
USING UTF-8 TO EXTRACT MAIN CONTENT OF RIGHT TO LEFT
LANGUAGE WEB PAGES

Hadi Mohammadzadeh, Franz Schweiggert
Institute of Applied Information Processing, University of Ulm, D-89069 Ulm, Germany

Gholamreza Nakhaeizadeh
Institute of Statistics, Econometrics and Mathematical Finance, University of Karlsruhe, D-76128 Karlsruhe, Germany

Keywords: Main content extraction, Information retrieval, UTF-8, HTML documents, Right to left languages.

Abstract: In this paper, we propose a new and simple approach to extract the main content of Right to Left language
web pages. Independence to DOM tree and HTML tags is one of the most important features of the proposed
algorithm. In practice, HTML tags have been written in English and we know that the English character set
is located in the interval [0,127]. In most languages which are written from Right-to-Left (R2L) such as the
Arabic language, however, a definite interval of the Unicode character set is used that is certainly not in this
interval. In the first phase of our approach, we apply this distinction to separate the R2L characters from the
English ones. Then for each HTML file, we determine the density of the R2L characters and the density of
Non-R2L characters. That part of the HTML file with high density of the R2L characters and low density
of the Non-R2L characters contains the main content of the web page with high accuracy. The proposed
algorithm has been tested, evaluated and compared with the last main content extraction approach on 2166
selected web pages.

1 INTRODUCTION

Content extraction is the process of identifying the
main content (MC) and/or removing the additional
items (Gottron, 2008). With exponential growth in
the amount of web pages on the Internet, worthy ex-
traction of accurate information from web pages has
become very important. This is the main reason why
many authors have paid attention to the main content
extraction (MCE) from web pages. Such main con-
tents are very valuable, and enable input for many de-
vices that have limited storage capacity, such as mo-
bile phones, speech readers, etc. Furthermore, MCE
can be considered as preprocessing for text mining.

In the early stage of the Internet, most of the web
pages were written in the English language. Now, es-
pecially in the last decade, a large portion of infor-
mation has been published in other languages such as
Spanish, German, and French. In addition to the non-
English languages mentioned above, there are several
other languages which are written from right-to-left
(R2L). These languages have had a significant grow-
ing rate on the Internet in the last few years.

Unicode character set (UCS), which was intro-

duced after ASCII and ISO-8859*, considers an ex-
act interval for every language. Some of them such as
the Arabic UCS, however, have no common charac-
ters with the English ones. In the literature there are
several approaches addressing MCE. (Gottron, 2008)
and (Moreno et al., 2009) are recent examples.

From a technical point of view, most of the above
mentioned approaches use the HTML tags to separate
the MC from the extraneous items. This leads to using
a parser (Moreno et al., 2009) for all web pages which
consequently increases the computation time. Thus,
the other goal of our research is to increase the per-
formance and accuracy of the MCE algorithms deal-
ing with R2L languages. Figure 1 shows an example
of web pages with the selected MC.

In Section 2, we review related work that provides
a brief description of some MCE algorithms. In Sec-
tion 3, we elaborate the UCS and the UTF-8 encoding
form. The main part of this paper will be explained in
Section 4, where we introduce our algorithm and its
evaluation. Section 5 shows the results and compares
our approach with the last main content extraction al-
gorithm. In Section 6, we discuss our conclusion and
give some suggestions for future work.

243Mohammadzadeh H., Schweiggert F. and Nakhaeizadeh G..
USING UTF-8 TO EXTRACT MAIN CONTENT OF RIGHT TO LEFT LANGUAGE WEB PAGES.
DOI: 10.5220/0003508502430249
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 243-249
ISBN: 978-989-8425-76-8
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: An example of web pages with the selected MC.

2 RELATED WORK

Since two decades ago, many scientists and re-
searchers have been working on main content extrac-
tion. Several algorithms have been introduced and
many papers have been published on this subject.
(Finn et al., 2001) described the process of extract-
ing and classifying information from the HTML doc-
uments for the purpose of integrating it into digital
libraries. They proposed the “Body Text Extraction”
(BTE) approach, which explored a continuous part of
the HTML document. It also contained a high per-
centage of text against low percentage of tags from
a web page by tokenizing the document and mak-
ing a binary vector. (Pinto et al., 2002) introduced
the Document Slope Curves (DSC) method, which
is an extended model of the BTE and was gener-
ated through a binary vector. Long and low slop-
ing regions of this graph represent the main content
(text without HTML tags). With considering win-
dowing technique, they could find more than one con-
tinuous part of text in an HTML document. (Gupta
et al., 2003) brought a new framework and named it
Crunch. This framework is making a DOM tree from
an HTML document through an HTML parser. Then,
by navigating DOM tree recursively, rather than us-
ing a raw HTML markup, and utilizing a number of
filtering techniques, the main content of HTML web
pages can be extracted. (Mantratzis et al., 2005) pro-
posed a new algorithm whose function was based on
DOM tree as well. This algorithm determines the ar-
eas with high hyperlink density within a web docu-
ment, so it can separate these areas from the main
content in web pages. In doing this, they examined

DOM tree and assigned specific scores to each hy-
perlink based on location in DOM tree. (Debnath
et al., 2005) introduced two algorithms, FeatureEx-
tracter and K-FeatureExtracter. These two algorithms
identify the “primary content blocks” based on their
features. First, they segment the web pages into
web page blocks and, second, they separate the pri-
mary content blocks from the noninformative content
blocks based on desired features. (Gottron, 2008)
brought two new algorithms. The Content Code Blur-
ring (CCB) and the Adapted Content Code Blurring
(ACCB) are capable of working either on characters
or tokens. CCB finds the region in an HTML docu-
ment which contains mainly content and little code.
In order to do this, the algorithm, by using the Gaus-
sian blurring filter, determines a ratio of content to
code for each single element in the content code vec-
tor (CCV) in the vicinity of each element and makes a
new vector, named Content Code Ratio (CCR). Now
a region with high CCR values contains the main con-
tent. In ACCB, all anchor-tags are ignored during the
creation of the CCV. Two parameters influence the be-
havior of these two algorithms, so tuning these two
parameters will be very important just to produce ac-
ceptable results. (Moreno et al., 2009) presented a
language independent algorithm (tested on English,
Italian and German languages) for the main content
extraction. This approach similar to CCB has two
phases. In the first step, they separate texts from the
HTML tags by using an HTML parser; afterwards,
the extracted texts are saved in an array of strings L.
In the second step, a region in the array L that has the
highest density will be determined as a main content.
In addition to finding the highest density area in the
array L, two parameters influence the behavior of the
algorithm. The first parameter, C1, determines mini-
mum required length for texts in each element of the
array L to be selected and inserted to the new array
of String R, which is considered to keep the high den-
sity region of text. The second parameter, C2, speci-
fies the acceptable distance between lines in R and the
lines which want to be added to R.

3 UNICODE AND UTF-8
ENCODING FORM

In this section, we explain Unicode character set and
UTF-8 encoding form in detail.

3.1 Unicode Character Set

Before UCS was introduced, ASCII [developed to

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

244

ISO 8859*] and EBCDIC were used on computers.
Thereby, only one byte was allocated for saving one
character; consequently only 256 characters could be
coded. By considering this limitation, rows in interval
[128, 255] in the encoding table were used by differ-
ent characters of different languages.

Since the introduction of UCS, where only one
special number was mapped to each character, we
are able to use all characters of diffrent languages
on computers. At first, from 1991-1995, only 16
bits were reserved for each character, but when the
new version of UCS was introduced (July 1996), it
was possible to save a character in 21 bits. The
newly defined UCS code all characters in the inter-
val [U+0000, U+10FFFF]. There are several encod-
ing forms in UCS, such as UTF-8, UTF-16, and UTF-
32. In each of these encoding forms, respectively, one
character can be saved in one to maximally four bytes,
one or two words, or 32 bits.

3.2 UTF-8 Encoding Form

As we mentioned in 3.1, UTF-8 is a variable length
encoding form in UCS. This encoding form can code
all characters in UCS and has a special characteris-
tic: it reserves the same character codes from ASCII
that makes UTF-8 backward-compatible. UTF-8 rep-
resents each character in one to four bytes. Thus in
UCS, the first 128 characters, which include English
characters and correspond to the first 128 ASCII char-
acter set, need only one byte and have values less
than 128. Other characters which are used in other
languages need two, three or four bytes. All letters
of non-English-languages which we will discuss in
this paper take exactly 2 bytes, for example the Ara-
bic character set has been represented in the interval
[U+0600, U+06FF] and we call them R2L characters.
In UTF-8, each character which needs more than one
byte will be coded in such a manner that each byte of
this character is greater than 127 and so it can be dis-
tinguished from one-byte characters with value less
than 128. Consider the following example. LetterH

.

in Arabic language (b in Latin) has been defined with
the value 0x0628. This code can be saved in two bytes
as below. First, we convert this number to an equiva-
lent binary value:
0x0628 = 0B0000110000101000
Second, the binary value should be divided into three
parts:

000 011000 0101000

Third, two right parts will be added in following for-
mat, respectively:

11000000 10000000

UTF-8 provides this format for two bytes character
sets in interval [U+0080, U+07FF]. The result is:

11011000 10101000

Now these two values are greater than 127. Therefore,
we can easily separate one-byte characters with value
less than 128 from double-byte characters.

4 ALGORITHM: R2L MAIN
CONTENT EXTRACTION

4.1 Algorithm

The algorithm we present here consists of two steps:

First Step: Separating R2L Characters from
Non-R2L Characters

In the following we define two sets, S1 and S2:
S1 = {All characters belonging to UCS R2L lan-
guages}
S2 ={All first 128 characters of UCS}
We know that English characters, which are used in
HTML tags, have values less than 128 and therefore
can be classified to S2. All characters of R2L lan-
guages use two bytes with a value greater than 127,
and therefore they are classified to S1. This rule helps
us to separate R2L language characters from the first
128 characters of UCS.

In the first step, the algorithm reads one HTML
file as a stream of bytes and then by using the above
rule it distinguishes whether the generated byte is a
member of S1 or S2. Now, the characters in each line1

of the file are separated into two parts: characters that
are a member of S2, and the ones that are a member
of S1. We defined a new structure to save these two
types of characters. It should just be mentioned that
sometimes we see an HTML file that has been written
in one line. In our program, there is a preprocess-
ing section which can divide a single-line-HTML file
(sometimes into more than one line but still having
several HTML tags on one line) as if each HTML tag
places on one line.

struct HTML_file_line{
String whole_line;
String EPL; // English Part Line
String NEPL; // Non English Part Line

}

For saving all the lines of the HTML file, we
need to declare an array, T, of the above structure. In

1A line is a sequence of characters which is terminated
by \n

USING UTF-8 TO EXTRACT MAIN CONTENT OF RIGHT TO LEFT LANGUAGE WEB PAGES

245

Figure 2: An example plot shows the density of the main
content and extraneous items.

the structure HTMLfile line, the first field saves all
characters of a line because in the next step of the
program, we need to process entire lines. For each
line, second and third fields save all characters that
are a member of S2 and S1, respectively.

Second step: Finding a Region Comprising MC in
Array T

After saving all characters of the HTML file in the ar-
ray T, we then recognize an area in the array T, where
characters in fields of NEPL have high density and
characters in fields of EPL have low density. Figure 2
depicts the length of strings for both EPL and NEPL
fields for a sample of HTML file, where for each line
of the HTML file, a vertical line is drawn on one side
or on both sides of the x-axis. For the field NEPL, a
vertical line with identical length is drawn upside of
the x-axis and similarly, for the field EPL a vertical
line with equal length is drawn downside of the x-
axis. It is obvious that the main content will be found
on the upside of the x-axis.

In Figure 2, the measurement unit for the x-axis is
the number of lines in the HTML file. The measure-
ment unit for the y-axis upward and downward is the
number of characters which are members of S1 and
S2, respectively, in each line of the HTML file.

Here we interpret Figure 2 to find MC. There are
three types of regions:

• Regions that have low or near zero density of
columns above the x-axis and contain a high den-
sity of columns below the x-axis. It can be ob-
served that these regions consist of JavaScript and
CSS codes, at most. We label these areas with A.

• One region has a high density of columns above
the x-axis and a low density of columns below the

Figure 3: New generation of Figure 2 that MC can be seen
easily.

x-axis. This region comprises the main content.
This area was selected and labeled with B.

• There are some regions in which there is not too
much of a difference between the density of the
columns above and below the x-axis. Also, some-
times the density of the columns below the x-axis
is greater than the density of the columns above
the x-axis. These regions belong to menus, panels,
and other additional news, and although there are
some characters which are members of S1, they
do not comprise the main content. One of these
areas is outlined with C.

In Figure 2, two regions of A, one region of B,
and one region of C have been labeled. Now the prob-
lem of finding MC in HTML web pages becomes the
problem of finding a region similar to region B. In the
next three steps, we find a region like B in an HTML
file:

• For all columns - for example column i - we cal-
culate the difference between the length of both
columns, above and below the x-axis, and then we
draw Figure 3 (see formula 1).

diff i = length(NEPLi)− length(EPLi) (1)

Now if diff i > 0, then we draw a line with the
length diffi above the x-axis; otherwise we draw
a line with the length|diff i | below the x-axis. In
Figure 3, unlike in Figure 2, a large part of menus
and additional news have been removed.

• In this section, we find a column with the longest
length above the x-axis. In some cases, the se-
lected column might not be a part of MC, but
belong to the menus or other extraneous items.
Thus, the selected area is not really MC. To over-
come this problem, we propose a solution: we ex-
tend formula (1) for columns located on the left

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

246

Table 1: Information of 2166 web pages processed by the R2L algorithm.

Web site URL Num. of Pages Languages
BBC http://www.bbc.co.uk/persian/ 598 Farsi

Hamshahri http://hamshahrionline.ir/ 375 Farsi
Jame Jam http://www.jamejamonline.ir/ 136 Farsi

Ahram http://www.jamejamonline.ir/ 188 Arabic
Reuters http://ara.reuters.com/ 116 Arabic

Embassy of http://www.teheran.diplo.de/ 31 Farsi
Germany, Iran Vertretung/teheran/fa/Startseite.html

BBC http://www.bbc.co.uk/urdu/ 234 Urdu
BBC http://www.bbc.co.uk/pashto/ 203 Pashto
BBC http://www.bbc.co.uk/arabic/ 252 Arabic
Wiki http://fa.wikipedia.org/ 33 Farsi

and the right sides of column i, for example i-1
and i+1. Now we compute the new length of col-
umn i through formula (2). Because of the charac-
teristics of the HTML tags, menus and extraneous
items usually have long-length columns below the
x-axis on the left and the right sides of the col-
umn i. This guarantees that the columns which
belong to menus and extraneous items will not be
selected.

diff i = length(NEPLi)− length(EPLi)

+ length(NEPLi+1)− length(EPLi+1) (2)

+ length(NEPLi−1)− length(EPLi−1)

• In this final section we are going to find the
boundaries of the MC region. After recogniz-
ing the longest column above the x-axis, the al-
gorithm moves up and down in the HTML code
to find all lines belonging to the MC. But where
is the end of these movements? Due to the an-
archic nature of HTML codes, each HTML state-
ment may be written in several lines, so some lines
without any characters of S1 could be placed be-
tween paragraphs comprising MC. Therefore, the
number of lines we need to traverse to find the
next MC paragraph is defined as a parameter P.
By considering this parameter, we go up or down,
respectively until we can not find a line contain-
ing characters which are members of S1. At this
moment, all lines we find make our MC. Based
on the heuristic fitness function, which will be ex-
plained in Section 4.4, we consider a value of 8 as
a default value for parameter P. This parameter is
similar to the second parameter in (Moreno et al.,
2009).

4.2 Data Sets

As discussed earlier, we are going to work on four
languages: Arabic, Farsi, Pashto, and Urdu. To eval-
uate our R2L algorithm, we have collected 2166 web

pages from different web sites. Table 1 explains all
information about these web pages.

4.3 Evaluation

To calculate the accuracy of the R2L algorithm, we
first need to manually make agold standardfile,
which contains MC of a corresponding HTML file
and is named as ags-file, for each of the HTML
files. Then, we need to compare the output of the
R2L algorithm, which contains MC and is calledMC-
file, with a correspondinggs-file. Hence, we need
a metric to compare thegs-filewith the MC-file. In
this paper, we use the Longest Common Subsequence
(LCS) as a metric to compare two substrings. The
LCS algorithm finds the longest common substring
between two different substrings. For example, sup-
pose that theMC-fileand thegs-filecontain HUMAN
and CHIMPANZEE, respectively. By running LCS
on these two substrings, the string HMAN is pro-
duced. Now by considering the length of thegs-file
andMC-file, g and m respectively, and the length of
output of the LCS function, k, we evaluate an accu-
racy of the R2L algorithm by applying common In-
formation Retrieval Performance Measures - Recall,
Precision, and F1-measure, (Gottron, 2007), as in for-
mula (3):

r =
length(k)
length(g)

, p=
length(k)
length(m)

, F1= 2∗
p∗ r
p+ r

(3)

The F1-measure can be set with a value in the interval
[0, 1]. Zero means minimum accuracy and one means
maximum accuracy, which is considered as a perfect
main content extraction.

USING UTF-8 TO EXTRACT MAIN CONTENT OF RIGHT TO LEFT LANGUAGE WEB PAGES

247

Table 2: Average results for the proposed R2L algorithm based on F1-measure.

Web site Num. of Languages F1-measure Best value for F1-measure with new
Pages with P = 8 Parameter P Parameter in Column 5

BBC 598 Farsi 0.9906 8 0.9906
Hamshahri 375 Farsi 0.9909 8 0.9909
Jame Jam 136 Farsi 0.9769 3 0.9872

Ahram 188 Arabic 0.9295 7 0.983
Reuters 116 Arabic 0.9356 4 0.9708

Embassy of 31 Farsi 0.9536 15 0.9715
Germany, Iran

BBC 234 Urdu 0.9564 11 0.9972
BBC 203 Pashto 0.9745 8 0.9745
BBC 252 Arabic 0.987 8 0.987
Wiki 33 Farsi 0.283 16 0.3852

4.4 Fitness Function to Optimize the
R2L Algorithm

All MCE algorithms try to produce better results with
high accuracy, but they suffer from some parame-
ters which should be tuned (Gottron, 2008), (Moreno
et al., 2009) and (Gottron, 2009). In Section 4.1, we
introduced and explained the parameter P. To find the
best value for the parameter P, we implemented an
heuristic fitness function (HFF). By manually search-
ing through several web pages, we see there is, in the
worst case, at most 20 lines, including empty lines
and lines with HTML tags, between two paragraphs
in the main content region. So we define the interval
[1, 20] for HFF and then this function heuristically
calculates the best value for parameter P for each spe-
cial web site. All the produced results by HFF on our
data sets are shown in Table 2 Column 5. Also, Col-
umn 6 shows the F1-measure that has been evaluated
based on this parameter.

5 RESULTS AND COMPARISONS

5.1 Results

Table 2 contains all results, F1-measures, which have
been achieved by running the proposed R2L algo-
rithm on our gathered data sets. Column 4 shows F1-
measure for P=8 where the average value of the F1-
measure is calculated based on the web pages given
in the Column 2. Column 6 shows the F1-measure
which is calculated by using the best value for P pro-
duced by HFF. For example in Row 4 for the Ahram
data set, HFF generates value 7 for P. In this case, we
achieve an F1-measure of 0.983. By comparison with
one in Column 4, we see a significant increase around
0.0535. However, for some data sets such as BBC

Farsi, Hamshahri, BBC Pashto, and BBC Arabic, de-
fault value for the parameter P is equal to the best
value. The achieved accuracy by our method is fairly
high for many web sites, such as BBC, Hamshahri,
Jame Jam. Our algorithm also has acceptable F1-
measure for the rest web sites. An exception is the
wiki web site for which our result is poor, but we can
explain the reason. In the main content of the wiki
web site, there are many Non-R2L characters which
are eliminated automatically by our approach and lead
to low accuracy. To overcome this problem, we sug-
gest a method described in Section 6.

To summarize, if we consider P with the best
value, then without any doubt, we see that our algo-
rithm works very well, because the F1-measures for
all web sites are greater than 0.97.

5.2 Comparison with other Algorithms

Due to the lack of related research for MCE from
the R2L languages, we have to compare our approach
with a contribution by (Moreno et al., 2009), based on
the Language Independent Content Extraction Algo-
rithm. Their approach is examined for English, Italian
and German, but according to the authors, it is appli-
cable to every language. For simplicity, we use the
acronym LICEA for their contribution. Table 3 shows
the results of both the R2L and LICEA approaches.
We see again that in all cases except wiki, results of
R2L are superior to LICEA. In some cases, such as
BBC-Farsi, Embassy of Germany and BBC-Arabic,
the difference between results of two approaches is
relatively high. As we refer to Section 4.4, this could
be because of more extraneous and space lines be-
tween paragraphs comprising main content areas of
the web pages. Consequently, LICEA could not de-
tect all main content paragraphs that would lead to
low F1-measure.

Another relatively similar work is the contribu-
tion of (Gottron, 2008). The two algorithms CCB

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

248

and ACCB mentioned in Section 2 of the present pa-
per are related to this contribution. It is interesting
to notice that (Moreno et al., 2009) used the Gottron
data sets and compared their approach, LICEA, with
CCB and ACCB. They showed that LICEA lead to
better results than CCB and ACCB. This means that
if we would have compared our approach with CCB
and ACCB, we would have achieved better results be-
cause as mentioned above, our results are superior to
LICEA-results.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a two-phase R2L main
content extraction algorithm. Results show that the
R2L algorithm produces satisfactory MC with F1-
measure> 0.92. Our algorithm has some advantages:

• It is DOM tree and HTML-format independent;
therefore, HTML statements may have some er-
rors.

• We do not need to use parser for our algorithm.
Many of the previous MCE methods have made
DOM tree structure, or used HTML tags for their
purpose. Using parser is time consuming.

• By fine tuning of the parameter P for each web
site, we see an increase in the F1-measure.

One problem with the R2L algorithm is that it has
not achieved value 1 for F1-measure, which suggests
that there are words in the MCA containing Non-R2L
characters. If there are only R2L characters in the
main content area, then the R2L algorithm yields ex-
actly the value 1 for the F1-measure. Otherwise, F1-
measure will have a value less than 1, based on a per-
centage of Non-R2L characters in the main content
area. To overcome this problem in the future, we have
a plan to input entire lines of HTML file composing
MC to an HTML parser. Then, the output of parser
will be exactly the main content.

ACKNOWLEDGEMENTS

We would like to thank Dr. Norbert Heidenbluth for
helping us to prepare figures and diagrams. We would
like also to thank Dr. Koen Deschacht and the Univer-
sity of K.U.LEUVEN for providing us with the Con-
tent Extraction Software. At the end, I would like to
thank Dr. Ljubow Rutzen-Loesevitz for editing this
paper.

Table 3: Average results for the R2L algorithm and the
LICEA reported in (Moreno et al., 2009).

Web site R2L, R2L, LICEA
P = 8 the best P

BBC-Farsi 0.9906 0.9906 0.7755
Hamshahri 0.9909 0.9909 0.9406
Jame Jam 0.9769 0.9872 0.9085

Ahram 0.9295 0.983 0.9342
Reuters 0.9356 0.9708 0.9221

Embassy of 0.9536 0.9715 0.8919
Germany, Iran

BBC-Urdu 0.9564 0.9972 0.9495
BBC-Pashto 0.9745 0.9745 0.9403
BBC-Arabic 0.987 0.987 0.302

Wiki 0.283 0.3852 0.7121

REFERENCES

Debnath, S., Mitra, P., and Giles, C. L. (2005). Identi-
fying content blocks from web documents. InLec-
ture Notes in Computer Science, pages 285–293, NY,
USA. Springer.

Finn, A., Kushmerick, N., and Smyth, B. (2001). Fact or
fiction: Content classification for digital libraries. In
Proceedings of the Second DELOS Network of Excel-
lence Workshop on Personalisation and Recommender
Systems in Digital Libraries, Dublin, Ireland.

Gottron, T. (2007). Evaluating content extraction on html
documents. InProceedings of the 2nd International
Conference on Internet Technologies and Applica-
tions, pages 123–132, University of Wales, UK.

Gottron, T. (2008). Content code blurring: A new approach
to content extraction. In19th International Workshop
on Database and Expert Systems Applications, pages
29–33, Turin, Italy.

Gottron, T. (2009). An evolutionary approach to automati-
cally optimize web content extraction. InIn Proceed-
ings of the 17th International Conference Intelligent
Information Systems, pages 331–343, Krakw, Poland.

Gupta, S., Kaiser, G., Neistadt, D., and Grimm, P. (2003).
Dom-based content extraction of html documents. In
Proceedings of the 12th international conference on
World Wide Web, pages 207–214, New York, USA.
ACM.

Mantratzis, C., Orgun, M., and Cassidy, S. (2005). Sep-
arating xhtml content from navigation clutter using
dom-structure block analysis. InProceedings of the
Sixteenth ACM Conference on Hypertext and Hyper-
media, pages 145–147, New York, USA. ACM.

Moreno, J. A., Deschacht, K., and Moens, M.-F. (2009).
Language independent content extraction from web
pages. InProceeding of the 9th Dutch-Belgian Infor-
mation Retrieval Workshop, pages 50–55, Netherland.

Pinto, D., Branstein, M., Coleman, R., Croft, W. B., and
King, M. (2002). Quasm: a system for question an-
swering using semi-structured data. InProceedings
of the 2nd ACM/IEEE-CS joint conference on Digital
libraries, pages 46–55, New York, USA. ACM.

USING UTF-8 TO EXTRACT MAIN CONTENT OF RIGHT TO LEFT LANGUAGE WEB PAGES

249

