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Abstract: The main purpose of this paper is to improve the consistency of Spem-Based Software Processes through a 
set of well-formedness rules that check for errors in a software process. The well-formedness rules are based 
on the SPEM 2.0 metamodel and described using the Unified Modeling Language - UML multiplicity and 
First-Order Predicate Logic - FOLP. In this paper, the use of the well-formedness rules is exemplified 
using a part of the OpenUP process and the evaluation of the one of the proposed rules is shown. 

1 INTRODUCTION 

Software development is ultimately a procedure to 
convert informal specifications, typically gathered 
from real world scenarios, into formal pieces of code 
that can be executed by machines. Such a procedure 
is mainly enacted by developers that follow an 
orchestrated path from analysis, through coding and 
testing. Orchestration emerges from a software 
process specification that details how process 
elements such as roles, tasks and work products, are 
interconnected in an organized manner (Jacobson et 
al., 2001). Although developers can find off-the-
shelf software process specifications such as 
Rational Unified Process - RUP (Kruchten, 2000) 
and Object-Oriented Process, Environment and 
Notation - OPEN (Open, 2006), there is no “one size 
fits all” process, which means a process must be 
defined to meet each project’s needs (Xu and 
Ramesh, 2003). 

To define a software process it is necessary to 
consider project’s constraints such as team, 
resources, technology and time-to-market, to create 
the fabric of interconnected process elements that 
will guide software development (Jacobson et al., 
2001). Typically, software process engineers 
combine elements from “off-the-shelf” processes, 
since they represent best practices in the software 
engineering discipline. Software process engineers  

are also assisted by Situational Method Engineering 
- SME. SME recommends creating a set of method 
fragments or method chunks (pieces of processes) 
where each one of these fragments or chunks 
describes one part of the overall method (in this 
paper called software process). Each software 
project starts with a process definition phase where 
the method fragments or chunks are selected and 
organized to attend the specific needs related to the 
project (Henderson-Sellers et al., 2008). 

Regardless the strategy used to define a software 
process specification, it is important to understand 
the associated complexity of interconnecting the 
process elements that will be used to maximize the 
outcome of a software project.  Typically a process 
specification interconnects dozens, sometimes 
hundreds, of process elements and any inconsistency 
in the process will negatively impact on how 
developers perform. Inconsistent processes have 
several forms. For example, inconsistency may 
appear when a task requires information that is not 
produced by any other task; when two or more work 
products duplicate information; or even when tasks 
are sequenced in cycles.  These problems are hard to 
identify if no automated approach is adopted. 

According to (Hug et al., 2009), as software 
processes are based on process models, which are 
directed by concepts, rules and relationships, a 
metamodel becomes necessary for instantiating these 
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process models. Meta-modeling is a practice in 
software engineering where a general model 
(metamodel) organizes a set of concepts that will be 
later instantiated and preserved by specific models 
(instances). In this scenario, a software process 
metamodel could represent basic interconnection 
constraints that should hold after the metamodel is 
instantiated (Henderson-Sellers and Gonzalez-Perez, 
2007), thus minimizing inconsistencies. An evidence 
of the importance of metamodels for software 
processes is the existence of metamodels such as 
Software & Systems Process Engineering Meta-
Model Specification - SPEM 1.1 (OMG, 2002), 
OPEN Process Framework - OPF (Open, 2006), 
among others. Recently the Object Managements 
Group – OMG issued a new version of its standard 
for Process Modeling, namely SPEM 2.0, which 
offers the minimal elements necessary to define any 
software process (OMG, 2007). 

Although the SPEM 2.0 metamodel represents a 
great advance in software process specification and 
consistency, its use is not straightforward. SPEM 2.0 
defines several concepts using the UML class 
diagram notation and represents several constraints 
with natural language. For example, SPEM 2.0 
allows the specification of a Task that does not 
consume, produce and/or modify any Work Product. 
This is clearly an inconsistency once a Task has a 
purpose, expressed in terms of creating or updating 
Artifacts (Work Products) (Kruchten, 2000).  

In order to improve the consistency of the 
software processes instantiated from SPEM 2.0 this 
paper proposes a set of well-formedness rules to 
check for the software processes consistency. The 
focus of this paper is only the consistency of the 
roles, work products, tasks and their relationships. 
Each well-formedness rule expresses a condition 
that must be true in all software process instances. 
To create the well-formedness rules we have started 
our work by redefining some relationships in the 
SPEM 2.0. For those more elaborated well-
formedness rules we have used FOLP. 

The paper is organized as follows: Section 2 
presents the related works. Section 3 describes the 
SPEM 2.0. Section 4 presents some packages of 
SPEM 2.0. In Section 5, the consistency well-
formedness rules are shown. Section 6 evaluates 
some well-formedness followed by the conclusions. 

2 RELATED WORK 

Several papers have focused on defining software 
process from a process metamodel. Some 

approaches (Puviani, 2009), (Habli and Kelly, 
2008), (Serour and Henderson-Sellers, 2004), 
(Bendraou et al., 2007) propose solutions using well 
known metamodels such as OPF or SPEM, while 
others define their own process metamodels 
(Wistrand and Karlsson, 2004), (Gnatz et al., 2003), 
(Ralyte et al., 2006).  

In (Puviani, 2009), (Serour and Henderson-
Sellers, 2004), (Wistrand and Karlsson, 2004) and 
(Ralyte et al., 2006) the authors consider 
metamodels to define method fragments, method 
chunks or method components. Although they differ 
in terminology, fragments, chunks or components, 
represent small elements of a software process. This 
approach is known as Situational Method 
Engineering - SME, which is a subset of the Method 
Engineering - ME discipline. According to 
(Henderson-Sellers et al., 2008), SME provides a 
solid basis for creating software process. Chunks, 
fragments or components are typically gleaned from 
best practice, theory and/or abstracted from other 
processes. Once identified and documented, they are 
stored in a repository, usually called method base 
(Henderson-Sellers and Gonzalez-Perez, 2007). 

In (Bendraou et al., 2007) the authors propose an 
extension to SPEM 2.0 to address the lack of the 
“executability” of this metamodel. The objective of 
the extended metamodel is to include a set of 
concepts and behavioural semantics. In (Habli and 
Kelly, 2008) the authors present a process 
metamodel that embodies attributes to facilitate the 
automated analysis of the process, revealing possible 
failures and associated risks. The metamodel allows 
associating risks to the activities and mitigates them 
before they are propagated into software product. 
Gnatz et al. (2003) also propose a metamodel to 
define software process. The authors are mainly 
interested in performing process improvement 
together with static and dynamic tailoring 
(adjustment) of process models.  

Though process metamodels are used by many 
research groups, the software process consistency 
issue is not widely explored. Most works lack rules 
to check the consistency of the created software 
processes. Specifically related to the software 
process consistency some few works might be found 
in the literature. Bajec et al. (2007), which describe 
an approach to process configuration, present some 
constraint rules in their work to constrain some 
aspects of the software process construction. The 
authors decompose their rules in four subgroups: 
process flow rules, structure rules, completeness 
rules and consistency rules. The completeness rules 
and consistency rules are related to this work since 
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these rules are derived from a process metamodel. 
According to (Bajec et al., 2007), the completeness 
rules help to check whether a software process 
includes all required components. To the authors 
these rules can be specified in a simple manner using 
attributes in the metalink class, which is equivalent 
to multiplicities in the association relation in UML. 
An example of the completeness rule in (Bajec et al., 
2007) is that each activity must be linked with 
exactly one role. The consistency rules are 
considered by the authors similar to completeness 
rules. Their goal is to assure that the selection of the 
elements to a process is consistent. While 
completeness rules only apply to elements that are 
linked together, consistency rules deal with 
interdependency between any two elements. An 
example of the consistency rule is each artifact 
depends on at least one production activity.  

Hsueh et al. (2008) propose an UML-based 
approach to define, verify and validate software 
processes. The authors consider UML as the 
modeling language to define the processes and work 
with class diagram to model the process static 
structure, the state diagram to model the process 
element’s behavior and the activity diagram to 
model the process sequence. For the process 
structure they describe a process metamodel based 
on UML 2.0 and present some rules in Object 
Constraint Language - OCL. Conceptually, that 
work is related to this one as it considers a process 
metamodel and some formalized rules to help model 
verification. However, there are some important 
differences. In (Hsueh et al., 2008), the correctness, 
completeness and consistency of a process are 
verified by only checking the class multiplicities. All 
their OCL rules are CMMI-related rules and are 
used to verify if the software process meet the 
requirements of CMMI. 

Atkinson et al. (2007) propose using an existing 
Process Modeling Language - PML to define 
process. Although the authors do not consider a 
metamodel they present a set of rules related to the 
process consistency. They also present a tool, 
pmlcheck, used to check a process before performing 
it. Basically, the consistency rules implemented in 
pmlcheck are related to the actions (the tasks of 
SPEM 2.0) and resources (the work products of 
SPEM 2.0). Rules to check errors related to action 
requirements are implemented. These types of rules 
check four errors: actions consuming and producing 
no resources, actions only consuming resources, 
actions only producing resources and actions 
modifying a resource that they were not consuming. 
There are also rules to trace dependencies through a 

process. These rules are: checking if resources 
required by an action are produced in an earlier 
action and checking if produced resources are 
consumed by at least one action. 

Besides the studies above, we consider our work 
similar to the works about UML model consistency. 
Although, usually, these works are interested in 
consistency issues between the various diagrams of 
an UML specification they also consider the UML 
language and the consistency aspect. Additionally, 
in their majority, they describe formal approach 
(Lucas et al., 2009), what we have also been done.   

3 SPEM 2.0 

The SPEM 2.0 metamodel is structured into seven 
packages. The structure divides the model into 
logical units. Each unit extends the units it depends 
upon, providing additional structures and 
capabilities to the elements defined below. The first 
package is Core that introduces classes and 
abstractions that build the foundation for all others 
metamodel packages. The second package, the 
Process Structure, defines the base for all process 
models. Its core data structure is a breakdown or 
decomposition of nested Activities that maintain 
lists of references to perform Role classes as well as 
input and output Work Product classes for each 
Activity. The Managed Content package introduces 
concepts for managing the textual content of a 
software process. The Process Behaviour package 
allows extending the structures defined in the 
Process Structure package with behavioural models. 
However, SPEM 2.0 does not define its own 
behaviour modelling approach. The Method Content 
package provides the concepts to build up a 
development knowledge base that is independent of 
any specific processes. The Process with Methods 
package specifies the needed concepts to integrate 
the Process Structure package and Method Content 
package. Finally, the Method Plugin package allows 
managing libraries and processes. 

SPEM 2.0 is expressed using MetaObject 
Facility - MOF 2.0 meta-modeling language. Figure 
1 shows the use of MOF 2.0 and UML 2.0 for 
modelling and defining SPEM 2.0. The Figure 
shows different instantiation layers of the formalism 
used for the SPEM 2.0 specification.  MOF is the 
universal language that can be used on any layer, but 
in our case MOF is instantiated from the M3 layer 
by SPEM 2.0 on the M2 layer. The UML 2 meta-
model itself, as depicted on the right-hand side of 
the M2 layer, instantiates MOF defined on M3 layer 
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in the same way. Finally, process models can be 
instantiated using the M1 layer. In Figure 1, 
“Method Library” is shown as an example of a 
concrete instance of SPEM 2.0. In that sense, SPEM 
2.0 defines process elements such as Tasks and 
WorkProducts as well as relationships among them 
whereas Method Library provides the concrete 
instance to these elements. 

 

Figure 1: Specification Levels. 

The consistency well-formedness rules proposed 
were defined in the M2 layer. They are based on the 
elements and relationships of the Process Structure 
and Process with Methods packages. In Figure 1 we 
have also represented how our proposal is located in 
the instantiation layers. In the left-hand side of the 
M2 layer, the sSPEM 2.0, which stands for 
conSistent SPEM 2.0, has all content of SPEM 2.0 
more our consistency well-formedness rules. The 
sSPEM 2.0 is also an instance of MOF and it may be 
instantiated using the M1 layer. In Figure 1 the 
“Consistent Method Library” is shown as an 
instance of the sSPEM 2.0. It means that the 
“Consistent Method Library” has concrete instances 
of the elements and relationships of the SPEM 2.0 
which were checked using the consistency well-
formedness rules of the sSPEM 2.0. 

4 PROCESS DEFINITION 

This section explores the main SPEM 2.0 packages 
and introduces our proposal for process checking. 

4.1 Process Structure in the SPEM 2.0 

In SPEM 2.0 the main structural elements for 
defining software processes are in the Process 

Structure package. In this package, processes are 
represented with a breakdown structure mechanism 
that defines a breakdown of Activities, which are 
comprised of other Activities or leaf Breakdown 
Elements such as WorkProductUses or RoleUses. 
Figure 2 presents the Process Structure metamodel. 

The ProcessPerformer, ProcessParameter. 
ProcessResponsabilityAssignment and 
WorkProductUseRelationship classes are used to 
express relationships among the elements in a 
software process. The WorkSequence class also 
represents a relationship class. It is used to 
represents a relationship between two 
WorkBreakdownElements in which one 
WorkBreakdownElement depends on the start or 
finish of another WorkBreakdownElement in order 
to begin or end. Another important process element 
which is not defined in the Process Structure 
package is the Task. This element is defined in the 
Process with Methods package which merges the 
Process Structure package. A task describes an 
assignable unit of work. In the Process with Methods 
package the class that represents the task element is 
the TaskUse class which is a subclass of the 
WorkBreakdownElement class of the Process 
Structure package. Figure 3 shows the relationships 
for the TaskUse class which are defined in the 
Process with Methods package. 

Basically, the TaskUse class has relationships 
with the same elements as the Activity class. Figure 
3 also shows that both the TaskUse class as well the 
RoleUse and WorkProductUse classes have, 
respectively, relationships with TaskDefinition, 
RoleDefinition and WorkProductDefinition classes. 
These classes are defined in the Method Content 
package and are used in the Process with Method 
Package by the merge mechanism. 

All software process may use the concepts 
defined in the Method Content by creating a 
subclass of Method Content Use class and reference 
it with a subclass of Method Content Element class. 
The Method Content Element and Method Content 
Use classes are defined, respectively, in the Method 
Content package and Process with Methods package. 
All software process may use the concepts defined 
in the Method Content by creating a subclass of 
Method Content Use class and reference it with a 
subclass of Method Content Element class. RoleUse, 
WorkProductUse and TaskUse are subclasses to the 
Method Content Use class and RoleDefinition, 
WorkProductDefinition and TaskDefinition are 
subclasses to the Method Content Element class.
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Figure 2: Process Structure Metamodel. 

It is important to consider that both models 
presented in Figure 2 and Figure 3 had some 
multiplicities modified from the SPEM original 
metamodel. This is so because these models already 
represent models of sSPEM 2.0 and include some 
well-formedness rules proposed in this paper (which 
will be explained in Section 5). 

4.2 Errors in a Software Process 

We consider that errors in a process are motivated 
mainly by the following two reasons:  (1) process 
metamodels are typically specified with UML class 
diagrams, which are only capable of representing 
simple multiplicity constraints. As a result they need 
an external language such OCL or Natural Language 
to represent complex restrictions. As with SPEM 
2.0, most constraints are represented in Natural 
Language, which can lead to interpretation errors; 
and (2) software process metamodels are usually 
composed by several elements as they must 
represent activity workflows, information flows and 
role allocations. As a result, using a process 
metamodel can be cumbersome as the user must deal 
with several concepts to represent a process. 

 

Figure 3: Relationships of the TaskUse Class. 

According to (Atkinson et al., 2007), the errors 
in a software process are most often introduced by a 
modeller and related to syntax or typographical 
mistakes that affect the process consistency. A 
modeller might, for example, make a simple error by 
connecting a work product that still was not 
produced in the software process as an input in a 
task. It would break a dependency because the task 
was expecting an unavailable work product. 

To avoid errors in a process we propose checking 
it before enactment. Process checking is the activity 
of verifying the correctness and the consistency of a 
process. In this paper, process checking is made 
from a set of well-formedness rules specified from 
the SPEM 2.0 metamodel. The well-formedness 
rules are associated with the metamodel classes and 
relationships which represent the process elements 
and their relations. Every instance of process 
elements and relationships that have one or more 
associated well-formedness rules is checked. If 
violated, error messages appear. In the next section, 
we explain our well-formedness rules. Some rules 
are expressed using UML multiplicity and others, 
which involve more elements and/or express more 
elaborated rules, are described in FOLP. 

5 PROCESS CHECKING 

In this section we describe a set of well-formedness 
rules related to software process correctness and 
consistency. We propose using these rules for 
process checking. The well-formedness rules from 
this research were defined considering the concepts 
defined in the Process Structure and Process with 
Methods packages of SPEM 2.0 metamodel. 
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Although the Method Content package has also 
important concepts for software process it only 
defines reusable content which is used through the 
classes of the Process with Methods package.  

5.1 Well-formedness Rules 

As the SPEM metamodel is represented by UML 
class diagrams we consider that many constraints 
already exist in this metamodel through the 
multiplicity used between the classes. The following 
rule is one that is already defined in the SPEM 2.0 
metamodel and constraints process multiplicity: a 
Process Performer must be associated to exactly one 
TaskUse. There is a “linkedTaskUse” relationship 
between TaskUse and Process Performer classes. 
The multiplicity is constrained to have only one 
relationship.  

Considering all multiplicities defined between 
the classes of the Process Structure and Process with 
Methods packages we have noted that 
inconsistencies may be introduced into a software 
process. For example, it is possible create tasks that 
are not performed by anybody because a TaskUse 
can be associated to 0..* ProcessPerformers. This 
type of error could be introduced by an oversight 
that may hinder enactment since every task must be 
performed by at least one agent (human or 
automated agent).  

To solve the problem above and others similar to 
it, we have started our work by redefining some 
relationships in the SPEM 2.0 metamodel. The 
modified relationships define the rules shown in 
Table 1. In this Table, each rule contains a 
numeration to ease its identification. 

Table 1: Relationships modified in SPEM 2.0. 

A TaskUse must be associated to at least one 
ProcessPerformer.                                            (Rule #1) 
A ProcessParameter must be associated to exactly one 
WorkProductUse.                                             (Rule #2) 
A RoleUse must be associated to at least one 
ProcessPerformer.                                          (Rule #3) 
A WorkProductUse must be associated to at least one 
ProcessResponsabilityAssignment.                 (Rule #4) 
A TaskUse must have at least one ProcessParameter.  
                                                                         (Rule #5 ) 

The classes and relationships that represent the 
rules above are depicted in Figure 2 and Figure 3. 
Basically, the rules presented define: 1) Work 
products need to have roles assigned to it in a 
software process. (Rule #4); 2) Tasks must have 
input and/or outputs in terms of work products and 
must be performed by roles. (Rules #1, #2 and #5); 
and 3) Roles need perform tasks. (Rule #3). 

Since not all well-formedness rules could be 
expressed through UML diagrammatic notation we 
introduced first-order predicate logic (FOLP). To 
write the rules, we first translate the classes, 
relationships and attributes of SPEM 2.0 metamodel 
into predicates and logical axioms. Due to space 
constraints, the translation is not detailed here. We 
assume that each class and attribute of the 
metamodel represents a predicate. For example, the 
ProcessPerformer class and its attributes 
linkedRoleUse and linkedTaskUse are expressed 
using the following predicates: 

processPerformer(x) where x is a instance of a 
ProcessPerformer. (P1)

linkedRoleUse(x, y) where x is a instance of a 
ProcessPerformer and y is a instance of 
RoleUse. 

(P2)

linkedTaskUse(x, y) where x is a instance of a 
ProcessPerformer and y is a instance of 
TaskUse. 

(P3)

The composition relationship which is a special type 
of UML association used to model a "whole to its 
parts" relationship is represented in FOLP with the 
predicate part-of(x,y). In this predicate, x is an 
instance of part and y represents its whole. 
Considering the properties defined in UML for this 
type of association the following logic axioms are 
defined: ∀x ¬ part-of(x,x) (A1)∀x,y (part-of(x,y) → ¬ part-of(y,x)) (A2)∀x,y,z (part-of(x,y) ∧ part-of(y,z) → part-

of(x,z)) 
(A3)∀x,y,z (part-of(x,y) → ¬ part-of(x,z)) (A4)

Some additional predicates that express usual 
relations in a software process were also created. 
Such predicates are needed as they are reused for 
many different well-formedness rules. For example, 
the following predicates represent, respectively, a 
work product that is produced by a task and the 
dependency relationship between two work 
products. Dependency relationships are used to 
express that one work product depends on another 
work product to be produced in a software process.  ∀x,y,z((taskUse(x)∧ workProductUse(z)∧processP
arameter(y) 
∧ direction(y,‘out’)∧parameterType(y,z)∧ part-
of(y,x))→ taskProduce(x, z)) 

(P4) 

∀z,x,y((workProductUse(x)∧ workProductUse(y)∧ 
 (workProductUseRelationship(z) 
∧ kind(z,‘dependency’) 
 ∧ source(z, x) ∧ target(z, y)))→ dependency(x, y))) 

(P5)
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Similar predicates also exist for the modification 
and consumption relations of the work products by 
the tasks in a software process. Such relations are 
obtained just replacing the value of the constant 
‘out’ of the direction predicate by ‘in’ or ‘inout’. 
When the ‘in’ value is used we have the predicate 
taskConsume(x, z) (P6) and when the ‘inout’ value is 
used we have the predicate taskModify(x, z) (P7). 
Activities have the same relations of input and 
output (production, consumption and modification) 
with work products, so we have considered similar 
predicates to these elements (P8, P9 and P10). 

Work products also may assume other types of 
relationships, in addition to the dependency 
relationship. In the SPEM 2.0 metamodel these types 
of relationships are ‘composition’ and ‘aggregation’. 
Both relationships express that a work product 
instance is part of another work product instance. 
However, in the composition relationship the parts 
lifecycle (child work products) are dependent on the 
parent lifecycle (parent work product). The 
composition and aggregation predicates just replace 
the value of the constant ‘dependency’ of the kind 
predicate by ‘composition’ or ‘aggregation’ (P11, 
P12 and P13). 

The composition, aggregation and dependency 
relationships between work products are transitive 
relations. The logical axioms bellow formalizing this 
property: ∀x,y,z(composition(x,y)∧ composition(y,z)  

                                     → composition(x,z)) (A5)∀x,y,z(aggretation(x,y)∧ aggretation(y,z) 

                                     → aggretation(x,z)) 
(A6)∀x,y,z(dependency(x,y)∧ dependency(y,z) 

                                    → dependency(x,z)) 
(A7)

Considering the predicate and logical axioms above 
the first consistency well-formedness rules to 
WorkProductUse were expressed in FOLP. They are 
presented in the Table 2 and define: 1) A work 
product may not be the whole in a relationship 
(composition, aggregation or dependency) if one of 
its parts represent its whole in another relationship 
or represent its whole by the relation transitivity. 
(Rule #6, #7 and #8); 2) A work product may not 
represent the whole and the part in the same 
relationship (composition, aggregation or 
dependency). (Rules #9, #10 and #11); and 3) A 
work product that represents the part in a 
composition relationship may not represent part in 
another relationship of this type. (Rule #12) 

Note that the well-formedness rules above define 
the same properties that logical axioms of the part-of 

predicate. However, the well-formedness rules are 
necessary once the relationships between the work 
products are not expressed using the UML 
association represented by the part-of predicate. 
These relationships are expressed using UML 
classes and attributes and consequently, need to be 
represented by other predicates and constrained by 
new rules.  

Table 2: First Well-Formedness Rules to WorkProducts. ∀x,y (composition(x,y)→ ¬ composition(y,x))  (Rule # 6) ∀x,y (aggretation(x,y) → ¬ aggretation(y,x)) (Rule # 7) ∀x,y (dependency(x,y) → ¬ dependency(y,x)) (Rule # 8) ∀x ¬ composition(x,x) (Rule # 9) ∀x ¬ aggretation(x,x)                                      (Rule # 10)∀x ¬ dependency(x,x)                                      (Rule # 11)∀x,y,z (composition(x,y) → ¬ composition(x,z)) (Rule # 12)

A second important group of consistency well-
formedness rules to the WorkProductUse written in 
FOLP are shown in Table 3.  

Table 3: Second Group of Well-Formedness Rules to 
WorkProducts. ∀x (workProductUse(x) → ∃y 

(processParameter(y) ∧ direction(y, ‘out’) 
∧ parameterType(y, x)))   

(Rule #13) ∀x,y(taskProduce(x,y)→∃r,w,z(roleUse(r)
∧ (processPerfomer(z)∧ linkedTaskUse(z,
x)∧ linkedRoleUse(z,r))∧ (processRespons
abilityAssignment(w)∧  linkedRoleUse(w,r
)∧ linkedWorkProductUse(w,y))))                 

(Rule #14 )

∀ x,y,t (workProductUse(x) ∧ 
dependency(x,y) ∧ taskProduce(t,x) → 
taskConsume(t,y))             

(Rule #15) 

 

The well-formedness rules above establish: 1) 
Work products must be produced by at least one task 
in a software process. (Rule #13); 2) At least one 
responsible role by the work product must be 
associated in its production tasks. (Rule #14); and 3) 
If a work product has dependencies in terms of other 
work products these dependencies must be input in 
its production tasks. (Rule #15) 

The last group of well-formedness rules are 
related to TaskUses sequencing. To establish the 
tasks sequence from SPEM 2.0 metamodel the 
WorkSequence class and its linkKind attribute are 
used. It is possible using the following values in 
sequencing between TaskUses: finishToStart, 
finishToFinish, startToStart and startToFinish.  

Some predicates and logical axioms related to 
precedence between the tasks were created. Initially, 
to capture the concept of successor and predecessor 
task we have defined the predicates pre-task(t1, t2) 
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and pos-task(t2, t1), where t1 and t2 are TaskUse 
instances and indicate, respectively, t1 as predecessor 
task of t2, or, inversely, t2 as successor task of t1. The 
predicates pre and pos-task are transitive and 
asymmetric relations. The following logical axioms 
establish these properties to these relations: ∀(t1, t2) (pre-task(t1, t2) ↔ pos-task(t2, t1)) (A8)∀(t1, t2, t3) (pre-task(t1, t2)  ∧ pre-task(t2, t3) → 

pre-task(t1, t3)) (A9)∀(t1, t2) (pre-task(t1, t2) → ¬ pre-task(t2, t1)) (A10)∀ t1 ¬ pre-task(t1, t1)  (A11)

Based on the predicates and logical axioms related 
to precedence between tasks we have defined new 
consistency well-formedness rules. These rules, 
shown in Table 4, define: 1) The tasks sequencing 
must not have duplicated sequences. (Rule #16) 2) 
Work Products must be produced before they are 
consumed. (Rule #17) and 3) The dependencies of a 
work product must be produced before it in a 
software process. (Rule #18) 

The well-formedness rule #16 shown in the 
Table 4 is only to startToFinish transition. Consider 
the same rule to the following transitions: 
startToStart, finishToFinish and startToFinish. 

Table 4: Well-Formedness Rules to Process Sequence. ∀x,x1,x2((taskUse(x1)∧ taskUse(x2) ∧ 
(workSequence(x) ∧ predecessor(x, x1) 
∧  sucessor(x, x2) ∧  linkKind(x, 
‘startToFinish’)))→¬∃y(workSequence(y) 
∧ predecessor(x,x1) ∧ sucessor(x,x2) 
∧ linkKind(x, ‘startToFinish’))) 

(Rule #16)

∀x, y (taskConsume(x, y) → ∃x2 
(taskProduce(x2, y) ∧ pre-task(x2, x))) (Rule #17)∀ x,y (dependency(x,y) → ∃t1, t2 
(taskProduce(t1, x) ∧ taskProduce(t2, y) 
∧ pre-task(t2,t1))) 

(Rule #18)

6 EVALUATION OF THE 
WELL-FORMEDNESS RULES 

This section presents a process checking example 
using a part of the OpenUP process. The section also 
evaluates one of the well-formedness rules proposed 
in this paper. The main goal is demonstrate that the 
predicates and logical axioms used in the well-
formedness rules really express the intended 
meaning. 

6.1 Process Checking Example 

To present a process checking example we have 
considered the Inception Iteration of the OpenUP 
process, which is shown in Figure 4. In this Figure, 
above the dash line, the activities and tasks of the 
iteration are represented. Additionally, some 
information about activities sequence is also shown. 
Below the dash line, the tasks of the Initiate Project 
activity are detailed in terms of roles and work 
products (inputs and outputs). All information 
shown in the Figure 4 is based on the OpenUP 
process except the Rule Test which was introduced 
by us only for this evaluation. Originally, in 
OpenUP, the Analyst is also responsible for the 
Vision work product.  

 

Figure 4: Inception Iteration of the OpenUp. 

One of the tasks of Figure 4 (Develop Vision) is also 
represented with a UML object diagram, which is 
shown in Figure 5. The object diagram show the 
class instances of the SPEM 2.0 used to create tasks, 
work products, roles and their relationships in a 
software process. In Figure 5 letters are used to 
facilitate its understanding. The letter A indicates the 
WorkProductUse classes used to create the objects 
Vision and Glossary. The letter B represents the 
objects 01 and 02, which are instances of the 
ProcessParameter class. These kinds of objects 
represent the inputs and outputs to the task objects. 
In Figure 5, the object that represents a task is 
represented by the DV (Develop Vision) identifier. 
This object is an instance of TaskUse class and is 
indicated in the Figure 5 by the letter C. The objects 
representing instances of the RoleUse class are 
indicated in Figure 5 by the letter D. Finally, the 
letters E and F represent, respectively, objects of the 
ProcessResponsabilityAssignment (object 01 and 02) 
and ProcessPerformer classes (object 02). The 
instances of the ProcessResponsabilityAssignment 
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are used to define roles as responsible for work 
products and the instances of the ProcessPerformer 
are used to link roles as performer to the tasks. 

As seen, all process information of this example 
may be represented using classes and relationships 
of the SPEM 2.0. It means that the used process is 
compliance with the SPEM 2.0 metamodel. Another 
fact that shows the consistency of the used process is 
the validation result of the object diagram found in 
the case tools like Rational Software Modeler. This 
validation result is error free.  

However, as mentioned in Section 4, not all need 
information in a software process can be expressed 
using only the UML language. Thus, when we carry 
out the checking in the same process using our well-
formedness rules it presented errors indicating some 
inconsistencies. The first inconsistency of the 
software process used in this example is in the task 
Develop Vision. As seen in Figure 4, the task 
Develop Vision produces the work product Vision 
which has as responsible role the role Rule Test. 
This role does not perform the task Develop Vision 
and this fact violates the Rule #14 which defines that 
at least on responsible role of a work product must 
participate of their production tasks. Another 
problem can be seen in the task Plan Project. Note 
that this task has as mandatory inputs the work 
products Use Case, Use Case Model and System-
Wide Requirements which are not yet produced in 
the software process when this task is performed. 
This inconsistency violates the Rule #17. 

 

Figure 5: Object Diagram to the Develop Vision Task. 
6.2 Evaluation of the Well-formedness 

Rules 

We have evaluated our well-formedness rules 
expressed in FOLP to check their correctness. Since 
the amount of rules presented in this paper is vast 
and due the space constraints, we present only the 
evaluation of rule Rule #14. 

To start the evaluation we have created some 
variables and assigned values for them. Each 
variable represents an object of the object diagrams 
shown in Figure 5. Table 5 lists the variables and 
values used to this evaluation. 

Table 5: Variables used in the First Evaluation. 

x::= ‘DV’ x is the TaskUse ‘Develop Vision’ 
y::= ‘Vision’ y is the WorkProductUse ‘Vision’ 
r::= ‘Analyst’ r is the RoleUse ‘Analyst’ 

t::= ‘02’ 
t is the Process Parameter ‘02’ with 
direction equal to ‘out’ and 
parameterType equal to ‘Vision’ 

z::= ‘02’ 

z is the ProcessPerformer ‘02’ with 
linkedRoleUse equal to ‘Analyst’ and 
linkedTaskUse equal to ‘Develop 
Vision’ 

w::= ‘01’ 

w is the ProcessResponsability
Assignment ‘01’ with linkedRoleUse 
equal to ‘Rule Test’ and 
linkedWorkProductUse equal to 
‘Vision’ 

We have evaluated the task Develop Vision 
which presents an error in the software process. The 
formalization of the Rule #14 is the following: ∀x,y(taskProduce(x, y) → ∃r, w, z (roleUse(r) 

∧ (processPerfomer(z)∧ linkedTaskUse(z,x)∧ linkedRo
leUse(z,r)) ∧ (processResponsabilityAssignment(w)∧  l
inkedRoleUse(w,r)∧ linkedWorkProductUse(w,y)))) 

This rule uses the taskProduce(x, y) that is 
represented by the following sentence in FOLP: 

 ∀x,y,t((taskUse(x)∧ workProductUse(y)∧  (processPar
ameter(t) ∧ direction(t, ‘out’) ∧ parameterType(t, y)) 
∧ part-of(t, x)) → taskProduce(x, y)) 

 

Initially we have evaluated  the taskProduce(x,y). 
Considering the variables of Table 5 we have: 

 

taskUse(DV)::= T  
workProductUse(Vision)::= T 
ProcessParameter(02)::= T 
direction(02, ‘out’)::= T  
parameterType(02, Vision)::= T 
part-of(02, DV)::= T 
taskProduce(Criar DV, Vision)::= T 

 

Then: ∀ x,y,t ((T  ∧  T ∧ ( T ∧  T ∧  T) ∧  T) → T) ∀ x,y,t (T → T)::= T 
 

Predicate taskProduce(DV, Vision) evaluates to 
True. Once the task Develop Vision produces the 
work product Vision the expected value was True. 
Considering Rule #14 we have: 
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roleUse(Analyst)::= T 
processPerformer(02)::=T 
linkedRoleUse(02, Analyst)::= T 
linkedTaskUse(02, DV)::= T 
processResponsabilityAssignment(01)::=T 
linkedWorkProductUse(01, Vision)::= T 
linkedRoleUse(01, Analyst)::= F 

 

Then: ∀x, y ( T → ∃r, w, z (T ∧ (T ∧ T ∧ T) ∧ (T ∧ F ∧ T))) ∀x, y ( T → ∃r, w, z (F)) ∀x, y ( T → F)::= F 
 

The value to the Rule #14 is False. This value was 
expected once the values assigned to the variables 
generate one inconsistency in the software process 
as already shown in the Subsection 6.1. It suggests 
that the theory of the Rule #14 is valid. 

Although we have not detailed the evaluation of 
the Rule #17, the value returned to this evaluation is 
False. It also indicates that the theory of this rule is 
valid. 

7 CONCLUSIONS  

In this paper, we have proposed well-formedness 
rules that allow finding errors in a software process 
before it is enacted. By noting inconsistencies in the 
process, we believe it is possible for modellers to 
refine a process model until it is free of 
inconsistencies. 

The proposed well-formedness rules were based 
on SPEM 2.0 metamodel. To define them we have 
modified multiplicity constraints and for the more 
elaborated rules which could not be expressed only 
with UML, we have used FOLP. 

Several research directions, which we are 
working on, have been left open during this paper, 
and here we emphasize two of them. First, more 
well-formedness rules considering others process 
elements and consistency aspects need to be 
provided. Related to this, preliminary studies 
suggest two important facts: (1) other process 
elements and relationships must be included in the 
SPEM 2.0 metamodel and (2) the OCL language 
does not support the definition of all well-
formedness rules needed to guarantee consistency. 
For example, the well-formedness rules to check 
cycles in a software process, which involve 
temporary aspects, may not be expressed using 
OCL. This fact has been the motivation to use FOLP 
in this paper. Secondly, with regard to automatic 
support, the prototype of a tool prototype is being 

developed. This will support the definition and 
tailoring of SPEM-based software processes. 
Furthermore, a process checking, which implements 
the well-formedness rules, will be provided. 
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