Service-oriented Architectures”
(www.avantssar.eu) and by the FP7-ICT-2009-5
Project no. 257876, “SPaCIoS: Secure Provision
and Consumption in the Internet of Services”
(www.spacios.eu). We thank Davide Guardini for his
constructive comments.

REFERENCES

Abadi, M., Blanchet, B., and Comon-Lundh, H. (2009).
Models and proofs of protocol security: A progress
report. InProceedings of CAV’09, LNCS 5643, pages
35–49. Springer.

Arsac, W., Bella, G., Chantry, X., and Compagna, L.
(2009). Validating Security Protocols under the Gen-
eral Attacker. InProceedings of ARSPA-WITS 2009,
LNCS 5511, pages 34–51. Springer.

Arsac, W., Bella, G., Chantry, X., and Compagna, L.

SECRYPT 2011 - International Conference on Security and Cryptography

154

(2011). Multi-attacker protocol validation.Journal
of Automated Reasoning, 46(3-4):353–388.

Basin, D., Caleiro, C., Ramos, J., and Viganò, L. (2011).
Distributed temporal logic for the analysis of security
protocol models.Theoretical Computer Science. To
appear.

Basin, D., Capkun, S., Schaller, P., and Schmidt, B. (2009).
Let’s get physical: Models and methods for real-world
security protocols. InProceedings of TPHOLs’09,
LNCS 5674, pages 1–22. Springer.

Basin, D. and Cremers, C. (2010). Modeling and analyzing
security in the presence of compromising adversaries.
In Proceedings of ESORICS 2010, LNCS 6345, pages
340–356. Springer.

Bella, G., Bistarelli, S., and Massacci, F. (2003). A proto-
col’s life after attacks. InProceedings of 11th Interna-
tional Workshop on Security Protocols, LNCS 3364,
pages 3–18. Springer.

Bella, G., Bistarelli, S., and Massacci, F. (2008). Retalia-
tion against protocol attacks.Journal of Information
Assurance and Security, 3:313–325.

Boyd, C. and Mathuria, A. (2003).Protocols for Authenti-
cation and Key Establishment. Springer.

Caleiro, C., Viganò, L., and Basin, D. (2005). Metareason-
ing about security protocols using distributed tempo-
ral logic. Electronic Notes in Theoretical Computer
Science, 125(1):67–89.

Caleiro, C., Viganò, L., and Basin, D. (2006). On the se-
mantics of Alice & Bob specifications of security pro-
tocols. Theoretical Computer Science, 367(1-2):88 –
122.

Comon-Lundh, H. and Cortier, V. (2003). Security prop-
erties: two agents are sufficient. InProceedings of
ESOP’2003, LNCS 2618, pages 99–113. Springer.

Dilloway, C. and Lowe, G. (2007). On the specification of
secure channels. InProceedings of WITS’07.

Dolev, D. and Yao, A. C. (1983). On the security of
public key protocols. IEEE Trans. Inform. Theory,
29(2):198–208.

Fiazza, M. C., Peroli, M., and Viganò, L. (2011). Attack
Interference in Non-Collaborative Scenarios for Secu-
rity Protocol Analysis (extended version). Available at
www.arxiv.org.

Kamil, A. and Lowe, G. (2010). Specifying and modelling
secure channels in strand spaces. InProceedings of
FAST’09, LNCS 5983, pages 233–247. Springer.

Millen, J. K. and Denker, G. (2002). Capsl and mucapsl.
Journal of Telecommunications and Information Tech-
nology, 4:16–27.

Mödersheim, S., Viganò, L., and Basin, D. A. (2010). Con-
straint differentiation: Search-space reduction for the
constraint-based analysis of security protocols.Jour-
nal of Computer Security, 18(4):575–618.

Schaller, P., Schmidt, B., Basin, D., and Capkun, S. (2009).
Modeling and verifying physical properties of secu-
rity protocols for wireless networks. InProceedings
of CSF’09. IEEE Computer Society.

Syverson, P., Meadows, C., and Cervesato, I. (2000).
Dolev-Yao is no better than Machiavelli. InProceed-
ings of WITS’00, pages 87–92.

APPENDIX

In this appendix, we present a detailed view of the
outcome of an attack carried out against BME and in-
volving only the non-collaborative attackersE1 and
E2. Refer to Section 3 for definitions of BME, at-
tacker behavior against BME, attack traces and cases.

Note that in cases 1, 2 and 3 (shown in Table 6),
E j ’s request is thej-th served byS. In cases 4, 5 and
6, E2 is the attacker with knowledge advantage. For
clarity, for cases 4 and 6 (see Table 6) we mark as
E j* the case in whichE j ’s request is servedfirst by
S. In case 5,E2’s request is the only served and the
distinction is unnecessary.

A competitive attackerE attacking BME can:

• succeed and compromise a key thatA will use;

• fail and realize it (by timeout);

• fail without realizing it, by acquiring the wrong
key;

• fail without realizing it, even thoughE acquired
the right key.

Honest agents under attack can:

• detect the attack and abandon the protocol before
carrying out step (3);

• realize that the key has been compromised and
keep safe by not using it;

• fail to detect an attack but use their keys safely, be-
cause all attackers have failed to acquire the cor-
rect key;

• use a compromised key.

Attackers who realize their failure can infer the
following:

α Mislabeled or Unknown Attacker.The attacker
spies two messages fromS and none fromA in re-
sponse; he deduces thatA had opened a single session
and that at least one request toS (in addition to his
own) was an attack. The attacker realizes that he has
either mislabeled as honest one of the active attackers
or that an unknown competitor is active.

β Unknown Attacker.The attacker spies two mes-
sages fromS and none fromA in response; he de-
duces thatA had opened a single session and that at
least one request toS (in addition to his own) was an
attack. However, he has seen no additional requests
of the type(A,X) transit on the network; the attacker
realizes that an unknown competitor is active on the
network.

γ Missed Message: Mislabeled or Unknown At-
tacker. The attacker spies only one message fromS

ATTACK INTERFERENCE IN NON-COLLABORATIVE SCENARIOS FOR SECURITY PROTOCOL ANALYSIS

155

Table 6: Outcomes of a competitive attack against BME involving the attackersE1 andE2 and the honest initiatorA. In cases
4 and 6E j*: E j ’s request at step(1i) is served byS first. Traces are described in Table 4;canSee() describes the set of
attackers who spy the message sent byA at step(3); for each role, we report the actual result of the attack (result), if the agent
believes he has succeeded or failed (belief) and whether he has acquired the right key, the wrong key or no key at all (key).
When attackers realize their failure, they can infer the reason for failing as shown in the column Detection; the honest agent
A can detect ongoing attacks by receiving two answers fromSor none. In the last column, we show the result of introducing
a guardian agent playing the role in the corresponding row against an attacker playing the other role.

Trace canSee Agent Result Belief Key Detection Guardian
T1 Case 1 Case 3

– E1 failure failure none α β of help
E2 failure failure none α β of help
A safe attack not used 2 keys 2 keys

T2 step (3) Case 1 Case 3
{E1,E2} E1 success success right none none of help

E2 failure success wrong none none no effect
A attacked safe broken none none

{E1} E1 success success right none none of help
E2 failure failure none γ γ no effect
A attacked safe broken none none

{E2} E1 failure failure none γ γ of help
E2 failure success wrong none none of help
A safe safe used none none

T3 step (3) Case 1 Case 3
{E1,E2} E1 failure success right none none of help

E2 failure success wrong none none of help
A safe attack not used 2 keys 2 keys

{E1} E1 failure success right none none of help
E2 failure failure none γ γ of help
A safe attack not used 2 keys 2 keys

{E2} E1 failure failure none γ γ of help
E2 failure success wrong none none of help
A safe attack not used 2 keys 2 keys

T4 – Case 2
E1 failure failure none correct understanding of help
E2 failure failure none correct understanding of help
A safe attack none no answer: DoS

T5 step (3) Case 5
{E1,E2} E1 failure success wrong none no effect

E2 success success right correct understanding of help
A attacked safe broken none

{E1} E1 failure success wrong none of help
E2 failure failure none δ of help
A safe safe in use none

{E2} E1 failure failure none γ no effect
E2 success success right correct understanding of help
A attacked safe broken none

Trace canSee Agent Result Belief Key Detection Guardian
T1 – Case 4 Case 6

E1* failure failure none β β of help
E1 failure failure none β β of help
E2* failure failure none α ε of help
E2 failure failure none α ε of help
A safe attack not used 2 keys 2 keys

T2 step (3) Case 4 Case 6
{E1,E2} E1* success success right none none of help

E1 failure success wrong none none no effect
E2* success success right none none of help
E2 failure success wrong none none no effect
A attacked safe broken none none

{E1} E1* success success right none none of help
E1 failure success wrong none none of help
E2* failure failure none γ ε of help
E2 failure failure none γ ε no effect
A attacked safe broken none none

{E2} E1* failure failure none γ γ of help
E1 failure failure none γ γ no effect
E2* success success right none none of help
E2 failure success wrong none none of help
A safe safe used none none

T3 step (3) Case 4 Case 6
{E1,E2} E1* failure success right none none of help

E1 failure success wrong none none of help
E2* failure success right none none of help
E2 failure success wrong none none of help
A safe attack not used 2 keys 2 keys

{E1} E1* failure success right none none of help
E1 failure success wrong none none of help
E2* failure failure none γ ε of help
E2 failure failure none γ ε of help
A safe attack not used 2 keys 2 keys

{E2} E1* failure failure none γ γ of help
E1 failure failure none γ γ of help
E2* failure success right none none of help
E2 failure success wrong none none of help
A safe attack not used 2 keys 2 keys

but no reply fromA; all messages fromSthat success-
fully reachA are seen, so the attacker deduces that he
has missedA’s response. Thus, an active competitor
(mislabeled or unknown) has erased it, preventing the
attacker from acquiring it through the spy rule.

δ Missed Message.Similar to caseγ. The attacker
does not draw further conclusions because he is al-
ready aware of an active attacker that may have erased
the message.

ε Suspect Condemned.The attackerE has put to
test the dishonesty of an agent X inUE (the suspect).
Failing the attack is interpreted as a confirmation that
the suspect is dishonest:X is placed intoAE.

SECRYPT 2011 - International Conference on Security and Cryptography

156

