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Abstract: Control of a magnetic bearing device is addressed by parameter varying control. Within the structure of decen-
tralized PID controllers we compare linear interpolation and switching strategies with and without hysteresis.
Piecewise LPV decentralized PID controllers are found to be an interesting alternative. Our method exploits
the possibility to pre-compute for every parameter value anH∞ optimal decentralized PID controller, and to
use this ideal model to construct practical scheduled controllers with an acceptableH∞ performance.

1 INTRODUCTION

Magnetic bearings (MB) increasingly become the
choice for high-speed, high-performance rotating ma-
chinery because of their frictionless characteristics.
They utilize a magnetic field generated by radially or
axially placed electromagnets to generate the forces
necessary to suspend and support a shaft without any
contact with its environment. Thus, magnetic bear-
ings are particularly useful in very high or very low
temperature conditions where a lubrication-free en-
vironment is necessary. The advantages of magnetic
bearings are primarily their very low power consump-
tion and their very long maintenance-free life. Some
applications where magnetic bearings offer distinct
advantages are high speed turbo machinery, precision
milling spindles, and combined attitude control and
energy storage for spacecraft and satellites. A dis-
advantage of magnetic bearings is that they require
continuous power input and active control to hold the
load stable.

Active magnetic bearings (AMB) can support ro-
tors without friction but require a sophisticated con-
trol system because specific performance require-
ments such as automatic balancing of the shaft, re-
jection of unwanted disturbances and vibration isola-
tion are required. Many of the controllers proposed
assume a linear time-invariant model, an assumption
which is no longer accurate when the rotational speed
varies.

Control techniques from linear robust control
(Mohamed and Busch-Vishniac, 1995),H∞ loop

shaping andµ synthesis (Lanzon and Tsiotras, 2005)
as well as adaptive control methods have been used
to attack this problem. Robust control is often overly
conservative as it fails to account for the actual time
variation of the rotor speed, which in addition is mea-
surable.

Another approach is gain-scheduledH∞ con-
trollers for linear parameter varying (LPV) systems
based on LMI techniques (Tsiotras and Mason, 1996;
Packard, 1994; Apkarian and Gahinet, 1996; Apkar-
ian et al., 1995). Here the idea is to solve a series
of standardH∞ problems at a pre-specified number of
operating speeds. Using a single Lyapunov function
to show stability and finiteL2-gain at these selected
points, one guarantees that these properties will also
hold for all operating speeds which are linear combi-
nations of the selected speeds (interpolation). Unfor-
tunately, this strategy is only valid if the controller is
of the same order as the plant. Moreover, due to the
choice of a single Lyapunov functions this also tends
to be conservative. In AMB systems there is strong
interest to use small order controllers or other simple
structures like PID.

High rotor speeds are gaining importance, and
the fast sampling rate necessary for these MB sys-
tems makes the application of digital control a diffi-
cult task. Fast sampling rates call for simplification of
feedback matrices in control design. In order to com-
ply with the demand for simplicity, our present study
uses PID controllers.
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2 DECENTRALIZED PID DESIGN

PID are still the controllers of choice due to consol-
idated hardware and software tools for design and
hardware embedding, and the implication that more
complex controllers may have. The drawback of PIDs
in scheduling may be a significant loss of perfor-
mance, and sometimes even worse, loss of internal
stability. Here we present a new method to design
scheduled decentralized PIDs for a parameter vary-
ing MB system, which allows to avoid these fallacies.
The central idea of our approach is to precompute the
H∞-optimal decentralized PID controllerK∗(p) for
every parameter valuep, and to use this ideal infor-
mation to construct a parameter dependent decentral-
ized PIDK(p), which allows practical hardware em-
bedding, and at the same time does not fall behind the
idealK∗(p) in closed-loop performance for more than
an allowed level ofα%.

The paper is organized as follows. Section 3 rep-
resents the open-loop MB system. In section 4 theH∞
performance channel is discussed, and section 5 gives
the state-space form of the decentralized PID. Section
6 explains the role of the reference curveK∗(p) and
explains the rationale of the robustification method.
Re-centralizing plant and controller models of MB are
explained in sections 6.1 and 6.2 and are needed to
apply the LPV procedure in sections 7 and 8. This
is carried out in section 8 by solving a mixedH∞/H∞
program (11) based on the semi-structured stability
radius (see (Hinrichsen and Pritchard, 1986a; Hin-
richsen and Pritchard, 1986b; Karow et al., 2010;
Lawrence et al., 2000)). Experimental results are pre-
sented in section 9.

3 OPEN LOOP

In an AMB the axis of rotation does not coincide with
the geometric axis of the rotor. The goal of control
is to effect a rotation about the principal inertial axis
to eliminate the radial centrifugal force, so that the
principal axis of intertia becomes the center of mass
of a cross-section of the rotor. The situation is shown
schematically in Figure 1.

The open-loop magnetic bearing system has the
following parameter dependent form

ẋmb = Amb(p)xmb + Bmbu
y = Cmbxmb + w

(1)

wherexmb∈R
6, whilew,u,y∈R

2 and the state-space
matrices are given by:
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Figure 1: Left image, (a), shows the magnetic bearing con-
figuration with magnetic forcesFr1, . . . ,Fr4, Fl1, . . . ,Fl4 ac-
cording to (Smith and Weldon, 1995). Right image, (b),
shows the rotor unbalance. The purpose of unbalance com-
pensation is to drive the displacementsx1 = Lθ andx2 = Lψ
to 0.

Amb(p) =




0 0 1 0 0 0
0 0 0 −1 0 0

−4c2
m 0 0 −pJα

Jr

2c1
m 0

0 −4c2
m

pJα
Jr

0 0 2c1
m

2d2
N 0 0 0 −2d1

N 0
0 2d2

N 0 0 0 −2d1
N



,

Bmb =
1
N

[
04×2

I2

]
, Cmb = [I2 02×4]

with parameters gathered in Table 1. The exoge-
nous inputw = [w1, w2]

T is a sinusoidal sensor dis-
turbance of the formw1 = d̃e−φt cos(pt+η) andw2 =
d̃e−φt sin(pt+η), which models the unbalance of the
bearing. Hered̃ is the magnitude of the unbalance and
η corresponds to un unknown initial phase angle.

Table 1: System constants (Tsiotras and Mason, 1996).

c1 1.9715e5 Wb N 400
c2 325.047Wb2/m Jα 0.0136Kg.m2

d1 2.1001e4 Ω.Wb/H.m Jr 0.333Kg.m2

d2 7.9804e3 Ω.Wb/H.m m 19.7041Kg

The varying parameterp represents the rotor veloc-
ity, which is measured on-line and varies in the range
p∈Π := [315,1100] rad/s. One can represent the sen-
sor disturbance by the following state space represen-
tation:

ẋdist = Adist(p)xdist + Bdistd̃
w = Cdistxdist

(2)

where

Adist(p) =

[
−2φ −p

p 0

]
, Bdist =

[
1
0

]
, Cdist = I2,

andφ = 0.05. The system is therefore described by
the joint system statexsys= [xmb, xdist]

T with dynam-
ics

ẋsys = Asys(p)xsys +B1sysd̃+B2sysu
y = Csysxsys

(3)
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where Asys(p) = diag(Amb(p),Adist(p)) ∈ R
8×8,

B1sys= [06×1, Bdist]
T , B2sys= [Bmb, 02×2], Csys =

[Cmb, Cdist]. For more explication on system mod-
eling see (Lanzon and Tsiotras, 2005), (Tsiotras and
Mason, 1996) and (Smith and Weldon, 1995). In the
latter reference a more complete model is presented,
in which p is one of the states. This means that we
expectp to vary continuously in time.

4 PERFORMANCE INDEX

In our next step we have to define controlled outputs
z ∈ R

4 to assess the system performance. We use
the control configuration shown in Figure 2. Follow-
ing (Tsiotras and Mason, 1996), the controlled out-
put z regroupsu and y with appropriate frequency
weighing filters: Wu = diag(Wu1,Wu2) with Wu1 =

Wu2 = 0.01 (s+1500)2

(s+10000)2
andWy = diag(0.5,0.5) which

up to a factor 10−4 are as in (Tsiotras and Mason,
1996). Altogether this adds 4 states to the 8 states
of the open loop system. We add a reference signal

  G(p)  
 w1 + 

- 

 

dw
~

2 =  

Wy 

    

Wu 

    

 z1 
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yper  uper 

Dynamics of  
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+ 

Figure 2: Block diagram ofH∞ system.

r ∈ R
2 for y to the exogenous inputs, which leads to

w= (r1, r2, d̃) ∈ R
3. Altogether we obtain a parame-

ter varying linear fractional transform (LFT)

P(p) :




ẋ
zper
y


=




A(p) B1 B2

C1 D11 D12
C2 D21 0






x
wper

u




with dimensionsx ∈ R
12, zper ∈ R

4, y ∈ R
2, wper ∈

R
3 andu ∈ R

2. We shall refer towper → zper as the
performance channel.

5 CONTROLLER
PARAMETRIZATION

In this study we design a decentralized PID controller
which depends on the scheduling parameterp. Re-
call that a SISO PID controllerKpid(s) = d+ r i/s+
rd/(s+ τ) has the state space representation

Kpid :




0 0 r i
0 −τ rd

1 1 d


 .

A parameter dependent state-space representation of
the decentralized PID is therefore obtained as

K(p) =




0 0 0 0 r i(p) 0
0 −τ(p) 0 0 rd(p) 0
0 0 0 0 0 r ′i (p)
0 0 0 −τ′(p) 0 r ′d(p)

1 1 0 0 d(p) 0
0 0 1 1 0 d′(p)




(4)

with 8 scheduling functionsr i(p), . . . , r ′d(p) to be de-
termined. If we assume an affine parametrization,
then we have 16 free parameters to determine.

6 RATIONALE

For every parameter valuep we consider theH∞-
synthesis problem

minimize ‖Twper→zper(P(p),K)‖∞
subject to K has decentralized

PID structure (4)
K stabilizesP(p) internally

(5)

Let K∗(p) be the solution of (5), which we compute
by the Matlab functionhinfstruct. This furnishes 8
optimal parameter valuesr∗i (p), . . . ,d

′∗(p). The curve
p 7→ ‖Twper→zper(P(p),K

∗(p))‖∞ =: P ∗(p) gives the
best possibleH∞ performance plotted over the inter-
val p∈ Π = [315,1100]. Clearly the parametrization
p 7→ K∗(p) is not practical, and we need approxima-
tions of the mappingK∗(·) which can be stored conve-
niently. This leads to a trade-off between the quantity
to be stored and the unavoidable loss of performance.
In order to control the loss of performance we adopt
the following convention. Fixingα > 0, we call a
parametrizationp 7→ K(p) acceptable, if

(i) K(p) has structure (4),

(ii) K(p) stabilizesP(p) internally for everyp, and

(iii) ‖Twper→zper(P(p),K(p))‖∞ ≤
(1+α)‖Twper→zper(P(p),K

∗(p))‖∞ for everyp.

To get a scheduling functionK(·) which needs as
few elements to store (to embed) as possible, we dis-
cuss two approaches, which use either interpolation,
or switching. For switching we identify subintervals
I = [p1, p2]⊂ Π as large as possible on which we can
representK(p) as an affine function without violat-
ing criteria (i) - (iii). Then we coverΠ with as few
as possible of these subintervalsI1, . . . , IN. The rule
to controlP(p) is then by switching between theseI i .
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The way to constructI together with an affine repre-
sentationK(p) valid onI is given in the next section.
A variation which uses interpolation is given in sec-
tion 9.

Remark. We recall that condition (ii) is only neces-
sary but not sufficient for stability of the switched or
interpolated closed loop system. In general it is dif-
ficult to prove stability over the parameter domain if
nothing is known about the parameter trajectoryp(t).
Sufficient conditions based on prior bounds|ṗ(t)| ≤ ν
can be stated, but are generally hard to establish due
to the inherent conservatism. In the same vein, con-
dition (iii) should be understood as a worst case point
of view. Namely, unlike in chess where it would be
enough to know the best moveK∗(p) in any given
positionp, the situation here is more complicated, be-
cause the payoff may be different in different param-
eter regions, and the seemingly ”best” moveK∗(p) at
p might lead to an unfortunate parameter trajectory in
the future. (A similar situation would arise in chess as
soon as e.g. winning with more material on the board
would count more than winning with few pieces left.
The notion of a ”best” move would then have to be
re-defined).

6.1 LPV Model of Magnetic Bearing

For fixed p0 ∈ Π we wish to find an intervalI (p0)
containingp0 as large as possible such that we have
a simple controller parametrizationK(p) valid in the
sense of (i) – (iii) onI (p0). In order to construct these
intervals, it is helpful to change the parametrization
and writep= p0(1+δ). The new parameterδ is now
centered at 0 and more symmetric,|δ| ≤ r, and we
wish to have a range of validityr as large as possible.
We re-write the open-loop system accordingly. For
example, for the third state in (3) we have

ẋ3 = −4c2
m x1−

pJα
Jr

x4+
2c1
m x5

= −4c2
m x1−

(p0(1+δ))Jα
Jr

x4+
2c1
m x5.

Introducing an auxiliary inputwrob,1 and outputzrob,1

via wrob,1 =− Jα
Jr

p0x4 andzrob,1 = δ ·wrob,1, we obtain

ẋ3 =
−4c2

m x1−
p0Jα
Jr

x4+
2c1
m x5+ zrob,1.

Repeating the same thing for all states leads to a stan-
dard representation ofP(p), p= p0(1+ δ), as an un-
certain system:

[
ẋ

zrob1

y

]
= (6)

[
Asys(p0) B B1,sys B2,sys

C 0 0 0
C2,sys 0 0 0

]


x
wrob1

d̃
u




wherezrob1 ∈ R
4, wrob1 ∈ R

4, wrob1 = ∆1zrob1 with
∆1 = δ I4 and:

B=




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




,

C=




0 0 0 −Jα
Jr

0 0 0 0

0 0 Jα
Jr

0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


× p0.

6.2 LPV model of Decentralized PID
Controller

We repeat the same procedure for the controller
parametrization (4). We write each of the 8 schedul-
ing functions asr i(p) = r i0 + δ · r i1, and so on until
d′(p) = d′

0+ δ · d′
1, with 16 parametersr i0, . . . ,d′

1 to
be determined for eachI (p0). Notice thatr i0 = r i(p0)
depends on the choice ofp0, and similarly for the
other scheduling functions. It is helpful to denote
this controller asK(p0,δ) = K(p0)+δ ·dK(p0), even
though it still has the form (4).

Having symmetrized the parameter, we get a simi-
lar uncertain block∆2 = δ · I8 with δ repeated 8 times,
4 times for each PID. Altogether this leads to the
scheduled controller structure shown in Figure 3.




ξ̇1

ξ̇2

zk
1

zk
2

zk
3

zk
4

u




=




0 0 1 0 0 0 r i0

0 −τ0 0 1 1 0 rd0

0 0 0 0 0 0 r i1

0 −τ1 0 0 0 0 0

0 0 0 0 0 0 rd1

0 0 0 0 0 0 d1

1 1 0 0 0 1 d0







ξ1

ξ2

wk
1

wk
2

wk
3

wk
4

y




, (7)

where∆21 = δ · I4. We get a similar block for the sec-
ond PID with primed parameters in (4). This leads to
wrob2 = ∆2zrob2 where∆2 = diag(∆21,∆22) = δI8 for
K. We then apply a standard procedure to the whole
LFT which gives us what is on the right of figure 3.
The controller is now independent ofδ and gathers the
16 unknown coefficients of the scheduling functions,
or rather, the free parameters in (4). The uncertain
block is of size∆ = diag(∆1,∆2) = δ · I12.

7 ROBUSTNESS INDEX

The constellation on the right of Figure 3 corresponds
to the LFT
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Prob(p0) : (8)[
ẋ

zrob
y

]
=

[
A(p0) B0 B2

C0 D00 D02
C2 D20 0

][
x

wrob
u

]
,

wrob = ∆zrob, u= K̃(p0)y. (9)

The matrix dimensions arẽK(p0) ∈ R
14×14, A(p0) ∈

R
12×12, ∆∈R

12×12, etc. Notice that̃K(p0) carries the
same information asK(p0,δ) = K(p0)+ δ · dK(p0),
that is, it regroups the 16 unknown coefficients of
K(p0) anddK(p0) which we want to compute. This
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Figure 3: LFT scheme.

is now a known situation in robust respectively LPV
control. If K in (7) was not structured, we could for
instance use mu-tools to design full-order parametric
robust controller of size 14×14 which makes the in-
terval of robustness|δ| ≤ r as large as possible. Sim-
ilarly, the LPV procedure of Scherer (Scherer, 2003)
would lead to a full order solution, (see also the mono-
graph (Chesi et al., 2009) for the robustness approach
to uncertain systems). The necessity to satisfy the
structural constraint (7) complicates matters, and we
have to take recourse to a heuristic method.

We concentrate on stabilizingK(p,δ) respectively
K̃(p) on as large an intervalI (p) as possible, so
we consider (8) without performance channel. The
closed-loop system matrix is then

A(K̃,δ) = A+B2K̃C2+(B0+B2K̃D20)∆× . . .

×(I −D00∆−D02K̃D20∆)−1(C0+D02K̃C2) (10)

which we re-write as

A(K̃,δ) = Ã+ B̃∆(I − D̃∆)−1C̃

with Ã = A+B2K̃C2, etc. Our goal is to guarantee
stability of this matrix for as large a range|δ| ≤ r as
possible. We interprete (10) as the semi-structured
complex stability radiusrC(A+B2K̃C2) of the nom-
inal closed-loop matrixÃ = A+B2K̃C2. It is well-
known that

r−1
C (Ã) =

∥∥C̃(sI− Ã)−1B̃+ D̃
∥∥

∞ ,

so that computing the stability radius ofA+B2K̃C2
amounts to computing anH∞-norm. Altogether, we
have

r−1
C

(Ã) = ‖Twrob→zrob(Prob(p0), K̃)‖∞,

whereProb(p0) is the plant in (8).

8 OPTIMIZATION PROGRAM

For every fixedp0 we now compute the solution
Krob(p0) of the following mixedH∞/H∞ optimization
program:

minimize R (K) = ‖Twrob→zrob(Prob(p0), K̃)‖∞
subject to P (K) = ‖Twper→zper(P(p0),K)‖∞

≤ (1+β)P ∗(p0)
K has structure (4)
K stabilizes internally

(11)

whereP ∗(p0) is the nominal performance atp0, that
is, P ∗(p0) = ‖Twper→zper(P(p0),K∗(p0))‖∞. This pro-
gram presents a trade-off between performance and
robustness in the sense ofrC. Namely, as we know,
the best possible performance atp0 is obtained by
K∗(p0), which corresponds to choosingr i0 = r∗i (p0),
etc. andδ = 0. In (11) we accept a loss of 100·β%
performance over the nominal valueP ∗(p0) and use
this freedom to buy some additional robustness in
the sense ofrC, hoping that this will lead to a con-
troller Krob(p0) with as large an interval of validity
I (p0) as possible. Clearly, in order to respect rule
(iii), be have to chooseβ < α, and in our experi-
ments we useβ = α/2. For more information on this
type of trade-off between performance and robust-
ness see (Hosseini-Ravanbod et al., 2011b; Hosseini-
Ravanbod et al., 2011a).

Algorithm 1: Algorithm to compute parametrized PID with
switching.

Parameters: α > 0, 0< β < α.
1: Pre-compute approximation of optimal curveK∗(p)

usinghinfstruct.
2: For a sufficient number of parametersp solve mixed

H∞/H∞ program (11). The solution curve isKrob(p).
3: For everyp find interval of validityI (p) of Krob(p)

using conditions (i) – (iii).
4: Remove a small portion on each side ofI (p) and

call the shrunk intervalI ♯(p).
5: Select minimum number ofI ♯(pν), ν = 1, . . . ,N,

coveringΠ. This means the intervalsI (pν) cover
Π with some slight overlap.

The gain scheduling function is now as follows.
Let ν(p) be such thatp ∈ I (pν) and define the con-
trol law asK(p) = Krob(pν(p)). If there are several
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ν with p ∈ I (pν), then use the hysteresis rule. That
is, stay on the interval in which the trajectory moves,
and only jump on a new interval when the boundary
of the first is reached. This means that for a valuep in
the intersectionI (pν)∩ I (pµ) the actual control law
changes depending whether one arrives from the right
or from the left.

9 EXPERIMENTAL RESULTS

The measured parameterp varies in Π =
[315, 1100] rad/sec. We usehinfstruct at 51
equidistant points inΠ to compute the optimal
decentralized PID controller curveK∗(p).

For each of the 51 valuesp0 we use program (11)
with β = α/2 to compute 51 controllersKrob(p), sat-
isfying (i) – (iii) in tandem with their intervals of va-
lidity I (p).
First study:
Our first test usesα = 0.38 which allows to coverΠ
with only two intervalsI (315) andI (1100). As one
can see in Figure 4, the switched controller (contin-
uous line) maintains stability over the entireΠ, but
interpolatingK∗(315) andK∗(1100)leads to a loss of
stability (broken line). This indicates that interpola-
tion of controllers is more delicate to arrange for than
switching.
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Figure 4: Interpolating linearly between the two controllers
K∗(315) andK∗(1100) (dashed line) fails due to a loss of
stability, while switching usingKrob(315) andKrob(1100)
holds the stability (solid line).

Second study:
Our second test usesα = 0.1, which leads to more
realistic results. We seek a switching controller and
compute intervalsI (p) according to algorithm 1 for
51 equidistant valuesp∈ Π.

Figure 5 (a) shows the validity region for each of
the 51 controllersKrob(p), that is, the valuesp′ for
which controllerK(p) satisfies (i) – (iii). For each
of the 51 controllersKrob(p) the zone where (i) –
(iii) hold corresponds to a horizontal array marked
by ∗. As can be seen, by following the thick line,
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Figure 5: (a) and (c): Validity regionsI (p) plotted against
p. This allows to read off the intervals needed to coverΠ.
(b) and (d) the final performance obtained for each case.
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Figure 6: By upwards interpolation,(a), we need 3 con-
trollers to coverΠ and by downwards interpolation,(b), we
need 10. Thin lines shows bisection procedure and thick
line the final performance.

we can find a way covering all the variation ofp.
This requires only two controllersKrob(707.5) and
Krob(1084.3) with switching atp= 723.2rad/s(con-
trollers number 26 and 50).

If we insist on a non-negligible overlap between
the intervalsI (p), using theI ♯(p) as in the algorithm,
then Figure 5 (c) shows that we need three controllers
Krob(707.5), Krob(801.7) andKrob(1084.3), to cover
Π (controllers number 26, 32 and 50). The same Fig-
ures 5 (b) and (d) show the performance obtained in
each case.

Third study:
Our third test still usesα = 0.1, but now we interpo-
late optimal controllersK∗(p). Start at the left end
p1 = 315. Having foundpk, we examine forp > pk
the closed-loop performance curve obtained by the
controller Kint(pk, p) interpolating betweenK∗(pk)
andK∗(p). As p increases, this curve eventually hits
the upper limit curve(1+α)P (K∗(p′)) at somep′ be-
tweenpk andp. We putpk+1 = p and continue until
the right end point is reached. A similar procedure
starts at the right end point and moves downward.
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Figure 6 gives the results of this algorithm in
our study. Upwards interpolation needs 3 con-
trollersK∗(p) at p= 315, 903.75, 1100, while down-
wards interpolation requires more, namelyK∗(p)
at p=1100,1037.7,931.7,892.2,817.9,790.9,707.5,
644.65,315.

Figure 7 shows a simulation in closed-loop where
the scheduling functionK(p) uses three robust con-
trollersKrob(p), and wherep(t) increases within 1.2
sec from 720 to 780 and then decreases back to 710.
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2
=[1.3e−5sin(pt),1.3e−5cos(pt)]
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Rotor speed variation

K
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x
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(a)

 (b)

x
1

Figure 7: Simulation in closed loop. The scheduled pa-
rameter increases within 1.2 sec from 720 to 780, and de-
creases back to 710 within another 1.5 sec. Three con-
trollers Krob(p(t)) are called for. Upper image shows
unbalance compensationx1,x2 for simulated w2(t) =
(1.3e−5sinp(t),1.3e−5cosp(t)). (Forx1,x2,w2 see sec-
tion 3).

10 CONCLUSIONS

Several methods to compute a parameter varying de-
centralized PID for a magnetic bearing device were
compared. Performance was measured in theH∞
norm, and the curveK∗(p) of optimalH∞-controllers
was taken as a reference to assess the performance
of the different parameterizationsK(p). If parame-
terizationsK(p) with a maximum loss of 10% over
K∗(p) were allowed, switching between piecewise
affine controllers on subintervals was found to per-
form best, but needs solving a mixedH∞/H∞ synthe-
sis program. Interpolation based on computing vari-
ousK∗(p) was an interesting alternative, even though
it was observed that interpolation seems to have a
stronger tendency to lose stability and important de-
pendence at the beginning point. While the switching
technique carries over to 2D parameter sets, there is
no obvious way to extend interpolation into two di-
mensions.
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