JAR20NTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF
SEMANTIC INFORMATION FROM JAVA OBJECT CODE

Nicolas Marin, Clara Sae&scija* and M. Amparo Vila
Department of Computer Science and Atrtificial Intelligence, University of Granada, Granada, Spain

Keywords: Object code analysis, Semantics extraction, Java, OWL.

Abstract: We present here a nhovel approach (and its implementation) for the automatic extraction of semantic knowledge
from Java libraries.
We want to match software libraries, so we need to obtain as much information as possible to use it in the
matching process. For this purpose, this approach extracts information about the structure of the classes (i.e.,
name, fields and hierarchy), as well as information about the behavior of the classes (i.e., methods).
In the literature, to our knowledge, it can be only found lightweight approaches to the extraction of this kind
of information from Java object code. The approach is implemented in an automatic extraction tool (called
Jar20ntology that has been developed as a plug-in of the Protégé Ontology and Knowledge Acquisition
System. Jar20Ontology extracts the semantics from Java libraries and translates it into OWL (Ontology Web

Language).
1 INTRODUCTION dependently managed) and heterogeneous (with dif-
ferent software, hardware, data model, etc.).
Information systems integration is a problem of in- This work is devoted to the first step of the infor-

creasing interest in many areas, as in Business IN-mation integration process, i.e., the semantics extrac-
telligence, Customer Relationship Management, En-tion. Our goal is to integrate software libraries, and
terprise Information Portals, E-Commerce or E- for this reason, we have to extract the semantics of
Business. Interested lectors can find remarkable sur-ihe libraries and model them.
veys of research in this area in (Kalfoglou and Schor- \\e present here a novel approach (and its im-
lemmer, 2003; Rahm and Bernstein, 2001; Shvaiko pjementation) for the automatic extraction of seman-
and Euzenat, 2005; Wache etal., 2001). tic knowledge from Java object code. We have cho-
_ Often, software libraries are part of the informa- sen ontologies to represent the obtained knowledge,
tion systems, and for this reason, information sys- pecause most of the integration systems are based
tems integration should entail software libraries in- gp ontology matching techniques. Java data model
tegration. Nevertheless, there is not any integration has peen chosen because Java programming language
system that performs software libraries matching. In s gne of the most extended general-purpose object-
this work, we focus on the representation of software griented languages.
libraries with the aim to integrate them. o We want to point out that the proposed approach
There are many definitions about information in- a5 peen implemented dar20ntologya plug-in for
tegration, and we can find in (Saézeijaetal., 2009) the widely used Protégé Ontology Editor and Knowl-
the next one (it is a compendium of the before men- eqge Acquisition Systefn This tool extracts infor-
tioned definitions). mation directly from Java jar files, that is Java object
Definition 1. Information Integratioris the task that ~ code, so we do not need the source code to model the

aims at building a global system which provides an semantics of the library.

unified access to the information from many infor- Mostof tools for conceptual modeling allow to ex-
mation sources. Those information systems are dis-press information about the structural component of
tributed (placed in different places), autonomous (in- the concepts, and integration systems use this type of

*Corresponding author 2http://protege.stanford.edu

Marin N., Saez-Arcija C. and Amparo Vila M.. 267
JAR20NTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA OBJECT CODE.

DOI: 10.5220/0003510302670276

In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 267-276

ISBN: 978-989-8425-53-9

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

knowledge in the matching process. In our case, the 2009; Hong et al., 2009; Letarte and Merlo, 2009;

conceptual model is the Java data model, where theSpoto et al., 2010)), software design (e.g. (Amey,

concepts are the library classes and its structural com-2002)) and reengineering (e.g. (Herbold et al., 2009;

ponent refers to the classes name and fields, as well a&kawrykow and Robillard, 2009)). Most code ana-

to the class hierarchy. lyzers examine C/C++ (e.g. (Martino et al., 2002;
Nevertheless, in some conceptual models (e.g., Spinellis, 2010; Wong and Gokhale, 2005)) and Java

object-oriented data model), the semantics consists(e.g. (Jakobac et al., 2005; Kawrykow and Robil-

of two types of knowledge: structural and behavioral lard, 2009)) source code, but we have also found

knowledge, that are related to the structural compo- works about PHP (e.g. (Letarte and Merlo, 2009))

nent and the behavioral component of the model, re- and SPARK (e.g. (Amey, 2002)). Most of these ap-

spectively. In our case, the behavioral component proaches takeource codas input data.

refers to the information about the methods of the Although information extraction from source code

classes. The use of this behavioral information can is straightforward, in many cases it is not possible,

enrich the matching process thanks to additional cri- simply because source code is not available. There-

teria concerning to the behavioral component. fore, if we want to develop a tool as general as possi-
It is important to point out that, thought our re- ble, we have to face the difficult task of analyzing in

search has been oriented to the data integration con-detailobject code

text, semantic knowledge extraction from Java li- With respect to object code, we can cite (Hong

braries can be useful not only for data integration, but et al., 2009; Jackson and Waingold, 1999; Spoto et al.,

also for many more applications, as for example, au- 2010) as examples of Java Byte Code analysis. Nev-

tomatic generation of code documentation, or reverseertheless, only one of these approaches (Jackson and

engineering. Waingold, 1999) is focused on the representation of
The paper is structured as follows. Initially, sec- the semantic knowledge of the analyzed object code,

tion 2 presents a brief state of the art on semantic and it only represents the structural component of the

knowledge extraction and code analysis. In section model in a UML (Unified Modeling Language) dia-

3 we focus on how to face the extraction of seman- gram. The main goal of this work is to extract the

tic information from a jar file and how to write itin structural component from the analyzed object code,

the form of an OWL (Ontology Web Language) on- as well as the behavioral one.

tology. Next, in section 4 we present the diverse types

of ontologies that can be obtained after the semantic

extraction process. Section 5 is devoted to introduce

some implementation issues of the proposed approach3 SEMANTIC MODEL

and example experimentation. Finally, in section 6, EXTRACTION

concluding remarks end the paper.

We have carried out the task of developing an ap-

proach to semantically model the structure and the be-
2 RELATED WORK havior of the classes embedded in a jar file. It means

going one step beyond the traditional structural con-
Many research efforts have been made on the field ceptual modeling.
of automatic semantic knowledge extraction during We will distinguish two kind of ontologies ob-
last years. There are many works that aim to ob- tained after the semantic model extraction process,
tain a formal representation of the semantics that un- depending on the information that we want to use.
derlies a variety of sources, as for example, plain The fist kind of ontology (we call iData Ontology
text (e.g. (Buitelaar et al., 2008; Wimalasuriya and models only structural knowledge from the java li-
Dou, 2010)), semi-structured documents (e.g. (DuL, brary. Classes from the library are modeled as on-
: Thiam et al., 2009)) or relational database schematology classes and are organized in a class hierarchy
(e.g. (Curino et al., 2009; Myroshnichenko and Mur- that is analogue to the library class hierarchy. The
phy, 2009)). other kind of ontology (we call iMetadata Ontology

Yet on the object analysis area, we can find many is more comprehensive, because it models both struc-

interesting works. Code analysis provides support tural and behavioral knowledge from the java library.
for many applications, as program understanding (e.g. In this section we explain the processe&sfrac-
(Jakobac et al., 2005)), hardware design (e.g. (Mar- tion of a Structural Mode&nd Extraction of a Com-
tino et al., 2002)), software metrics (e.g. (Wong and prehensive Modedhat obtain as a result a data ontol-
Gokhale, 2005)), security testing (e.g. (Herbold et al., ogy and a metadata ontology, respectively.

268

JAR20ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA

OBJECT CODE
java.lang.Object
javalang.Throwable Enterprise Employee EnterpriseManagement
java.lang.Exception ByThehourEmployet) i Y Ci
EnterpriseException Director
Figure 1: Enterprise management class diagram.
Let us present here an example to illustrate the ex- ¥ @ javalang Object
plained processes of information extraction. It is a v (@ Eterpriselodel Employes
little library, that contains 8 class files representing EnterpriseModel AssignmentEmployee
information related to an enterprise and their employ- RPTERQUBNED L2 falL-pbyde

v EnterprizeModel SalariedEmployes

ees. In figure 1 we can see the class hierarchy em-
f ErterpriseModel Director

bebed in the jar file. Classes in white background
are the classes related to the .class files of the library,
and classes in dark background are the superclasses
of these classes.

EnterprizeModel Erterprize
J EnterprizeiModel EnterprizeManagement
v .jam.lang.ThrowalJle
v javalang Exception
EnterpriseModel ErterpriseException

3.1 Extraction of a Structural Model
Figure 2: Classes in the data ontology that models the ex-

In this subsection we explain in more detail the pro- a@mple library class hierarchy.
cess of extraction of the structural model from a Java
library and its organization in the form of an OWL
ontology. This process provides as a resultData) X
Ontology type is a datatype (OWL datatype properties).

In (Gomez-Pérez et al., 2004) we can find the most I figure 4 we can see the process to create the

extended way to express an object-oriented model by©ntology. This process is as follows: Initially, a hi-
means of ontologies and, specifically, using OWL. On erarchy class that represents the library classes is cre-

the basis of the ideas exposed in (Gomez-Pérez et al. 8t€d in the ontology. Then, the hierarchy is explored

2004), we have modeled the library classes as OWL with the aim to add the fields of each class. This step
classe:s and their fields as properties of these owL often entails the creation of new classes, because the
classes. Each field is modeled as an OWL data tyloetypes of the added fields are classes that do not ex-

property if the type of the field is a datatype, or as an ist in the hiera_rchy. Thus_, a r_ecursive process is exe-
OWL object property, if the field type is a class. In cuted. It consists of adding fields to the new classes

this last case, this class is also modeled in the ontol-@"d adding new classes when it is necessary. At the
ogy. Each class is included into the ontology with its end of the process, the class hierarchy has remarkably
superclasses, obtaining thus a class hierarchy. grown, because we add to the ontology the classes
Figure 2 shows the classes of the ontology that is of the initial hierarchy fields 'Fogether\(v]th the classes
generated taking into account only the classes of the Créated by the subsequent fields addition.
example (figure 1) that are embebed in the jar file with L&t us formalize the above introduc&tructural
their superclasses. Model Extraction Process
We can see in figure 3 the properties of these Definition 2. Structural Model Extraction Process
classes, that are related to the Java classes fieldsthe transformation of a Java library L to an ontology
Properties in dark background are those that represen© that satisfies:

fields whose type is a class (OWL object properties).
Properties in white background represent fields whose

269

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

M ErterprizeiModel AssignmertEmployee. assignment We have shown how we can create an ontology
I Enterpriseblodel AssignmertEmployee. sales that models the structural component of a Java li-
[Erterprisehlode! Director subordinates brary following the representation of object oriented
(M Erterprisehiodsl Employee idhumber data models that is most extended in current litera-
[Erterpriseblocel Employee. myDirector ture. This approach provides a data ontology whose
[Erterprisehoce! Employee. name class hierarchy is analogue to the original Java class
[Erterprisehiodel Enterprise. employees hierarchy embedded in the library. However, this data
[ErterpriseModel EnterpriseManagement. .employees onto|ogy cannot represent all the structural metadata
M ErterprizeModel PerHourEmployee. hourPrice of a Java class. For this reason, we propose here a
I ErterprizseMocel PerHourEmployee. workHours new approach that solves this problem.

I Erterpriseiodel SalariedEmployee. salary

M java lang Exception. .serialVersionUID 3 2 One Step Beyond. EXtraCtion Of a

[java lang Throwable. backtrace

[java lang Throwable cause Comprehens“/e MOdel

[java.lang. Throwable detailMlessage

M java lang Throwable _serialyersionUID As we have already said, till now we have not taking
[java Jang Throwalle. stackTrace into account all the semantic information that we can

obtain from a Java class. For example, it is not able
to represent if a Java class implements a certain inter-
face, if it is public, private, or protected or which its
package is. Furthermore, a conceptual model repre-
sented by means of an OWL ontology cannot repre-
sent information about the behavioral component of
X , the classes (i.e. the set of methods of each Java class).
a corresponding class Qan O, where OG is the In this subsection we explain a more comprehen-
superclass of OC . sive approach that handles with all the class metadata
e For each field f of a class JG there exists a cor- that we are able to obtain from the object code: first,

Figure 3: Properties of the classes in the data ontology that
models the example library.

e For each class JCn the library L, there exists a
corresponding class Q@n the ontology O.

o Foreach superclass J@f a class JG there exists

responding property jpof the class OCin O. we do a more exhaustive study of the structure and,
o For each field {, if its range is a class Jg there additionally, we also incorporate the behavioral infor-
exists a corresponding class @@ O. mation. This approach obtains as a resiMetadata
Ontology
_ To carry out this purpose, we create an OWL on-
e eaton tology that models the metadata of the conceptual
model, i.e, a container in OWL to store information
from conceptual models. Thus, when we want to rep-
pding Folds resent the semantics of a conceptua_l model, we create
the new Classes instances of the ontology classes, i.e., we insert se-
mantic information into the container. Let us see this
in detail.

3.2.1 A Container in OWL to Store Information
from a Conceptual Model

Any field whose type
is a class out of the
current hierarchy?

yes In order to represent all this semantic information in
v OWL, we have defined 4 classes into the ontology
A e (Class Method Local Variable andField). Later, we
will create instances of these classes to capture the
Figure 4: Structural model extraction flow diagram. extracted information.

In figure 5 we can see these four classes with their

. Figure 2 shows the ontology at the beginning of properties and their properties types. Let us see them
this process for our example. This ontology has only in more detail

11 classes, but when the recursive process ends, the

ontology contains 120 classes. These results have e ClassClass Each instance of this class models a
been obtained usingar20ntology the tool that im- Java class. The set of properties of the ClassClass
plements this approach. is the following:

270

JAR20ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA

ClassClass

MethodClass

-Name: String
-SuperClass: ClassClass
-Package: String
-Modifiers : String Set
-Fields : FieldClass Set
-Methods : MethodClass Set
-Interfaces: String Set

-Signature: String

-Name: String

-Modifiers: String Set

-Parameters: String Set

-ReturnType: String

-LocalVariables: LocalVariableClass Set
-InvokedMethods: String Set

-InvokedMethodsInOntology: MethodClass Set
-Exceptions: String Set

FieldClass -Code: String
-Name : String LocalVariableClass
-Type : String -
R . -Name: String
TypelnOntology: ClassClass ~Type : String

-Modifiers : String Set

_IsArray : Boolean -TypelnOntology: ClassClass

-IsArray : Boolean

Figure 5: OWL Classes used to model the metadata ex-
tracted from Java libraries.

— Name ltis a string which contains the name of
the class.

— SuperClass This property relates the class to
its direct superclass.

— Package This is a string with the name of the
package of the class.

— Modifiers. It is a list of the modifiers of the
class. These madifiers indicate if the class is
abstract, final, private, protected, public, static
or strictfp. Furthermore, we can indicate that it
is an interface.

— Fields It is a set of instances of the Field-
Class that model the structural component of
the class.

— Methods This property is a set of instances of
MethodClass that model the behavior compo-
nent of the class.

— Interfaces It is a set of strings with the names
of the classes that are implemented by the rep-
resented class.

e FieldClass It is used to model class fields. The
properties of this class are detailed next.

— Name This property contains the name of the
field in a string.

— Type It represents the type of the field using
a string. If the field is an array, this property
indicates the name of the type without the []
symbols.

— TypelnOntologyThis property relates the field
to its type when the type of the field is a class
that is modeled in the ontology.

— Modifiers It contains the field modifiers, that
indicate if the field is final, private, protected,
public, static, transient or volatile.

— IsArray. Itis a boolean that indicates if the field

cardinality is more than 1, i.e., if the field is a
set.

OBJECT CODE

e MethodClass Methods are modeled with this
class. The set of properties that defines this class
is the following.

— Name This is a string to express the name of
the method.

— Signature This property contains the complete
signature of the method. The parts of the signa-
ture are also modeled in another properties, as
we can see here.

— Modifiers 1t is a list with the modifiers of
the method. In this case, the modifiers indi-
cate if the method is abstract, final, native, pri-
vate, protected, public, static, strictfp or syn-
chronized.

— Parameters This is a list with the types of the
metdhod parameters.

— ReturnTypeThis is a string with the return type
of the method.

— LocalVariables This property relates the
method to its local variables, that are modeled
as instances of the LocalVariableClass.

— InvokedMethods It is a set with the names
names of the methods that are invoked by the
method that is being modeled.

— InvokedMethodsInOntologyThis property is
very close to the previous one. It is a set of
MethodClass instances that represent the in-
voked methods that are represented into the on-
tology. The set of invoked methods of the
vokedMethogbroperty contains more elements
than the set of thénvokedMethodInOntology
property when the method invokes methods
that are not modeled in the ontology. It hap-
pens frequently.

— Exceptionslt is a set of strings with the names
of the exceptions that the method throws.

— Code Thisis a string with the byte code (object
code) of the method.

e LocalVariableClass This class is used to repre-
sent information about the local variables of the
methods. The properties of this class are the same
as those of Field Class, except Hedifiersprop-
erty, as we can see.

— Name It represents the name of the local vari-
able in a string.

— Type Itindicates the type of the local variable
in a string. If the local variable is an array, this
property do not include the [] symbols.

— TypelnOntology When the type of the field
is a class, if it is represented in the ontology,
this property is the instance that represents that
class.

271

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

Class Hierarchy
Creation

A

Adding Fields and
Methods to the
new Classes

Any field whose type
is a class out of the current
hierarchy?

Yes

Add Class to the
Hierarchy

Any local variable
whose type is a class out of
the current
hierarchy?

Has been created
any new class after adding
fields step?

Yes

Add Class to the
Hierarchy

Figure 6: Structural and behavior model extraction flow di-
agram.

— IsArray. Itis a boolean that indicates if the field
cardinality is more than 1, i.e., if the field is a
set.

As we can see, by means of the previous OWL
containers, our approach obtains an ontology that

represents more semantic information about classes.

Each class created in the ontology include all the in-
formation obtained by means of the structural model
extraction process, plus additional structural and be-
havior information.

3.2.2 Inserting Semantic Information into the
Container

Now, we will explain the process to obtain all that
information. It is similar to the structural model ex-
traction process, although it is more complex.

The process, shown in figure 6, is as follows: Ini-
tially, we add to the ontology instances of the Class-

ClassClass instances. It can be caused by two rea-
sons: because there are types of the added fields that
are classes that are not yet represented in the OWL
ontology or because there are types of the local vari-
ables of the added methods that are classes that are
not yet represented in the ontology. This process is
recursively executed until no new class is added.

At the end of the process, the amount of classes
represented in the OWL ontology is usually larger
than the amount of classes obtained by the approach
explained in the previous subsection, because we now
add to the ontology information regarding the classes
that appear in the Java methods.

Let us formalize the before introduc&bmpre-
hensive Model Extractioprocess.

Definition 3. Let C be the set of containers shown in
figure 5 and represented in an ontology O, we define
the Comprehensive Model Extraction Processthe
transformation of a Java library L in a set of instances
of the O ontology classes that satisfies:

For each class JCin the library L, there exists
a corresponding.instance Cdf the ClassClass in
the ontology O.

For each superclass J@f a class JE there exists
a corresponding instance €of the ClassClass in
O, where Cj represents the superclass of Cl

For each field f of a class JG there exists a cor-
responding instance K bf the FieldClass in O.
For each method piof a class J there exists a
corresponding instance Mlof the MethodClass
in O.

For each local variable Ivof a method my there
exists a corresponding instance L\of the Local-
VariableClass in O.

For each field f or local variable ly, if its range
is a class J& , there exists a corresponding
instance C}, of the ClassClass in O.

When we use our example library as input of
Jar20ntologyand we use this comprehensive ap-
proach, we obtain an ontology with 4 classes (Class-
Class, FieldClass, MethodClass and LocalVariable-
Class). Their properties are those that we shown in
figure 5. This ontology has much information: For
each class that we model, we have one instance of
the ClassClass someFielClassinstances related to
its fields, someMethodClassnstances related to its

Class corresponding to the Java classes of the hierarimethods, and for each one of its method, stuoeal-

chy embedded in the input library. In this first step,

we add all the information about each class, but the
fields and the methods. After that, each class of the
hierarchy is deeply analyzed focusing on its fields and
methods. This step usually entails the creation of new

272

VariableClassnstances related to its local variables.
Figure 7 shows the instances of tBassClassat

the beginning of this process. We can see that the

classes are the same that the obtained at the beginning

of the structural model extraction process (in figure

JAR20ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA

INSTANCE BROWSER

ClassClass

Asserted Inferred
- # ¢ X ¢

’ EnterprizeiModel AzsignmentEmployes
& Enterprizehodel Director

‘ EnterprizeMaodel Employves

‘ EnterprizeMaodel Enterprize

’ EnterprizeModel EnterprizeException
’ EnterprizeModel Enterprizeianagement

’ EnterprizeMaodel PerHourEmployee
‘ EnterprizeMaodel SalariedEmployee
@ javalang Exception

@ javalang Object

@ javalang Throwakle

INSTANCE BROWSER

FieldClass

Asserted | Inferred

- & 2 X G

’ Enterprizemodel A= signmenrtEmployee . assignment

’ EnterprizeModel AzsignmentEmployee. sales
4 EnterprizeMadel Director_subordinates

’ EnterprizeModel Employes_idMumber

’ Enterprizedodel Employes. myDirector

‘ EnterprizeModel Employee..name

‘ EnterprizeModel Enterprize. employees

’ EnterprizeModel Enterprizetanagement. employees
’ EnterprizeModel PerHourEmployees hourPrice
’ EnterprizeModel PerHourEmployee wearkHours
’ EnterprizeModel SalariedEmployee _salary

’ javalang Exception. . setialversionUID

’ javalang Throvrable. backirace

’ java lang Throvvable. cause

’ java lang Throveable . detailtessage

’ javalang Throvwahle, serialversionUID

‘ javalang Throvrable. stackTrace

OBJECT CODE

the MethodClassand 188 of thd.ocalVariableClass
When the extraction process has finished, there are
129ClassClassnstances, and the number of the other
classes instances increases accordingly.

4 THE OBTAINED MODELS

As we have seen in section 3, information extraction
process can obtain as a result a big model that repre-
sents much more classes than those that are directly
embedded in the library. However, this exhaustive re-
cursion is not always necessary (for example, when
we want to use these ontologies as input of a matching
process). For this reason, we distinguish three kinds
of models with different recursion degrees, depending

Figure 7: Classes in the metadata ontology that models thegn the desired comprehension of the resulting model:
example library class hierarchy.

e Lite Model This model only captures the classes
that directly appear in the jar file as well as their
superclasses. No additional classes are included
in the model. Figures 2, 7 and 8 correspond to
this kind of model, for our example.

e Full Model This model contains all the classes
that appear in the jar file together with all the
classes found during the methodsf/fields analysis.
This type of model stores the highest information
amount that can be extracted from the jar file.

e Pruned Model This type of model is a compro-
mise between full and lite models. It contains
information regarding to the classes from the jar
file class hierarchy and the classes added in the
first iteration of the methods/fields analysis. Fig-
ure 9 shows the data ontology obtained as pruned
model. Classes in darker background are those
classes that have been added in the fist iteration of
the process.

Next section will show the results of the execution
of Jar20ntologywith different software libraries. We
will see the different amount of classes, fields, meth-

Figure 8: Properties of the classes in the metadata ontology

that models the example library, ods and local variables represented in each kind of

these models.

2). Figure 8 contains the instances of ffieldClass

related to the classes shown in figure 7. We can real-
ize that these fields correspond to the OWL properties 5 IMPLEMENTATION AND

that we obtained using the structural model extraction EXPERIMENTATION ISSUES

process (in figure 3). We do not show the instances of

the MethodClasseither of theLocalVariableClass The Protégé Ontology Editor and Knowledge Acqui-

because there are too many. sition System has been developed in Java, is extensi-
At the beginning of the comprehensive model ex- ble and provides a programming frame by means of

traction process, the ontology only has 11 instances of plug-ins. Furthermore, Protégé is backed by a large

the ClassClass17 instances of thEieldClass 91 of community of active users and developers.

273

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

¥ @ javaang Object Table 1: Number of classes obtained in the data ontology,
v () EnterpriseModel Employee i.e., when the structural model extraction approach is.used
ErterpriseModel AssignimertEmployes
EnterpriseModel PerHourEmplayee Library Lite Model | Full Model | Pruned Model
v ErterpriseModel SalariedEmployes EnterpriseModel 1 120 16
Erterprizeiodel Director flickrapi 121 241 143
EnterpriseMocdel Enterprise HtmICleaner 47 159 60
Enterprizeiodel EnterpriseManagemert MozillaParser 18 143 23

java.lang Stack TraceElement

java.lang.String

v @ javalang Thowable result of its implementation. The input of JarToOntol-

¥ @ javalang Exception ogy is the jar file that contains Java object code files

EnterpriselMocel EnterpriseException corresponding to the implemented classes of the li-

 d java util AbstractCollection brary.

v @ java util Abstractl ist In table 1 we can see the number of classes of
fava.util.ArrayList the ontologies obtained by means of our extraction

Figure 9: Classes in the data ontology obtained as prunedtool when we use the structural model extraction ap-
model of the example library. proach. The number of classes of the lite model is

always a bit higher than the number of class files of
We have developedlarToOntology a set of the library, because the superclasses of the library
Protégé plug-ins, to implement the before described classes are included. Thus, we can note that al-
approaches. As Protégé is developed in Java, we havehough there are 8 classes in EnterpriseModel library
used some libraries apart from the standard Java ones(classes with white background in figure 1), the lite
Core Protégé APland Protégé-OWL APlhave been - model includes 3 classes more, corresponding to the
used to develop the plug-ins on top of Protégé and to superclasses of the library classes (java.lang.Object,
create and to manipulate OWL ontologies. Addition- java.lang.Throwable and java.lang.Exception).

ally, in order to directly deal with Java object code, We can see that, as we said when we explained the
we have used BCEL AP(Dahm and Van Zyl, 2006; obtained models in section 4, the full model has much
Dahm, 2001) and Java reflectfon more classes than the initial class hierarchy as well as
JarToOntology has been tested by means of manythe pruned model is a compromise solution between
libraries. Some of them are the following: the other two.
e EnterpriseModel.jar It is a little library created In table 2 we can see the number of instances of

with the aim to illustrate the implemented ap- each of the four classes created in the ontology when
proaches. In figure 1 we can see the class hier- we apply our comprehensive model exiraction ap-

archy that the jar file contains, together with their proach using the above mentioned example libraries.
superclasses ' For the sake of space, we do not show here the ob-

tained ontology instances, but a summary of the num-
o flickrapi.jar. It is the library of the flickr Java per of them.
API’. This library contains 110 class files. We obtain the same conclusions from this table
e htmicleaner2l.jar. HtmiCleaner is an open- than the conclusions obtained before. Furthermore,
source HTML parser written in Ja¥aThis library ~ We can see that the growth of the number of classes
contains 40 class files. represented in the ontologies is higher, because we
add classes obtained during the deep analysis of the

e MozillaParserjar It is a Java package that en- panavioral component.

ables you to parse html pages into a Java Docu-
ment object. This library contains 14 class files.

We want to remind that JarToOntology inputisnot 6 CONCLUSIONS
an UML diagram, neither the source code that is the

3http://protege.stanford.edu/protege/3.4/docs/ag/co ' this work we have presented a novel approach for
“http://protege.stanford.edu/protege/3.4/docs/api/ow the automatic extraction of semantic knowledge from

Shttp://jakarta.apache.org/bcel Java object code. The approach takes into account
Bhttp://java.sun.com/docs/books/tutorial/reflect both the structural and the behavioral knowledge, go-
http:/iwww.flickr.com/services/api ing one step beyond the traditional structural concep-
8http://htmicleaner.sourceforge.net/ tual modeling.

%http://mozillaparser.sourceforge.net/ In addition to this, the proposed approach has been

274

JAR20ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA
OBJECT CODE

Table 2: Number of classes (C), fields (F), methods (M) REFERENCES
and local variables (LV) obtained in the comprehensive on-
tology, i.e., when the comprehensive model extraction ap-

proach is used. Amey, P. (2002). Closing the Loop: The Influence of Code

Analysis on DesignReliable Software Technologies -

EnterpriseModel Ada-Europe 2002. LNC2361:151-162.
N.umberof... C| F M | LV Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., and
Lite Model 1 | 17 91 | 188 Raioppa, S. (2008). Ontology-based Information
Full Model 129 | 599 | 1440 | 188 Extraction and Integration from Heterogeneous Data
Sources. International Journal of Human-Computer
Pruned Model y kzs _ 65 | 334 | 188 Studies 66(11):759-788,
ickrapi .) .
Curino, C., Orsi, G., Panigati, E., and Tanca, L. (2009).
N_umber of... C F M | LV Accessing and Documenting Relational Databases
Lite Ontology 121 | 694 | 236 | 217 through OWL OntologiesFlexible Query Answering
Full Ontology 297 | 1696 | 2447 | 217 Systems (FQAS'09). LNAG822:431-442,
Pruned Ontology| 163 | 941 | 990 | 217 Dahm, M. (2001). Byte Code Engineering with the BCEL
HtmICleaner API. Technical report, Freie Universitat Berlin. Insti-
Number of... C E M T LV tut fur Informatik.
Lite Ontology 27 | 177 | 532 | 681 Dahrrli,_t!vl. and Van Zyl, J. (2006). Byte Code Engineering
Full Ontology 212 | 976 | 2609 | 681 lorary.
Pruned Ontology| 60 | 217 | 837 | 681 Gomez-Pérez, A., Fernandez-Lopez, M., and Corcho,
- O. (2004). Ontological Engineering: With Exam-
MozillaParser ples from the Areas of Knowledge Management, e-
Number of... C F M | LV Commerce and the Semantic \W&pringer.
Lite Ontology 18 | 51 | 58 | 76 Herbold, S., Grabowski, J., and Neukirchen, H. (2009). Au-
Full Ontology 144 | 693 | 1513 | 76 tomated Refactoring Suggestions Using the Results
Pruned Ontology| 23 82 218 | 76 of Code Analysis Tools.First International Confer-
ence in System Testing and Validation Lifecypbges
104-109.

implemented, obtaining as a result ther20ntology

tool. Itis a set of Protégé plugins that generate owL 7ong; T., Hua, C., Gang, Z., Qiang, L., and Jinjin, Z.

(2009). The Vulnerability Analysis Framework for

models from Java libraries object code. We have Java Bytecodel5th International Conference on Par-
tested it with toy examples, as well as with real world allel and Distributed Systempages 896-901.
libraries.) _ Jackson, D. and Waingold, A. (1999). Lightweight extrac-
) Our I’eseal‘Ch haS been 0r|ented tO the data Integl’a- tion of object models from bytecodeproceedings
tion context. Nevertheless, semantic knowledge ex- of the 21st international conference on Software en-
traction from Java libraries can be useful for many gineering pages 194-202.

more applications, as for example, automatic genera-Jakobac, V., Egyed, A., and Medvidovic, N. (2005). Im-
tion of code documentation, or reverse engineering. proving System Understanding via Interactive, Tai-

lorable, Source Code Analysis.Fundamental Ap-
proaches to Software Engineering (FASE). LCNS
3442:253-268.

ACKNOWLEDGEMENTS Kalfoglou, Y. and Schorlemmer, M. (2003). Ontology Map-
ping: the State of the ArtThe Knowledge Engineer-
Part of the work reported in this paper was sup- ing Review Journal (KER)1L8(1):1-31.
ported by the Spain’s Science and Innovation Min- Kawrykow, D. and Robillard, P. (2009). Improving API Us-
istry (Ministerio de Ciencia e Innovacion) under grant age trhough Automatic Detection of Redundant Code.
TIN2006-15041-C04-01. IEEE/ACM International Conference on Automated
Part of the research reported in this paper is sup- Software Engineeringpages 111-122.
ported by the Andalusian Government (Junta de An- Letarte, D. and Merlo, E. (2009). Extraction of Inter-
dalucia, Consejeria de Economia, Innovacion y Cien- procedural Simple Role Privilege Models from PHP

Code.16th Working Conference on Reverse Engineer-

cia) under project PO7-TIC-03175 "Representacion y ing, pages 187-191

Manipulacion de Objetos Imperfectos en Problemas _
de Integracion de Datos: Una Aplicacion a los Al- Martino, B., Mazzocca, N., Saggese, G., and Strollo, A.

; P (2002). A Technique for FPGA Synthesis Driven
macenes de Objetos de Aprendizaje”. by Automatic Source Code Analysis and Transfor-

mations. International Conference on Field Pro-
grammable Logic and Applications (FLP). LCNS
2438:47-58.

275

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

Myroshnichenko, I. and Murphy, M. (2009). Mapping ER
Schemas to OWL Ontologies.IEEE International
Conference on Semantic Computipgges 324-329.

Rahm, E. and Bernstein, P. (2001). A Survey of Approaches
to Automatic Schema Matchinglhe VLDB Journal
10:334-350.

SéaezArcija, C., Marin, N., and Vila, M. (2009). A Lazy-
Typing Based Architecture for a Data Integration Sys-
tem. Workshop on New Trends on Intelligent Systems
and Soft Computing:1-18.

Shvaiko, P. and Euzenat, J. (2005). A Survey of Schema-
based Matching Approache¥®urnal on Data Seman-
tics(JoDS)

Spinellis, D. (2010). CScout: A refactoring browser for C.
Science of Computer Programmiri¢gh:216—-231.

Spoto, F., Mesnard, F., and Payet, E. (2010). A Termination
Analyzer for Java Bytecode Based on Path-Length.
ACM Transactions on Programming Languages and
Systems32(3):8:1-8:70.

Thiam, M., Bennacer, N., Pernelle, N., and L6, M. (2009).
Incremental Ontology-Based Extraction and Align-
ment in Semi-structured Document20nd Interna-
tional Conference on Database and ExperSystems Ap-
plications (DEXA). LCN35690:611-618.

Wache, H., Vgele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., and Hbner, S. (2001).
Ontology-Based Integration of Information - A Sur-
vey of Existing ApproachesiNorkshop on Ontologies
and Information Sharing at the International Joint
Conference on Atrtificial Intelligence (IJCAlpages
108-117.

Wimalasuriya, D. and Dou, D. (2010). Ontology-based In-
formation Extraction: An Introduction and a Survey
of Current ApproachesJournal of Information Sci-
ence 36(3):306—-323.

Wong, W. and Gokhale, S. (2005). Static and Dynamic Dis-
tance Metrics for Feature-based Code AnalySibe
Journal of Systems and Softwar@:283-295.

276

