
IMPROVING THE CONSISTENCY OF SPEM-BASED
SOFTWARE PROCESSES

Eliana B. Pereira, Ricardo M. Bastos, Michael da C. Móra
Faculty of Informatics, Pontifical University Catholic of Rio Grande do Sul, Porto Alegre, Brazil

Toacy C. Oliveira
COPPE Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Keywords: Software process metamodel, Process checking, SPEM, Well-formedness rule.

Abstract: The main purpose of this paper is to improve the consistency of Spem-Based Software Processes through a
set of well-formedness rules that check for errors in a software process. The well-formedness rules are based
on the SPEM 2.0 metamodel and described using the Unified Modeling Language - UML multiplicity and
First-Order Predicate Logic - FOLP. In this paper, the use of the well-formedness rules is exemplified
using a part of the OpenUP process and the evaluation of the one of the proposed rules is shown.

1 INTRODUCTION

Software development is ultimately a procedure to
convert informal specifications, typically gathered
from real world scenarios, into formal pieces of code
that can be executed by machines. Such a procedure
is mainly enacted by developers that follow an
orchestrated path from analysis, through coding and
testing. Orchestration emerges from a software
process specification that details how process
elements such as roles, tasks and work products, are
interconnected in an organized manner (Jacobson et
al., 2001). Although developers can find off-the-
shelf software process specifications such as
Rational Unified Process - RUP (Kruchten, 2000)
and Object-Oriented Process, Environment and
Notation - OPEN (Open, 2006), there is no “one size
fits all” process, which means a process must be
defined to meet each project’s needs (Xu and
Ramesh, 2003).

To define a software process it is necessary to
consider project’s constraints such as team,
resources, technology and time-to-market, to create
the fabric of interconnected process elements that
will guide software development (Jacobson et al.,
2001). Typically, software process engineers
combine elements from “off-the-shelf” processes,
since they represent best practices in the software
engineering discipline. Software process engineers

are also assisted by Situational Method Engineering
- SME. SME recommends creating a set of method
fragments or method chunks (pieces of processes)
where each one of these fragments or chunks
describes one part of the overall method (in this
paper called software process). Each software
project starts with a process definition phase where
the method fragments or chunks are selected and
organized to attend the specific needs related to the
project (Henderson-Sellers et al., 2008).

Regardless the strategy used to define a software
process specification, it is important to understand
the associated complexity of interconnecting the
process elements that will be used to maximize the
outcome of a software project. Typically a process
specification interconnects dozens, sometimes
hundreds, of process elements and any inconsistency
in the process will negatively impact on how
developers perform. Inconsistent processes have
several forms. For example, inconsistency may
appear when a task requires information that is not
produced by any other task; when two or more work
products duplicate information; or even when tasks
are sequenced in cycles. These problems are hard to
identify if no automated approach is adopted.

According to (Hug et al., 2009), as software
processes are based on process models, which are
directed by concepts, rules and relationships, a
metamodel becomes necessary for instantiating these

76 Pereira E., Bastos R., da C. Móra M. and Oliveira T..
IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE PROCESSES .
DOI: 10.5220/0003501100760086
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 76-86
ISBN: 978-989-8425-55-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

process models. Meta-modeling is a practice in
software engineering where a general model
(metamodel) organizes a set of concepts that will be
later instantiated and preserved by specific models
(instances). In this scenario, a software process
metamodel could represent basic interconnection
constraints that should hold after the metamodel is
instantiated (Henderson-Sellers and Gonzalez-Perez,
2007), thus minimizing inconsistencies. An evidence
of the importance of metamodels for software
processes is the existence of metamodels such as
Software & Systems Process Engineering Meta-
Model Specification - SPEM 1.1 (OMG, 2002),
OPEN Process Framework - OPF (Open, 2006),
among others. Recently the Object Managements
Group – OMG issued a new version of its standard
for Process Modeling, namely SPEM 2.0, which
offers the minimal elements necessary to define any
software process (OMG, 2007).

Although the SPEM 2.0 metamodel represents a
great advance in software process specification and
consistency, its use is not straightforward. SPEM 2.0
defines several concepts using the UML class
diagram notation and represents several constraints
with natural language. For example, SPEM 2.0
allows the specification of a Task that does not
consume, produce and/or modify any Work Product.
This is clearly an inconsistency once a Task has a
purpose, expressed in terms of creating or updating
Artifacts (Work Products) (Kruchten, 2000).

In order to improve the consistency of the
software processes instantiated from SPEM 2.0 this
paper proposes a set of well-formedness rules to
check for the software processes consistency. The
focus of this paper is only the consistency of the
roles, work products, tasks and their relationships.
Each well-formedness rule expresses a condition
that must be true in all software process instances.
To create the well-formedness rules we have started
our work by redefining some relationships in the
SPEM 2.0. For those more elaborated well-
formedness rules we have used FOLP.

The paper is organized as follows: Section 2
presents the related works. Section 3 describes the
SPEM 2.0. Section 4 presents some packages of
SPEM 2.0. In Section 5, the consistency well-
formedness rules are shown. Section 6 evaluates
some well-formedness followed by the conclusions.

2 RELATED WORK

Several papers have focused on defining software
process from a process metamodel. Some

approaches (Puviani, 2009), (Habli and Kelly,
2008), (Serour and Henderson-Sellers, 2004),
(Bendraou et al., 2007) propose solutions using well
known metamodels such as OPF or SPEM, while
others define their own process metamodels
(Wistrand and Karlsson, 2004), (Gnatz et al., 2003),
(Ralyte et al., 2006).

In (Puviani, 2009), (Serour and Henderson-
Sellers, 2004), (Wistrand and Karlsson, 2004) and
(Ralyte et al., 2006) the authors consider
metamodels to define method fragments, method
chunks or method components. Although they differ
in terminology, fragments, chunks or components,
represent small elements of a software process. This
approach is known as Situational Method
Engineering - SME, which is a subset of the Method
Engineering - ME discipline. According to
(Henderson-Sellers et al., 2008), SME provides a
solid basis for creating software process. Chunks,
fragments or components are typically gleaned from
best practice, theory and/or abstracted from other
processes. Once identified and documented, they are
stored in a repository, usually called method base
(Henderson-Sellers and Gonzalez-Perez, 2007).

In (Bendraou et al., 2007) the authors propose an
extension to SPEM 2.0 to address the lack of the
“executability” of this metamodel. The objective of
the extended metamodel is to include a set of
concepts and behavioural semantics. In (Habli and
Kelly, 2008) the authors present a process
metamodel that embodies attributes to facilitate the
automated analysis of the process, revealing possible
failures and associated risks. The metamodel allows
associating risks to the activities and mitigates them
before they are propagated into software product.
Gnatz et al. (2003) also propose a metamodel to
define software process. The authors are mainly
interested in performing process improvement
together with static and dynamic tailoring
(adjustment) of process models.

Though process metamodels are used by many
research groups, the software process consistency
issue is not widely explored. Most works lack rules
to check the consistency of the created software
processes. Specifically related to the software
process consistency some few works might be found
in the literature. Bajec et al. (2007), which describe
an approach to process configuration, present some
constraint rules in their work to constrain some
aspects of the software process construction. The
authors decompose their rules in four subgroups:
process flow rules, structure rules, completeness
rules and consistency rules. The completeness rules
and consistency rules are related to this work since

IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE PROCESSES

77

these rules are derived from a process metamodel.
According to (Bajec et al., 2007), the completeness
rules help to check whether a software process
includes all required components. To the authors
these rules can be specified in a simple manner using
attributes in the metalink class, which is equivalent
to multiplicities in the association relation in UML.
An example of the completeness rule in (Bajec et al.,
2007) is that each activity must be linked with
exactly one role. The consistency rules are
considered by the authors similar to completeness
rules. Their goal is to assure that the selection of the
elements to a process is consistent. While
completeness rules only apply to elements that are
linked together, consistency rules deal with
interdependency between any two elements. An
example of the consistency rule is each artifact
depends on at least one production activity.

Hsueh et al. (2008) propose an UML-based
approach to define, verify and validate software
processes. The authors consider UML as the
modeling language to define the processes and work
with class diagram to model the process static
structure, the state diagram to model the process
element’s behavior and the activity diagram to
model the process sequence. For the process
structure they describe a process metamodel based
on UML 2.0 and present some rules in Object
Constraint Language - OCL. Conceptually, that
work is related to this one as it considers a process
metamodel and some formalized rules to help model
verification. However, there are some important
differences. In (Hsueh et al., 2008), the correctness,
completeness and consistency of a process are
verified by only checking the class multiplicities. All
their OCL rules are CMMI-related rules and are
used to verify if the software process meet the
requirements of CMMI.

Atkinson et al. (2007) propose using an existing
Process Modeling Language - PML to define
process. Although the authors do not consider a
metamodel they present a set of rules related to the
process consistency. They also present a tool,
pmlcheck, used to check a process before performing
it. Basically, the consistency rules implemented in
pmlcheck are related to the actions (the tasks of
SPEM 2.0) and resources (the work products of
SPEM 2.0). Rules to check errors related to action
requirements are implemented. These types of rules
check four errors: actions consuming and producing
no resources, actions only consuming resources,
actions only producing resources and actions
modifying a resource that they were not consuming.
There are also rules to trace dependencies through a

process. These rules are: checking if resources
required by an action are produced in an earlier
action and checking if produced resources are
consumed by at least one action.

Besides the studies above, we consider our work
similar to the works about UML model consistency.
Although, usually, these works are interested in
consistency issues between the various diagrams of
an UML specification they also consider the UML
language and the consistency aspect. Additionally,
in their majority, they describe formal approach
(Lucas et al., 2009), what we have also been done.

3 SPEM 2.0

The SPEM 2.0 metamodel is structured into seven
packages. The structure divides the model into
logical units. Each unit extends the units it depends
upon, providing additional structures and
capabilities to the elements defined below. The first
package is Core that introduces classes and
abstractions that build the foundation for all others
metamodel packages. The second package, the
Process Structure, defines the base for all process
models. Its core data structure is a breakdown or
decomposition of nested Activities that maintain
lists of references to perform Role classes as well as
input and output Work Product classes for each
Activity. The Managed Content package introduces
concepts for managing the textual content of a
software process. The Process Behaviour package
allows extending the structures defined in the
Process Structure package with behavioural models.
However, SPEM 2.0 does not define its own
behaviour modelling approach. The Method Content
package provides the concepts to build up a
development knowledge base that is independent of
any specific processes. The Process with Methods
package specifies the needed concepts to integrate
the Process Structure package and Method Content
package. Finally, the Method Plugin package allows
managing libraries and processes.

SPEM 2.0 is expressed using MetaObject
Facility - MOF 2.0 meta-modeling language. Figure
1 shows the use of MOF 2.0 and UML 2.0 for
modelling and defining SPEM 2.0. The Figure
shows different instantiation layers of the formalism
used for the SPEM 2.0 specification. MOF is the
universal language that can be used on any layer, but
in our case MOF is instantiated from the M3 layer
by SPEM 2.0 on the M2 layer. The UML 2 meta-
model itself, as depicted on the right-hand side of
the M2 layer, instantiates MOF defined on M3 layer

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

78

in the same way. Finally, process models can be
instantiated using the M1 layer. In Figure 1,
“Method Library” is shown as an example of a
concrete instance of SPEM 2.0. In that sense, SPEM
2.0 defines process elements such as Tasks and
WorkProducts as well as relationships among them
whereas Method Library provides the concrete
instance to these elements.

Figure 1: Specification Levels.

The consistency well-formedness rules proposed
were defined in the M2 layer. They are based on the
elements and relationships of the Process Structure
and Process with Methods packages. In Figure 1 we
have also represented how our proposal is located in
the instantiation layers. In the left-hand side of the
M2 layer, the sSPEM 2.0, which stands for
conSistent SPEM 2.0, has all content of SPEM 2.0
more our consistency well-formedness rules. The
sSPEM 2.0 is also an instance of MOF and it may be
instantiated using the M1 layer. In Figure 1 the
“Consistent Method Library” is shown as an
instance of the sSPEM 2.0. It means that the
“Consistent Method Library” has concrete instances
of the elements and relationships of the SPEM 2.0
which were checked using the consistency well-
formedness rules of the sSPEM 2.0.

4 PROCESS DEFINITION

This section explores the main SPEM 2.0 packages
and introduces our proposal for process checking.

4.1 Process Structure in the SPEM 2.0

In SPEM 2.0 the main structural elements for
defining software processes are in the Process

Structure package. In this package, processes are
represented with a breakdown structure mechanism
that defines a breakdown of Activities, which are
comprised of other Activities or leaf Breakdown
Elements such as WorkProductUses or RoleUses.
Figure 2 presents the Process Structure metamodel.

The ProcessPerformer, ProcessParameter.
ProcessResponsabilityAssignment and
WorkProductUseRelationship classes are used to
express relationships among the elements in a
software process. The WorkSequence class also
represents a relationship class. It is used to
represents a relationship between two
WorkBreakdownElements in which one
WorkBreakdownElement depends on the start or
finish of another WorkBreakdownElement in order
to begin or end. Another important process element
which is not defined in the Process Structure
package is the Task. This element is defined in the
Process with Methods package which merges the
Process Structure package. A task describes an
assignable unit of work. In the Process with Methods
package the class that represents the task element is
the TaskUse class which is a subclass of the
WorkBreakdownElement class of the Process
Structure package. Figure 3 shows the relationships
for the TaskUse class which are defined in the
Process with Methods package.

Basically, the TaskUse class has relationships
with the same elements as the Activity class. Figure
3 also shows that both the TaskUse class as well the
RoleUse and WorkProductUse classes have,
respectively, relationships with TaskDefinition,
RoleDefinition and WorkProductDefinition classes.
These classes are defined in the Method Content
package and are used in the Process with Method
Package by the merge mechanism.

All software process may use the concepts
defined in the Method Content by creating a
subclass of Method Content Use class and reference
it with a subclass of Method Content Element class.
The Method Content Element and Method Content
Use classes are defined, respectively, in the Method
Content package and Process with Methods package.
All software process may use the concepts defined
in the Method Content by creating a subclass of
Method Content Use class and reference it with a
subclass of Method Content Element class. RoleUse,
WorkProductUse and TaskUse are subclasses to the
Method Content Use class and RoleDefinition,
WorkProductDefinition and TaskDefinition are
subclasses to the Method Content Element class.

IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE PROCESSES

79

Figure 2: Process Structure Metamodel.

It is important to consider that both models
presented in Figure 2 and Figure 3 had some
multiplicities modified from the SPEM original
metamodel. This is so because these models already
represent models of sSPEM 2.0 and include some
well-formedness rules proposed in this paper (which
will be explained in Section 5).

4.2 Errors in a Software Process

We consider that errors in a process are motivated
mainly by the following two reasons: (1) process
metamodels are typically specified with UML class
diagrams, which are only capable of representing
simple multiplicity constraints. As a result they need
an external language such OCL or Natural Language
to represent complex restrictions. As with SPEM
2.0, most constraints are represented in Natural
Language, which can lead to interpretation errors;
and (2) software process metamodels are usually
composed by several elements as they must
represent activity workflows, information flows and
role allocations. As a result, using a process
metamodel can be cumbersome as the user must deal
with several concepts to represent a process.

Figure 3: Relationships of the TaskUse Class.

According to (Atkinson et al., 2007), the errors
in a software process are most often introduced by a
modeller and related to syntax or typographical
mistakes that affect the process consistency. A
modeller might, for example, make a simple error by
connecting a work product that still was not
produced in the software process as an input in a
task. It would break a dependency because the task
was expecting an unavailable work product.

To avoid errors in a process we propose checking
it before enactment. Process checking is the activity
of verifying the correctness and the consistency of a
process. In this paper, process checking is made
from a set of well-formedness rules specified from
the SPEM 2.0 metamodel. The well-formedness
rules are associated with the metamodel classes and
relationships which represent the process elements
and their relations. Every instance of process
elements and relationships that have one or more
associated well-formedness rules is checked. If
violated, error messages appear. In the next section,
we explain our well-formedness rules. Some rules
are expressed using UML multiplicity and others,
which involve more elements and/or express more
elaborated rules, are described in FOLP.

5 PROCESS CHECKING

In this section we describe a set of well-formedness
rules related to software process correctness and
consistency. We propose using these rules for
process checking. The well-formedness rules from
this research were defined considering the concepts
defined in the Process Structure and Process with
Methods packages of SPEM 2.0 metamodel.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

80

Although the Method Content package has also
important concepts for software process it only
defines reusable content which is used through the
classes of the Process with Methods package.

5.1 Well-formedness Rules

As the SPEM metamodel is represented by UML
class diagrams we consider that many constraints
already exist in this metamodel through the
multiplicity used between the classes. The following
rule is one that is already defined in the SPEM 2.0
metamodel and constraints process multiplicity: a
Process Performer must be associated to exactly one
TaskUse. There is a “linkedTaskUse” relationship
between TaskUse and Process Performer classes.
The multiplicity is constrained to have only one
relationship.

Considering all multiplicities defined between
the classes of the Process Structure and Process with
Methods packages we have noted that
inconsistencies may be introduced into a software
process. For example, it is possible create tasks that
are not performed by anybody because a TaskUse
can be associated to 0..* ProcessPerformers. This
type of error could be introduced by an oversight
that may hinder enactment since every task must be
performed by at least one agent (human or
automated agent).

To solve the problem above and others similar to
it, we have started our work by redefining some
relationships in the SPEM 2.0 metamodel. The
modified relationships define the rules shown in
Table 1. In this Table, each rule contains a
numeration to ease its identification.

Table 1: Relationships modified in SPEM 2.0.

A TaskUse must be associated to at least one
ProcessPerformer. (Rule #1)
A ProcessParameter must be associated to exactly one
WorkProductUse. (Rule #2)
A RoleUse must be associated to at least one
ProcessPerformer. (Rule #3)
A WorkProductUse must be associated to at least one
ProcessResponsabilityAssignment. (Rule #4)
A TaskUse must have at least one ProcessParameter.
 (Rule #5)

The classes and relationships that represent the
rules above are depicted in Figure 2 and Figure 3.
Basically, the rules presented define: 1) Work
products need to have roles assigned to it in a
software process. (Rule #4); 2) Tasks must have
input and/or outputs in terms of work products and
must be performed by roles. (Rules #1, #2 and #5);
and 3) Roles need perform tasks. (Rule #3).

Since not all well-formedness rules could be
expressed through UML diagrammatic notation we
introduced first-order predicate logic (FOLP). To
write the rules, we first translate the classes,
relationships and attributes of SPEM 2.0 metamodel
into predicates and logical axioms. Due to space
constraints, the translation is not detailed here. We
assume that each class and attribute of the
metamodel represents a predicate. For example, the
ProcessPerformer class and its attributes
linkedRoleUse and linkedTaskUse are expressed
using the following predicates:

processPerformer(x) where x is a instance of a
ProcessPerformer. (P1)

linkedRoleUse(x, y) where x is a instance of a
ProcessPerformer and y is a instance of
RoleUse.

(P2)

linkedTaskUse(x, y) where x is a instance of a
ProcessPerformer and y is a instance of
TaskUse.

(P3)

The composition relationship which is a special type
of UML association used to model a "whole to its
parts" relationship is represented in FOLP with the
predicate part-of(x,y). In this predicate, x is an
instance of part and y represents its whole.
Considering the properties defined in UML for this
type of association the following logic axioms are
defined: ∀x ¬ part-of(x,x) (A1)∀x,y (part-of(x,y) → ¬ part-of(y,x)) (A2)∀x,y,z (part-of(x,y) ∧ part-of(y,z) → part-

of(x,z))
(A3)∀x,y,z (part-of(x,y) → ¬ part-of(x,z)) (A4)

Some additional predicates that express usual
relations in a software process were also created.
Such predicates are needed as they are reused for
many different well-formedness rules. For example,
the following predicates represent, respectively, a
work product that is produced by a task and the
dependency relationship between two work
products. Dependency relationships are used to
express that one work product depends on another
work product to be produced in a software process. ∀x,y,z((taskUse(x)∧ workProductUse(z)∧processP
arameter(y)
∧ direction(y,‘out’)∧parameterType(y,z)∧ part-
of(y,x))→ taskProduce(x, z))

(P4)

∀z,x,y((workProductUse(x)∧ workProductUse(y)∧
 (workProductUseRelationship(z)
∧ kind(z,‘dependency’)
 ∧ source(z, x) ∧ target(z, y)))→ dependency(x, y)))

(P5)

IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE PROCESSES

81

Similar predicates also exist for the modification
and consumption relations of the work products by
the tasks in a software process. Such relations are
obtained just replacing the value of the constant
‘out’ of the direction predicate by ‘in’ or ‘inout’.
When the ‘in’ value is used we have the predicate
taskConsume(x, z) (P6) and when the ‘inout’ value is
used we have the predicate taskModify(x, z) (P7).
Activities have the same relations of input and
output (production, consumption and modification)
with work products, so we have considered similar
predicates to these elements (P8, P9 and P10).

Work products also may assume other types of
relationships, in addition to the dependency
relationship. In the SPEM 2.0 metamodel these types
of relationships are ‘composition’ and ‘aggregation’.
Both relationships express that a work product
instance is part of another work product instance.
However, in the composition relationship the parts
lifecycle (child work products) are dependent on the
parent lifecycle (parent work product). The
composition and aggregation predicates just replace
the value of the constant ‘dependency’ of the kind
predicate by ‘composition’ or ‘aggregation’ (P11,
P12 and P13).

The composition, aggregation and dependency
relationships between work products are transitive
relations. The logical axioms bellow formalizing this
property: ∀x,y,z(composition(x,y)∧ composition(y,z)

 → composition(x,z)) (A5)∀x,y,z(aggretation(x,y)∧ aggretation(y,z)

 → aggretation(x,z))
(A6)∀x,y,z(dependency(x,y)∧ dependency(y,z)

 → dependency(x,z))
(A7)

Considering the predicate and logical axioms above
the first consistency well-formedness rules to
WorkProductUse were expressed in FOLP. They are
presented in the Table 2 and define: 1) A work
product may not be the whole in a relationship
(composition, aggregation or dependency) if one of
its parts represent its whole in another relationship
or represent its whole by the relation transitivity.
(Rule #6, #7 and #8); 2) A work product may not
represent the whole and the part in the same
relationship (composition, aggregation or
dependency). (Rules #9, #10 and #11); and 3) A
work product that represents the part in a
composition relationship may not represent part in
another relationship of this type. (Rule #12)

Note that the well-formedness rules above define
the same properties that logical axioms of the part-of

predicate. However, the well-formedness rules are
necessary once the relationships between the work
products are not expressed using the UML
association represented by the part-of predicate.
These relationships are expressed using UML
classes and attributes and consequently, need to be
represented by other predicates and constrained by
new rules.

Table 2: First Well-Formedness Rules to WorkProducts. ∀x,y (composition(x,y)→ ¬ composition(y,x)) (Rule # 6) ∀x,y (aggretation(x,y) → ¬ aggretation(y,x)) (Rule # 7) ∀x,y (dependency(x,y) → ¬ dependency(y,x)) (Rule # 8) ∀x ¬ composition(x,x) (Rule # 9) ∀x ¬ aggretation(x,x) (Rule # 10)∀x ¬ dependency(x,x) (Rule # 11)∀x,y,z (composition(x,y) → ¬ composition(x,z)) (Rule # 12)

A second important group of consistency well-
formedness rules to the WorkProductUse written in
FOLP are shown in Table 3.

Table 3: Second Group of Well-Formedness Rules to
WorkProducts. ∀x (workProductUse(x) → ∃y

(processParameter(y) ∧ direction(y, ‘out’)
∧ parameterType(y, x)))

(Rule #13) ∀x,y(taskProduce(x,y)→∃r,w,z(roleUse(r)
∧ (processPerfomer(z)∧ linkedTaskUse(z,
x)∧ linkedRoleUse(z,r))∧ (processRespons
abilityAssignment(w)∧ linkedRoleUse(w,r
)∧ linkedWorkProductUse(w,y))))

(Rule #14)

∀ x,y,t (workProductUse(x) ∧
dependency(x,y) ∧ taskProduce(t,x) →
taskConsume(t,y))

(Rule #15)

The well-formedness rules above establish: 1)
Work products must be produced by at least one task
in a software process. (Rule #13); 2) At least one
responsible role by the work product must be
associated in its production tasks. (Rule #14); and 3)
If a work product has dependencies in terms of other
work products these dependencies must be input in
its production tasks. (Rule #15)

The last group of well-formedness rules are
related to TaskUses sequencing. To establish the
tasks sequence from SPEM 2.0 metamodel the
WorkSequence class and its linkKind attribute are
used. It is possible using the following values in
sequencing between TaskUses: finishToStart,
finishToFinish, startToStart and startToFinish.

Some predicates and logical axioms related to
precedence between the tasks were created. Initially,
to capture the concept of successor and predecessor
task we have defined the predicates pre-task(t1, t2)

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

82

and pos-task(t2, t1), where t1 and t2 are TaskUse
instances and indicate, respectively, t1 as predecessor
task of t2, or, inversely, t2 as successor task of t1. The
predicates pre and pos-task are transitive and
asymmetric relations. The following logical axioms
establish these properties to these relations: ∀(t1, t2) (pre-task(t1, t2) ↔ pos-task(t2, t1)) (A8)∀(t1, t2, t3) (pre-task(t1, t2) ∧ pre-task(t2, t3) →

pre-task(t1, t3)) (A9)∀(t1, t2) (pre-task(t1, t2) → ¬ pre-task(t2, t1)) (A10)∀ t1 ¬ pre-task(t1, t1) (A11)

Based on the predicates and logical axioms related
to precedence between tasks we have defined new
consistency well-formedness rules. These rules,
shown in Table 4, define: 1) The tasks sequencing
must not have duplicated sequences. (Rule #16) 2)
Work Products must be produced before they are
consumed. (Rule #17) and 3) The dependencies of a
work product must be produced before it in a
software process. (Rule #18)

The well-formedness rule #16 shown in the
Table 4 is only to startToFinish transition. Consider
the same rule to the following transitions:
startToStart, finishToFinish and startToFinish.

Table 4: Well-Formedness Rules to Process Sequence. ∀x,x1,x2((taskUse(x1)∧ taskUse(x2) ∧
(workSequence(x) ∧ predecessor(x, x1)
∧ sucessor(x, x2) ∧ linkKind(x,
‘startToFinish’)))→¬∃y(workSequence(y)
∧ predecessor(x,x1) ∧ sucessor(x,x2)
∧ linkKind(x, ‘startToFinish’)))

(Rule #16)

∀x, y (taskConsume(x, y) → ∃x2
(taskProduce(x2, y) ∧ pre-task(x2, x))) (Rule #17)∀ x,y (dependency(x,y) → ∃t1, t2
(taskProduce(t1, x) ∧ taskProduce(t2, y)
∧ pre-task(t2,t1)))

(Rule #18)

6 EVALUATION OF THE
WELL-FORMEDNESS RULES

This section presents a process checking example
using a part of the OpenUP process. The section also
evaluates one of the well-formedness rules proposed
in this paper. The main goal is demonstrate that the
predicates and logical axioms used in the well-
formedness rules really express the intended
meaning.

6.1 Process Checking Example

To present a process checking example we have
considered the Inception Iteration of the OpenUP
process, which is shown in Figure 4. In this Figure,
above the dash line, the activities and tasks of the
iteration are represented. Additionally, some
information about activities sequence is also shown.
Below the dash line, the tasks of the Initiate Project
activity are detailed in terms of roles and work
products (inputs and outputs). All information
shown in the Figure 4 is based on the OpenUP
process except the Rule Test which was introduced
by us only for this evaluation. Originally, in
OpenUP, the Analyst is also responsible for the
Vision work product.

Figure 4: Inception Iteration of the OpenUp.

One of the tasks of Figure 4 (Develop Vision) is also
represented with a UML object diagram, which is
shown in Figure 5. The object diagram show the
class instances of the SPEM 2.0 used to create tasks,
work products, roles and their relationships in a
software process. In Figure 5 letters are used to
facilitate its understanding. The letter A indicates the
WorkProductUse classes used to create the objects
Vision and Glossary. The letter B represents the
objects 01 and 02, which are instances of the
ProcessParameter class. These kinds of objects
represent the inputs and outputs to the task objects.
In Figure 5, the object that represents a task is
represented by the DV (Develop Vision) identifier.
This object is an instance of TaskUse class and is
indicated in the Figure 5 by the letter C. The objects
representing instances of the RoleUse class are
indicated in Figure 5 by the letter D. Finally, the
letters E and F represent, respectively, objects of the
ProcessResponsabilityAssignment (object 01 and 02)
and ProcessPerformer classes (object 02). The
instances of the ProcessResponsabilityAssignment

IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE PROCESSES

83

are used to define roles as responsible for work
products and the instances of the ProcessPerformer
are used to link roles as performer to the tasks.

As seen, all process information of this example
may be represented using classes and relationships
of the SPEM 2.0. It means that the used process is
compliance with the SPEM 2.0 metamodel. Another
fact that shows the consistency of the used process is
the validation result of the object diagram found in
the case tools like Rational Software Modeler. This
validation result is error free.

However, as mentioned in Section 4, not all need
information in a software process can be expressed
using only the UML language. Thus, when we carry
out the checking in the same process using our well-
formedness rules it presented errors indicating some
inconsistencies. The first inconsistency of the
software process used in this example is in the task
Develop Vision. As seen in Figure 4, the task
Develop Vision produces the work product Vision
which has as responsible role the role Rule Test.
This role does not perform the task Develop Vision
and this fact violates the Rule #14 which defines that
at least on responsible role of a work product must
participate of their production tasks. Another
problem can be seen in the task Plan Project. Note
that this task has as mandatory inputs the work
products Use Case, Use Case Model and System-
Wide Requirements which are not yet produced in
the software process when this task is performed.
This inconsistency violates the Rule #17.

Figure 5: Object Diagram to the Develop Vision Task.
6.2 Evaluation of the Well-formedness

Rules

We have evaluated our well-formedness rules
expressed in FOLP to check their correctness. Since
the amount of rules presented in this paper is vast
and due the space constraints, we present only the
evaluation of rule Rule #14.

To start the evaluation we have created some
variables and assigned values for them. Each
variable represents an object of the object diagrams
shown in Figure 5. Table 5 lists the variables and
values used to this evaluation.

Table 5: Variables used in the First Evaluation.

x::= ‘DV’ x is the TaskUse ‘Develop Vision’
y::= ‘Vision’ y is the WorkProductUse ‘Vision’
r::= ‘Analyst’ r is the RoleUse ‘Analyst’

t::= ‘02’
t is the Process Parameter ‘02’ with
direction equal to ‘out’ and
parameterType equal to ‘Vision’

z::= ‘02’

z is the ProcessPerformer ‘02’ with
linkedRoleUse equal to ‘Analyst’ and
linkedTaskUse equal to ‘Develop
Vision’

w::= ‘01’

w is the ProcessResponsability
Assignment ‘01’ with linkedRoleUse
equal to ‘Rule Test’ and
linkedWorkProductUse equal to
‘Vision’

We have evaluated the task Develop Vision
which presents an error in the software process. The
formalization of the Rule #14 is the following: ∀x,y(taskProduce(x, y) → ∃r, w, z (roleUse(r)

∧ (processPerfomer(z)∧ linkedTaskUse(z,x)∧ linkedRo
leUse(z,r)) ∧ (processResponsabilityAssignment(w)∧ l
inkedRoleUse(w,r)∧ linkedWorkProductUse(w,y))))

This rule uses the taskProduce(x, y) that is
represented by the following sentence in FOLP:

 ∀x,y,t((taskUse(x)∧ workProductUse(y)∧ (processPar
ameter(t) ∧ direction(t, ‘out’) ∧ parameterType(t, y))
∧ part-of(t, x)) → taskProduce(x, y))

Initially we have evaluated the taskProduce(x,y).
Considering the variables of Table 5 we have:

taskUse(DV)::= T
workProductUse(Vision)::= T
ProcessParameter(02)::= T
direction(02, ‘out’)::= T
parameterType(02, Vision)::= T
part-of(02, DV)::= T
taskProduce(Criar DV, Vision)::= T

Then: ∀ x,y,t ((T ∧ T ∧ (T ∧ T ∧ T) ∧ T) → T) ∀ x,y,t (T → T)::= T

Predicate taskProduce(DV, Vision) evaluates to
True. Once the task Develop Vision produces the
work product Vision the expected value was True.
Considering Rule #14 we have:

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

84

roleUse(Analyst)::= T
processPerformer(02)::=T
linkedRoleUse(02, Analyst)::= T
linkedTaskUse(02, DV)::= T
processResponsabilityAssignment(01)::=T
linkedWorkProductUse(01, Vision)::= T
linkedRoleUse(01, Analyst)::= F

Then: ∀x, y (T → ∃r, w, z (T ∧ (T ∧ T ∧ T) ∧ (T ∧ F ∧ T))) ∀x, y (T → ∃r, w, z (F)) ∀x, y (T → F)::= F

The value to the Rule #14 is False. This value was
expected once the values assigned to the variables
generate one inconsistency in the software process
as already shown in the Subsection 6.1. It suggests
that the theory of the Rule #14 is valid.

Although we have not detailed the evaluation of
the Rule #17, the value returned to this evaluation is
False. It also indicates that the theory of this rule is
valid.

7 CONCLUSIONS

In this paper, we have proposed well-formedness
rules that allow finding errors in a software process
before it is enacted. By noting inconsistencies in the
process, we believe it is possible for modellers to
refine a process model until it is free of
inconsistencies.

The proposed well-formedness rules were based
on SPEM 2.0 metamodel. To define them we have
modified multiplicity constraints and for the more
elaborated rules which could not be expressed only
with UML, we have used FOLP.

Several research directions, which we are
working on, have been left open during this paper,
and here we emphasize two of them. First, more
well-formedness rules considering others process
elements and consistency aspects need to be
provided. Related to this, preliminary studies
suggest two important facts: (1) other process
elements and relationships must be included in the
SPEM 2.0 metamodel and (2) the OCL language
does not support the definition of all well-
formedness rules needed to guarantee consistency.
For example, the well-formedness rules to check
cycles in a software process, which involve
temporary aspects, may not be expressed using
OCL. This fact has been the motivation to use FOLP
in this paper. Secondly, with regard to automatic
support, the prototype of a tool prototype is being

developed. This will support the definition and
tailoring of SPEM-based software processes.
Furthermore, a process checking, which implements
the well-formedness rules, will be provided.

ACKNOWLEDGEMENTS

Study financed by Dell Computers of Brazil Ltd.
with resources of Law 8.248/91.

REFERENCES

Atkinson, D. C., Weeks, D. C. and Noll, J. Tool Support
for Iterative Software Process Modeling. Information
and Software Technology, 493-514, 2007.

Bajec, M., Vavpotic, D. and Krisper, M. Practice-Driven
Approach for Creating Project-Specific Software
Development Methods. Information and Software
Technology, 345-365, 2007.

Bendraou, R., Combemale, B., Cregut, X. and Gervais, M.
P.Definition of an Executable SPEM 2.0.In: 14th Asia-
Pacific Software Engineering Conference, 2007.

Gnatz, M., Marschall, F., Popp G., Rausch A. and
Schwerin W. The Living Software Development
Process. Available from: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.60.3371, 2003.

Habli, I. and Kelly, T. A Model-Driven Approach to
Assuring Process Reliability. In: 19th International
Symposium on Software Reliability Engineering,
2008.

Henderson-Sellers, B. and Gonzalez-Perez, C. A Work
Product Pool Approach to Methodology Specification
and Enactment. Journal of Systems and Software,
2007.

Henderson-Sellers, B., Gonzalez-Perez, C. and Ralyté, J.
Comparison of Method Chunks and Method
Fragments for Situational Method Engineering.In:
19th Australian Conference on Software Engineering,
2008.

Hsueh, N. L., Shen, W. H., Yang, Z. W and Yang, D. L.
Applying UML and Software Simulation for Process
Definition, Verification and Validation. Information
and Software Technology, 897-911, 2008.

Hug, C., Front, A., Rieu, D. and Henderson-Sellers, B. A
Method to Build Information Systems Engineering
Process Metamodels. The Journal of Systems and
Software, 1730-1742, 2009.

Jacobson, I., Booch G., Rumbaugh J. The Unified
Software Development Process, Addison Wesley,
2001.

Kruchten, P. The Rational Unified Process: An
Introduction. NJ: Addison Wesley, 2000.

Lucas, F. J., Molina, F. and Toval, A. A Systematic Review
of UML Model Consistency Management. Information
and Software Technology, 1631-1645, 2009.

IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE PROCESSES

85

OMG, Sofware Process Engineering Metamodel - SPEM
1.1. Available from: http://www.omg.org/, 2002.

OMG, Sofware Process Engineering Metamodel - SPEM
2.0. Available from: http://www.omg.org/, 2007.

Open. Available from: http://www.open.org.au, 2006.
Puviani, M., Serugendo, G. D. M., Frei, R. and Cabri G.

Methodologies for Self-organising Systems: a SPEM
Approach. In: International Conference on Web
Intelligence and Intelligent Agent Technology, 2009.

Ralyté, J., Backlund, P., Kuhn, H. and Jeusfeld M. A.
Method Chunks for Interoperability. In: 25th Int.
Conference on Conceptual Modelling, 2006.

Serour, M. K. and Henderson-Sellers, B. Introducing
Agility – A Case Study of SME Using the OPEN. In:
28th Computer Sof. and Applications Conf., 2004.

Wistrand, K. and Karlsson, F. Method Components
Rationale Revealed. In: Lecture Notes in Computer
Science, Vol. 3084/2004, 2004.

Xu, P., Ramesh, B. A Tool for the Capture and Use of
Process Knowledge in Process Tailoring, In: Proc. of
Hawaii Int. Conference on System Sciences, 2003.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

86

