
JAR2ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF
SEMANTIC INFORMATION FROM JAVA OBJECT CODE

Nicolás Marı́n, Clara Sáez-Árcija∗ and M. Amparo Vila
Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

Keywords: Object code analysis, Semantics extraction, Java, OWL.

Abstract: We present here a novel approach (and its implementation) for the automatic extraction of semantic knowledge
from Java libraries.
We want to match software libraries, so we need to obtain as much information as possible to use it in the
matching process. For this purpose, this approach extracts information about the structure of the classes (i.e.,
name, fields and hierarchy), as well as information about the behavior of the classes (i.e., methods).
In the literature, to our knowledge, it can be only found lightweight approaches to the extraction of this kind
of information from Java object code. The approach is implemented in an automatic extraction tool (called
Jar2Ontology) that has been developed as a plug-in of the Protégé Ontology and Knowledge Acquisition
System. Jar2Ontology extracts the semantics from Java libraries and translates it into OWL (Ontology Web
Language).

1 INTRODUCTION

Information systems integration is a problem of in-
creasing interest in many areas, as in Business In-
telligence, Customer Relationship Management, En-
terprise Information Portals, E-Commerce or E-
Business. Interested lectors can find remarkable sur-
veys of research in this area in (Kalfoglou and Schor-
lemmer, 2003; Rahm and Bernstein, 2001; Shvaiko
and Euzenat, 2005; Wache et al., 2001).

Often, software libraries are part of the informa-
tion systems, and for this reason, information sys-
tems integration should entail software libraries in-
tegration. Nevertheless, there is not any integration
system that performs software libraries matching. In
this work, we focus on the representation of software
libraries with the aim to integrate them.

There are many definitions about information in-
tegration, and we can find in (Sáez-Árcija et al., 2009)
the next one (it is a compendium of the before men-
tioned definitions).

Definition 1. Information Integrationis the task that
aims at building a global system which provides an
unified access to the information from many infor-
mation sources. Those information systems are dis-
tributed (placed in different places), autonomous (in-

∗Corresponding author

dependently managed) and heterogeneous (with dif-
ferent software, hardware, data model, etc.).

This work is devoted to the first step of the infor-
mation integration process, i.e., the semantics extrac-
tion. Our goal is to integrate software libraries, and
for this reason, we have to extract the semantics of
the libraries and model them.

We present here a novel approach (and its im-
plementation) for the automatic extraction of seman-
tic knowledge from Java object code. We have cho-
sen ontologies to represent the obtained knowledge,
because most of the integration systems are based
on ontology matching techniques. Java data model
has been chosen because Java programming language
is one of the most extended general-purpose object-
oriented languages.

We want to point out that the proposed approach
has been implemented asJar2Ontology, a plug-in for
the widely used Protégé Ontology Editor and Knowl-
edge Acquisition System2. This tool extracts infor-
mation directly from Java jar files, that is Java object
code, so we do not need the source code to model the
semantics of the library.

Most of tools for conceptual modeling allow to ex-
press information about the structural component of
the concepts, and integration systems use this type of

2http://protege.stanford.edu

267Marín N., Sáez-Árcija C. and Amparo Vila M..
JAR2ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA OBJECT CODE.
DOI: 10.5220/0003510302670276
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 267-276
ISBN: 978-989-8425-53-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



knowledge in the matching process. In our case, the
conceptual model is the Java data model, where the
concepts are the library classes and its structural com-
ponent refers to the classes name and fields, as well as
to the class hierarchy.

Nevertheless, in some conceptual models (e.g.,
object-oriented data model), the semantics consists
of two types of knowledge: structural and behavioral
knowledge, that are related to the structural compo-
nent and the behavioral component of the model, re-
spectively. In our case, the behavioral component
refers to the information about the methods of the
classes. The use of this behavioral information can
enrich the matching process thanks to additional cri-
teria concerning to the behavioral component.

It is important to point out that, thought our re-
search has been oriented to the data integration con-
text, semantic knowledge extraction from Java li-
braries can be useful not only for data integration, but
also for many more applications, as for example, au-
tomatic generation of code documentation, or reverse
engineering.

The paper is structured as follows. Initially, sec-
tion 2 presents a brief state of the art on semantic
knowledge extraction and code analysis. In section
3 we focus on how to face the extraction of seman-
tic information from a jar file and how to write it in
the form of an OWL (Ontology Web Language) on-
tology. Next, in section 4 we present the diverse types
of ontologies that can be obtained after the semantic
extraction process. Section 5 is devoted to introduce
some implementation issues of the proposed approach
and example experimentation. Finally, in section 6,
concluding remarks end the paper.

2 RELATED WORK

Many research efforts have been made on the field
of automatic semantic knowledge extraction during
last years. There are many works that aim to ob-
tain a formal representation of the semantics that un-
derlies a variety of sources, as for example, plain
text (e.g. (Buitelaar et al., 2008; Wimalasuriya and
Dou, 2010)), semi-structured documents (e.g. (DuL,
; Thiam et al., 2009)) or relational database schema
(e.g. (Curino et al., 2009; Myroshnichenko and Mur-
phy, 2009)).

Yet on the object analysis area, we can find many
interesting works. Code analysis provides support
for many applications, as program understanding (e.g.
(Jakobac et al., 2005)), hardware design (e.g. (Mar-
tino et al., 2002)), software metrics (e.g. (Wong and
Gokhale, 2005)), security testing (e.g. (Herbold et al.,

2009; Hong et al., 2009; Letarte and Merlo, 2009;
Spoto et al., 2010)), software design (e.g. (Amey,
2002)) and reengineering (e.g. (Herbold et al., 2009;
Kawrykow and Robillard, 2009)). Most code ana-
lyzers examine C/C++ (e.g. (Martino et al., 2002;
Spinellis, 2010; Wong and Gokhale, 2005)) and Java
(e.g. (Jakobac et al., 2005; Kawrykow and Robil-
lard, 2009)) source code, but we have also found
works about PHP (e.g. (Letarte and Merlo, 2009))
and SPARK (e.g. (Amey, 2002)). Most of these ap-
proaches takesource codeas input data.

Although information extraction from source code
is straightforward, in many cases it is not possible,
simply because source code is not available. There-
fore, if we want to develop a tool as general as possi-
ble, we have to face the difficult task of analyzing in
detailobject code.

With respect to object code, we can cite (Hong
et al., 2009; Jackson and Waingold, 1999; Spoto et al.,
2010) as examples of Java Byte Code analysis. Nev-
ertheless, only one of these approaches (Jackson and
Waingold, 1999) is focused on the representation of
the semantic knowledge of the analyzed object code,
and it only represents the structural component of the
model in a UML (Unified Modeling Language) dia-
gram. The main goal of this work is to extract the
structural component from the analyzed object code,
as well as the behavioral one.

3 SEMANTIC MODEL
EXTRACTION

We have carried out the task of developing an ap-
proach to semantically model the structure and the be-
havior of the classes embedded in a jar file. It means
going one step beyond the traditional structural con-
ceptual modeling.

We will distinguish two kind of ontologies ob-
tained after the semantic model extraction process,
depending on the information that we want to use.
The fist kind of ontology (we call itData Ontology)
models only structural knowledge from the java li-
brary. Classes from the library are modeled as on-
tology classes and are organized in a class hierarchy
that is analogue to the library class hierarchy. The
other kind of ontology (we call itMetadata Ontology)
is more comprehensive, because it models both struc-
tural and behavioral knowledge from the java library.

In this section we explain the processes ofExtrac-
tion of a Structural ModelandExtraction of a Com-
prehensive Modelthat obtain as a result a data ontol-
ogy and a metadata ontology, respectively.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

268



java.lang.Object

Employee

ByThehourEmployee WageEarningEmployee CommissionBasedEmployee

Director

EnterpriseManagementEnterprisejava.lang.Throwable

java.lang.Exception

EnterpriseException

Figure 1: Enterprise management class diagram.

Let us present here an example to illustrate the ex-
plained processes of information extraction. It is a
little library, that contains 8 class files representing
information related to an enterprise and their employ-
ees. In figure 1 we can see the class hierarchy em-
bebed in the jar file. Classes in white background
are the classes related to the .class files of the library,
and classes in dark background are the superclasses
of these classes.

3.1 Extraction of a Structural Model

In this subsection we explain in more detail the pro-
cess of extraction of the structural model from a Java
library and its organization in the form of an OWL
ontology. This process provides as a result anData
Ontology.

In (Gómez-Pérez et al., 2004) we can find the most
extended way to express an object-oriented model by
means of ontologies and, specifically, using OWL. On
the basis of the ideas exposed in (Gómez-Pérez et al.,
2004), we have modeled the library classes as OWL
classes, and their fields as properties of these OWL
classes. Each field is modeled as an OWL data type
property if the type of the field is a datatype, or as an
OWL object property, if the field type is a class. In
this last case, this class is also modeled in the ontol-
ogy. Each class is included into the ontology with its
superclasses, obtaining thus a class hierarchy.

Figure 2 shows the classes of the ontology that is
generated taking into account only the classes of the
example (figure 1) that are embebed in the jar file with
their superclasses.

We can see in figure 3 the properties of these
classes, that are related to the Java classes fields.
Properties in dark background are those that represent

Figure 2: Classes in the data ontology that models the ex-
ample library class hierarchy.

fields whose type is a class (OWL object properties).
Properties in white background represent fields whose
type is a datatype (OWL datatype properties).

In figure 4 we can see the process to create the
ontology. This process is as follows: Initially, a hi-
erarchy class that represents the library classes is cre-
ated in the ontology. Then, the hierarchy is explored
with the aim to add the fields of each class. This step
often entails the creation of new classes, because the
types of the added fields are classes that do not ex-
ist in the hierarchy. Thus, a recursive process is exe-
cuted. It consists of adding fields to the new classes
and adding new classes when it is necessary. At the
end of the process, the class hierarchy has remarkably
grown, because we add to the ontology the classes
of the initial hierarchy fields together with the classes
created by the subsequent fields addition.

Let us formalize the above introducedStructural
Model Extraction Process.

Definition 2. Structural Model Extraction Processis
the transformation of a Java library L to an ontology
O that satisfies:

JAR2ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA
OBJECT CODE

269



Figure 3: Properties of the classes in the data ontology that
models the example library.

• For each class JCi in the library L, there exists a
corresponding class OCi in the ontology O.

• For each superclass JCj of a class JCi , there exists
a corresponding class OCj in O, where OCj is the
superclass of OCi .

• For each field fj of a class JCi , there exists a cor-
responding property pj of the class OCi in O.

• For each field fj , if its range is a class JCk, there
exists a corresponding class OCk in O.

Class Hierarchy 

Creation

Adding Fields to 

the new Classes

Add Class to the 

Hierarchy

Any field whose type 

is a class out of the 

current hierarchy?

yes

No End

Figure 4: Structural model extraction flow diagram.

Figure 2 shows the ontology at the beginning of
this process for our example. This ontology has only
11 classes, but when the recursive process ends, the
ontology contains 120 classes. These results have
been obtained usingJar2Ontology, the tool that im-
plements this approach.

We have shown how we can create an ontology
that models the structural component of a Java li-
brary following the representation of object oriented
data models that is most extended in current litera-
ture. This approach provides a data ontology whose
class hierarchy is analogue to the original Java class
hierarchy embedded in the library. However, this data
ontology cannot represent all the structural metadata
of a Java class. For this reason, we propose here a
new approach that solves this problem.

3.2 One Step Beyond: Extraction of a
Comprehensive Model

As we have already said, till now we have not taking
into account all the semantic information that we can
obtain from a Java class. For example, it is not able
to represent if a Java class implements a certain inter-
face, if it is public, private, or protected or which its
package is. Furthermore, a conceptual model repre-
sented by means of an OWL ontology cannot repre-
sent information about the behavioral component of
the classes (i.e. the set of methods of each Java class).

In this subsection we explain a more comprehen-
sive approach that handles with all the class metadata
that we are able to obtain from the object code: first,
we do a more exhaustive study of the structure and,
additionally, we also incorporate the behavioral infor-
mation. This approach obtains as a result aMetadata
Ontology.

To carry out this purpose, we create an OWL on-
tology that models the metadata of the conceptual
model, i.e, a container in OWL to store information
from conceptual models. Thus, when we want to rep-
resent the semantics of a conceptual model, we create
instances of the ontology classes, i.e., we insert se-
mantic information into the container. Let us see this
in detail.

3.2.1 A Container in OWL to Store Information
from a Conceptual Model

In order to represent all this semantic information in
OWL, we have defined 4 classes into the ontology
(Class, Method, Local Variable, andField). Later, we
will create instances of these classes to capture the
extracted information.

In figure 5 we can see these four classes with their
properties and their properties types. Let us see them
in more detail.

• ClassClass: Each instance of this class models a
Java class. The set of properties of the ClassClass
is the following:

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

270



-Name : String

-SuperClass : ClassClass

-Package : String

-Modifiers : String Set
-Fields : FieldClass Set

-Methods : MethodClass Set

-Interfaces : String Set

ClassClass

-Signature : String

-Name : String

-Modifiers : String Set

-Parameters : String Set
-ReturnType : String

-LocalVariables : LocalVariableClass Set

-InvokedMethods : String Set

-InvokedMethodsInOntology : MethodClass Set

-Exceptions : String Set
-Code : String

MethodClass

-Name : String

-Type : String

-TypeInOntology : ClassClass

-Modifiers : String Set
-IsArray : Boolean

FieldClass

-Name : String

-Type : String

-TypeInOntology : ClassClass

-IsArray : Boolean

LocalVariableClass

Figure 5: OWL Classes used to model the metadata ex-
tracted from Java libraries.

– Name. It is a string which contains the name of
the class.

– SuperClass. This property relates the class to
its direct superclass.

– Package. This is a string with the name of the
package of the class.

– Modifiers. It is a list of the modifiers of the
class. These modifiers indicate if the class is
abstract, final, private, protected, public, static
or strictfp. Furthermore, we can indicate that it
is an interface.

– Fields. It is a set of instances of the Field-
Class that model the structural component of
the class.

– Methods. This property is a set of instances of
MethodClass that model the behavior compo-
nent of the class.

– Interfaces. It is a set of strings with the names
of the classes that are implemented by the rep-
resented class.

• FieldClass: It is used to model class fields. The
properties of this class are detailed next.

– Name. This property contains the name of the
field in a string.

– Type. It represents the type of the field using
a string. If the field is an array, this property
indicates the name of the type without the []
symbols.

– TypeInOntology. This property relates the field
to its type when the type of the field is a class
that is modeled in the ontology.

– Modifiers. It contains the field modifiers, that
indicate if the field is final, private, protected,
public, static, transient or volatile.

– IsArray. It is a boolean that indicates if the field
cardinality is more than 1, i.e., if the field is a
set.

• MethodClass: Methods are modeled with this
class. The set of properties that defines this class
is the following.

– Name. This is a string to express the name of
the method.

– Signature. This property contains the complete
signature of the method. The parts of the signa-
ture are also modeled in another properties, as
we can see here.

– Modifiers. It is a list with the modifiers of
the method. In this case, the modifiers indi-
cate if the method is abstract, final, native, pri-
vate, protected, public, static, strictfp or syn-
chronized.

– Parameters. This is a list with the types of the
metdhod parameters.

– ReturnType. This is a string with the return type
of the method.

– LocalVariables. This property relates the
method to its local variables, that are modeled
as instances of the LocalVariableClass.

– InvokedMethods. It is a set with the names
names of the methods that are invoked by the
method that is being modeled.

– InvokedMethodsInOntology. This property is
very close to the previous one. It is a set of
MethodClass instances that represent the in-
voked methods that are represented into the on-
tology. The set of invoked methods of theIn-
vokedMethodproperty contains more elements
than the set of theInvokedMethodInOntology
property when the method invokes methods
that are not modeled in the ontology. It hap-
pens frequently.

– Exceptions. It is a set of strings with the names
of the exceptions that the method throws.

– Code. This is a string with the byte code (object
code) of the method.

• LocalVariableClass: This class is used to repre-
sent information about the local variables of the
methods. The properties of this class are the same
as those of Field Class, except theModifiersprop-
erty, as we can see.

– Name. It represents the name of the local vari-
able in a string.

– Type. It indicates the type of the local variable
in a string. If the local variable is an array, this
property do not include the [] symbols.

– TypeInOntology. When the type of the field
is a class, if it is represented in the ontology,
this property is the instance that represents that
class.

JAR2ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA
OBJECT CODE

271



Class Hierarchy 

Creation

Adding Fields and 

Methods to the 
new Classes

Add Class to the 

Hierarchy

Any field whose type 

is a class out of the current 

hierarchy?

Yes

No

Any local variable

whose type is a class out of 
the current

hierarchy?

Add Class to the 

Hierarchy

Yes

No

Has been created 

any new class after adding 

fields step?

End

No

Yes

Figure 6: Structural and behavior model extraction flow di-
agram.

– IsArray. It is a boolean that indicates if the field
cardinality is more than 1, i.e., if the field is a
set.

As we can see, by means of the previous OWL
containers, our approach obtains an ontology that
represents more semantic information about classes.
Each class created in the ontology include all the in-
formation obtained by means of the structural model
extraction process, plus additional structural and be-
havior information.

3.2.2 Inserting Semantic Information into the
Container

Now, we will explain the process to obtain all that
information. It is similar to the structural model ex-
traction process, although it is more complex.

The process, shown in figure 6, is as follows: Ini-
tially, we add to the ontology instances of the Class-
Class corresponding to the Java classes of the hierar-
chy embedded in the input library. In this first step,
we add all the information about each class, but the
fields and the methods. After that, each class of the
hierarchy is deeply analyzed focusing on its fields and
methods. This step usually entails the creation of new

ClassClass instances. It can be caused by two rea-
sons: because there are types of the added fields that
are classes that are not yet represented in the OWL
ontology or because there are types of the local vari-
ables of the added methods that are classes that are
not yet represented in the ontology. This process is
recursively executed until no new class is added.

At the end of the process, the amount of classes
represented in the OWL ontology is usually larger
than the amount of classes obtained by the approach
explained in the previous subsection, because we now
add to the ontology information regarding the classes
that appear in the Java methods.

Let us formalize the before introducedCompre-
hensive Model Extractionprocess.

Definition 3. Let C be the set of containers shown in
figure 5 and represented in an ontology O, we define
the Comprehensive Model Extraction Processas the
transformation of a Java library L in a set of instances
of the O ontology classes that satisfies:

• For each class JCi in the library L, there exists
a corresponding instance CIi of the ClassClass in
the ontology O.

• For each superclass JCj of a class JCi , there exists
a corresponding instance CIj of the ClassClass in
O, where CIj represents the superclass of CIi .

• For each field fj of a class JCi , there exists a cor-
responding instance FIj of the FieldClass in O.

• For each method mk of a class JCi , there exists a
corresponding instance MIk of the MethodClass
in O.

• For each local variable lvl of a method mk, there
exists a corresponding instance LVIl of the Local-
VariableClass in O.

• For each field fj or local variable lvl , if its range
is a class JCm , there exists a corresponding
instance CIm of the ClassClass in O.

When we use our example library as input of
Jar2Ontologyand we use this comprehensive ap-
proach, we obtain an ontology with 4 classes (Class-
Class, FieldClass, MethodClass and LocalVariable-
Class). Their properties are those that we shown in
figure 5. This ontology has much information: For
each class that we model, we have one instance of
the ClassClass, someFielClass instances related to
its fields, someMethodClassinstances related to its
methods, and for each one of its method, someLocal-
VariableClassinstances related to its local variables.

Figure 7 shows the instances of theClassClassat
the beginning of this process. We can see that the
classes are the same that the obtained at the beginning
of the structural model extraction process (in figure

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

272



Figure 7: Classes in the metadata ontology that models the
example library class hierarchy.

Figure 8: Properties of the classes in the metadata ontology
that models the example library.

2). Figure 8 contains the instances of theFieldClass
related to the classes shown in figure 7. We can real-
ize that these fields correspond to the OWL properties
that we obtained using the structural model extraction
process (in figure 3). We do not show the instances of
the MethodClassneither of theLocalVariableClass,
because there are too many.

At the beginning of the comprehensive model ex-
traction process, the ontology only has 11 instances of
theClassClass, 17 instances of theFieldClass, 91 of

theMethodClassand 188 of theLocalVariableClass.
When the extraction process has finished, there are
129ClassClassinstances, and the number of the other
classes instances increases accordingly.

4 THE OBTAINED MODELS

As we have seen in section 3, information extraction
process can obtain as a result a big model that repre-
sents much more classes than those that are directly
embedded in the library. However, this exhaustive re-
cursion is not always necessary (for example, when
we want to use these ontologies as input of a matching
process). For this reason, we distinguish three kinds
of models with different recursion degrees, depending
on the desired comprehension of the resulting model:

• Lite Model. This model only captures the classes
that directly appear in the jar file as well as their
superclasses. No additional classes are included
in the model. Figures 2, 7 and 8 correspond to
this kind of model, for our example.

• Full Model. This model contains all the classes
that appear in the jar file together with all the
classes found during the methods/fields analysis.
This type of model stores the highest information
amount that can be extracted from the jar file.

• Pruned Model. This type of model is a compro-
mise between full and lite models. It contains
information regarding to the classes from the jar
file class hierarchy and the classes added in the
first iteration of the methods/fields analysis. Fig-
ure 9 shows the data ontology obtained as pruned
model. Classes in darker background are those
classes that have been added in the fist iteration of
the process.

Next section will show the results of the execution
of Jar2Ontologywith different software libraries. We
will see the different amount of classes, fields, meth-
ods and local variables represented in each kind of
these models.

5 IMPLEMENTATION AND
EXPERIMENTATION ISSUES

The Protégé Ontology Editor and Knowledge Acqui-
sition System has been developed in Java, is extensi-
ble and provides a programming frame by means of
plug-ins. Furthermore, Protégé is backed by a large
community of active users and developers.

JAR2ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA
OBJECT CODE

273



Figure 9: Classes in the data ontology obtained as pruned
model of the example library.

We have developedJarToOntology, a set of
Protégé plug-ins, to implement the before described
approaches. As Protégé is developed in Java, we have
used some libraries apart from the standard Java ones.
Core Protégé API3 and Protégé-OWL API4 have been
used to develop the plug-ins on top of Protégé and to
create and to manipulate OWL ontologies. Addition-
ally, in order to directly deal with Java object code,
we have used BCEL API5(Dahm and Van Zyl, 2006;
Dahm, 2001) and Java reflection6.

JarToOntology has been tested by means of many
libraries. Some of them are the following:

• EnterpriseModel.jar. It is a little library created
with the aim to illustrate the implemented ap-
proaches. In figure 1 we can see the class hier-
archy that the jar file contains, together with their
superclasses.

• flickrapi.jar. It is the library of the flickr Java
API7. This library contains 110 class files.

• htmlcleaner21.jar. HtmlCleaner is an open-
source HTML parser written in Java8. This library
contains 40 class files.

• MozillaParser.jar. It is a Java package that en-
ables you to parse html pages into a Java Docu-
ment object9. This library contains 14 class files.

We want to remind that JarToOntology input is not
an UML diagram, neither the source code that is the

3http://protege.stanford.edu/protege/3.4/docs/api/core
4http://protege.stanford.edu/protege/3.4/docs/api/owl
5http://jakarta.apache.org/bcel
6http://java.sun.com/docs/books/tutorial/reflect
7http://www.flickr.com/services/api
8http://htmlcleaner.sourceforge.net/
9http://mozillaparser.sourceforge.net/

Table 1: Number of classes obtained in the data ontology,
i.e., when the structural model extraction approach is used.

Library Lite Model Full Model Pruned Model

EnterpriseModel 11 120 16

flickrapi 121 241 143

HtmlCleaner 47 159 60

MozillaParser 18 143 23

result of its implementation. The input of JarToOntol-
ogy is the jar file that contains Java object code files
corresponding to the implemented classes of the li-
brary.

In table 1 we can see the number of classes of
the ontologies obtained by means of our extraction
tool when we use the structural model extraction ap-
proach. The number of classes of the lite model is
always a bit higher than the number of class files of
the library, because the superclasses of the library
classes are included. Thus, we can note that al-
though there are 8 classes in EnterpriseModel library
(classes with white background in figure 1), the lite
model includes 3 classes more, corresponding to the
superclasses of the library classes (java.lang.Object,
java.lang.Throwable and java.lang.Exception).

We can see that, as we said when we explained the
obtained models in section 4, the full model has much
more classes than the initial class hierarchy as well as
the pruned model is a compromise solution between
the other two.

In table 2 we can see the number of instances of
each of the four classes created in the ontology when
we apply our comprehensive model extraction ap-
proach using the above mentioned example libraries.
For the sake of space, we do not show here the ob-
tained ontology instances, but a summary of the num-
ber of them.

We obtain the same conclusions from this table
than the conclusions obtained before. Furthermore,
we can see that the growth of the number of classes
represented in the ontologies is higher, because we
add classes obtained during the deep analysis of the
behavioral component.

6 CONCLUSIONS

In this work we have presented a novel approach for
the automatic extraction of semantic knowledge from
Java object code. The approach takes into account
both the structural and the behavioral knowledge, go-
ing one step beyond the traditional structural concep-
tual modeling.

In addition to this, the proposed approach has been

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

274



Table 2: Number of classes (C), fields (F), methods (M)
and local variables (LV) obtained in the comprehensive on-
tology, i.e., when the comprehensive model extraction ap-
proach is used.

EnterpriseModel
Number of... C F M LV
Lite Model 11 17 91 188

Full Model 129 599 1440 188

Pruned Model 25 65 334 188

flickrapi
Number of... C F M LV
Lite Ontology 121 694 236 217

Full Ontology 297 1696 2447 217

Pruned Ontology 163 941 990 217

HtmlCleaner
Number of... C F M LV
Lite Ontology 47 177 532 681

Full Ontology 212 976 2609 681

Pruned Ontology 60 217 837 681

MozillaParser
Number of... C F M LV
Lite Ontology 18 51 58 76

Full Ontology 144 693 1513 76

Pruned Ontology 23 82 218 76

implemented, obtaining as a result theJar2Ontology
tool. It is a set of Protégé plugins that generate OWL
models from Java libraries object code. We have
tested it with toy examples, as well as with real world
libraries.

Our research has been oriented to the data integra-
tion context. Nevertheless, semantic knowledge ex-
traction from Java libraries can be useful for many
more applications, as for example, automatic genera-
tion of code documentation, or reverse engineering.

ACKNOWLEDGEMENTS

Part of the work reported in this paper was sup-
ported by the Spain’s Science and Innovation Min-
istry (Ministerio de Ciencia e Innovación) under grant
TIN2006-15041-C04-01.

Part of the research reported in this paper is sup-
ported by the Andalusian Government (Junta de An-
dalucı́a, Consejerı́a de Economı́a, Innovación y Cien-
cia ) under project P07-TIC-03175 ”Representación y
Manipulación de Objetos Imperfectos en Problemas
de Integración de Datos: Una Aplicación a los Al-
macenes de Objetos de Aprendizaje”.

REFERENCES

Amey, P. (2002). Closing the Loop: The Influence of Code
Analysis on Design.Reliable Software Technologies -
Ada-Europe 2002. LNCS, 2361:151–162.

Buitelaar, P., Cimiano, P., Frank, A., Hartung, M., and
Raioppa, S. (2008). Ontology-based Information
Extraction and Integration from Heterogeneous Data
Sources. International Journal of Human-Computer
Studies, 66(11):759–788.

Curino, C., Orsi, G., Panigati, E., and Tanca, L. (2009).
Accessing and Documenting Relational Databases
through OWL Ontologies.Flexible Query Answering
Systems (FQAS’09). LNAI, 5822:431–442.

Dahm, M. (2001). Byte Code Engineering with the BCEL
API. Technical report, Freie Universität Berlin. Insti-
tut für Informatik.

Dahm, M. and Van Zyl, J. (2006). Byte Code Engineering
Library.

Gómez-Pérez, A., Fernández-López, M., and Corcho,
O. (2004). Ontological Engineering: With Exam-
ples from the Areas of Knowledge Management, e-
Commerce and the Semantic Web. Springer.

Herbold, S., Grabowski, J., and Neukirchen, H. (2009). Au-
tomated Refactoring Suggestions Using the Results
of Code Analysis Tools.First International Confer-
ence in System Testing and Validation Lifecycle, pages
104–109.

Hong, T., Hua, C., Gang, Z., Qiang, L., and Jinjin, Z.
(2009). The Vulnerability Analysis Framework for
Java Bytecode.15th International Conference on Par-
allel and Distributed Systems, pages 896–901.

Jackson, D. and Waingold, A. (1999). Lightweight extrac-
tion of object models from bytecode.Proceedings
of the 21st international conference on Software en-
gineering, pages 194–202.

Jakobac, V., Egyed, A., and Medvidovic, N. (2005). Im-
proving System Understanding via Interactive, Tai-
lorable, Source Code Analysis.Fundamental Ap-
proaches to Software Engineering (FASE). LCNS,
3442:253–268.

Kalfoglou, Y. and Schorlemmer, M. (2003). Ontology Map-
ping: the State of the Art.The Knowledge Engineer-
ing Review Journal (KER), 18(1):1–31.

Kawrykow, D. and Robillard, P. (2009). Improving API Us-
age trhough Automatic Detection of Redundant Code.
IEEE/ACM International Conference on Automated
Software Engineering, pages 111–122.

Letarte, D. and Merlo, E. (2009). Extraction of Inter-
procedural Simple Role Privilege Models from PHP
Code.16th Working Conference on Reverse Engineer-
ing, pages 187–191.

Martino, B., Mazzocca, N., Saggese, G., and Strollo, A.
(2002). A Technique for FPGA Synthesis Driven
by Automatic Source Code Analysis and Transfor-
mations. International Conference on Field Pro-
grammable Logic and Applications (FLP). LCNS,
2438:47–58.

JAR2ONTOLOGY - A TOOL FOR AUTOMATIC EXTRACTION OF SEMANTIC INFORMATION FROM JAVA
OBJECT CODE

275



Myroshnichenko, I. and Murphy, M. (2009). Mapping ER
Schemas to OWL Ontologies.IEEE International
Conference on Semantic Computing, pages 324–329.

Rahm, E. and Bernstein, P. (2001). A Survey of Approaches
to Automatic Schema Matching.The VLDB Journal,
10:334–350.

Sáez-́Arcija, C., Marı́n, N., and Vila, M. (2009). A Lazy-
Typing Based Architecture for a Data Integration Sys-
tem. Workshop on New Trends on Intelligent Systems
and Soft Computing, 2:1–18.

Shvaiko, P. and Euzenat, J. (2005). A Survey of Schema-
based Matching Approaches.Journal on Data Seman-
tics(JoDS).

Spinellis, D. (2010). CScout: A refactoring browser for C.
Science of Computer Programming, 75:216–231.

Spoto, F., Mesnard, F., and Payet, E. (2010). A Termination
Analyzer for Java Bytecode Based on Path-Length.
ACM Transactions on Programming Languages and
Systems, 32(3):8:1–8:70.

Thiam, M., Bennacer, N., Pernelle, N., and Lô, M. (2009).
Incremental Ontology-Based Extraction and Align-
ment in Semi-structured Documents.20nd Interna-
tional Conference on Database and ExperSystems Ap-
plications (DEXA). LCNS, 5690:611–618.

Wache, H., Vgele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., and Hbner, S. (2001).
Ontology-Based Integration of Information - A Sur-
vey of Existing Approaches.Workshop on Ontologies
and Information Sharing at the International Joint
Conference on Artificial Intelligence (IJCAI), pages
108–117.

Wimalasuriya, D. and Dou, D. (2010). Ontology-based In-
formation Extraction: An Introduction and a Survey
of Current Approaches.Journal of Information Sci-
ence, 36(3):306–323.

Wong, W. and Gokhale, S. (2005). Static and Dynamic Dis-
tance Metrics for Feature-based Code Analysis.The
Journal of Systems and Software, 74:283–295.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

276


