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Abstract: Many frequent-pattern mining algorithms were designed to handle precise data, such as the FP-tree structure 
and the FP-growth algorithm. In data mining research, attention has been turned to mining frequent patterns 
in uncertain data recently. We want frequent-pattern mining algorithms for handling uncertain data. A 
common way to represent the uncertainty of a data item in record databases is to associate it with an 
existential probability. In this paper, we propose a novel uncertain-frequent-pattern discover structure, the 
mUF-tree, for storing summarized and uncertain information about frequent patterns. With the mUF-tree, 
the UF-Evolve algorithm can utilize the shuffling and merging techniques to generate iterative versions of 
it. Our main purpose is to discover new uncertain frequent patterns from iterative versions of the mUF-tree. 
Our preliminary performance study shows that the UF-Evolve algorithm is efficient and scalable for mining 
additional uncertain frequent patterns with different sizes of uncertain databases. 

1 INTRODUCTION 

Data uncertainty is often found in real-world 
applications because of measurement inaccuracy, 
sampling discrepancy, outdated data sources, or 
other errors. One type of data uncertainty is 
existential uncertainty. In existential uncertainty, 
there are applications in which it is uncertain about 
the presence or absence of some items or events. For 
example, we may highly suspect, while cannot 
guarantee, that a patient suffers from an illness based 
on a few symptoms. The uncertainty of such 
suspicion can be expressed in terms of existential 
probability. If Ri represents a patient record, then 
each item within Ri represents an illness and is 
associated with an existential probability expressing 
the likelihood of the patient suffering from that 
illness in Ri. As an example, in Ri, the patient can 
have an 80% likelihood of suffering from fever, and 
a 60% likelihood of suffering from H1N1. 

Han et al. (Han, 2004) proposed the FP-tree 
structure, which is an extended prefix-tree structure 
for storing compressed, crucial information about 
frequent patterns, and developed an efficient FP-
growth algorithm. In our work, we extend the FP-
tree for mining uncertain data. The key contributions 
are (i) the development of the mUF-tree structure to 
summarize the content of records consisting of 
uncertain data, and (ii) the idea of shuffling and 

merging nodes of mUF-tree, whose difference is 
small, to derive more uncertain frequent patterns by 
the UF-Evolve algorithm. 

The remainder of the paper is organized as 
follows. Section 2 gives a literature review and 
Section 3 gives the problem statement. Section 4 
introduces the mUF-tree and its construction 
algorithm. Next, Section 5 discusses an mUF-tree-
based uncertain-frequent-pattern mining algorithm, 
the UF-Evolve algorithm, and Section 6 presents our 
performance study. Finally, Section 7 concludes our 
work. 

2 LITERATURE REVIEW 

For uncertain data representation, Antova et al. 
(Antova, 2007) proposed U-relations, a succinct and 
purely relational representation system for uncertain 
databases. U-relations support attribute-level 
uncertainty using vertical partitioning. When 
considering positive relational algebra extended by 
an operation for computing possible answers, a 
query on the logical level can be translated into, and 
evaluated as, a single relational algebra query on the 
U-relation representation. The approach takes full 
advantage of query evaluation and optimization 
techniques on vertical partitions. Chui et al. (Chui, 
2007) proposed an algorithm called U-Apriori. They 
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also introduced a trimming strategy to reduce the 
number of candidates that need to be counted based 
on the Apriori approach. The Apriori heuristic 
achieves good performance gained by (possibly 
significantly) reducing the size of candidate sets. 
However, in situations with a large number of 
frequent patterns, long patterns, or low minimum 
support thresholds, an Apriori-like algorithm may 
suffer from the following two nontrivial issues: it is 
costly to handle a huge number of candidate sets; 
and it is tedious to repeatedly scan the database and 
check a large set of candidates by pattern matching, 
which is especially true for mining long patterns. 

Han et al. (Han, 2004) proposed the FP-tree 
structure and the FP-growth algorithm for efficiently 
mining frequent patterns without generation of 
candidate itemsets for precise data. It consists of two 
phases. The first phase focuses on constructing the 
FP-tree from the database, and the second phase 
focuses on applying FP-growth to derive frequent 
patterns from the FP-tree. Each node in the FP-tree 
consists of three attributes, item-name, count and 
node-link. In the FP-tree, each entry in the header 
table consists of two fields: (1) item-name, and (2) 
head of node-links (a pointer pointing to the first 
node in the FP-tree carrying the item-name). Below, 
an example is used to illustrate the uses of the FP-
tree. Suppose there is a precise transaction database 
as shown in Table 1, and the minimum support 
threshold is 3. The FP-tree together with the 
associated node-links are shown in Figure 1. 

Table 1: A precise transaction database. 

TID Items 
1 f, a, c, d, g, i, m, p 
2 a, b, c, f, l, m, o 
3 b, f, h, j, o 
4 b, c, k, s, p 
5 a, f, c, e, l, p, m, n 

 

 
Figure 1: The FP-tree for data in Table 1. 

Leung et al. (Leung, 2007 and 2008) proposed 
the UF-tree structure, a different tree structure than 
the FP-tree for capturing the content of transactions 

consisting of uncertain data, and the UF-growth 
algorithm, a mining algorithm for finding frequent 
patterns from the UF-tree. Each node in the UF-tree 
stores item, expected support and occurrence (i.e. 
the number of transactions containing such an item). 
UF-growth computes expected support of itemsets 
and finds frequent patterns from the UF-tree. The 
expected support of an itemset in a transaction is the 
expected probability (over all “possible worlds”) of 
coexistence of all the items in the itemset. The 
expected support of an itemset in a database is the 
sum of the expected probability of the itemset over 
all transactions. This calculation incurs much 
information loss. 

3 PROBLEM STATEMENT 

Here, in this section, we give some definitions of 
uncertain data before introducing our target problem. 
First, we define what an uncertain record and an 
uncertain database are. 
 

Definition 1. Uncertain Record (R). Let I = {a1, a2, 
…, ak} be a set of items. An uncertain record R = 
{(a1:p1), (a2:p2), …, (am:pm)}, where (ai ∈  I) ∧  (ai 
appears once with pi as the probability indicating its 
existence). 
 

Definition 2. Uncertain Database (UDB). An 
uncertain database UDB consists of multiple 
uncertain records, i.e. UDB = <R1, R2, …, Rn>. 
 

An example uncertain database is shown in Table 2. 

Table 2: An uncertain database. 

Record ID Item:probability pairs 
1 (a:0.2), (f:0.8), (g:0.1), (d:0.3), (c:0.2) 
2 (a:0.2), (d:0.3), (c:0.2), (f:0.8) 
3 (b:0.3), (f:0.8), (a:0.2) 
4 (a:0.4), (c:0.7), (d:0.6), (f:0.8) 
5 (f:0.8) 
6 (a:0.7), (c:0.4), (b:0.5) 
7 (a:0.7) 
8 (f:0.8), (a:0.4), (c:0.7), (d:0.6) 
9 (b:0.5), (a:0.7), (c:0.4) 
10 (d:0.4), (e:0.5), (f:1.0), (a:0.1) 
11 (e:0.6), (c:0.3), (d:0.5), (a:0.1), (f:1.0) 
12 (a:0.1), (f:1.0), (c:0.3), (d:0.5) 
13 (a:0.1), (f:1.0) 
14 (f:1.0) 
15 (d:0.4), (c:0.4), (b:0.2) 
16 (b:0.2) 
17 (b:0.2), (f:0.6) 
18 (b:0.2) 

In an uncertain database, it is often that an item 
with a probability appears in a record while the same 
item with another probability appears in another 
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record. For example, in Table 2, (d:0.4) appears in 
the 10th record while (d:0.5) appears in the 11th 
record. Given a predefined minimum support 
threshold, an item with a specific probability may 
not have sufficient support (i.e. the number of 
records containing it in UDB) to be a frequent 
pattern. 

In order to improve the chance of having more 
and longer frequent patterns, one can consider to 
merge the same items with only small differences in 
their various probabilities for satisfying the support. 
For example, we can merge (d:0.4) and (d:0.5) as d 
with a probability range [0.4-0.5]. Hence, for a 
group of item:probability pairs in which all items are 
the same, we can use (lowerbound-upperbound) to 
represent the spread of probabilities for the item. 
Once the item:probability pairs are grouped, more 
general frequent patterns can be found. 

With the above arrangement, we define what a 
maximum merging threshold and an uncertain 
frequent pattern are. 
 

Definition 3. Maximum Merging Threshold (γ ). 
A maximum merging threshold γ  is used to 
determine whether two item:probability pairs can be 
merged. Assume that an item with a probability (a:p1) 
appears in a record while the same item with another 
probability (a:p2) appears in another record. If abs(p1 
– p2) γ≤ , then (a:p1) and (a:p2) can be merged as 
(a:[l-u]), where (l = min(p1, p2)) ∧  (u = max(p1, 
p2)). Here, (a:[l-u]) denotes the item with its 
(lowerbound-upperbound). 
 

Definition 4. Uncertain Frequent Pattern (UFP). 
Let an item with its (lowerbound-upperbound) be 
denoted as (a:[l-u]). An uncertain frequent pattern 
UFP is represented as (a1:[l1-u1])(a2:[l2-u2])…(ak:[lk-
uk]):s, where (s is the support for UFP) ∧  (s ≥  a 
predefined minimum support threshold). A record R 
contains an UFP if for each (ai:[li-ui]) ∈  UFP, ∃  
(aj:pj) ∈  R, such that (ai = aj) ∧  (li ≤  pj ≤  ui). 
 

Given an uncertain database, a minimum support 
threshold and a maximum merging threshold, we are 
interested in mining a possible set of uncertain 
frequent patterns. Our approach is to solve the 
problem in two phases. 
• In the first phase, an mUF-tree is constructed for 
storing summarized and uncertain information about 
frequent patterns. 
• In the second phase, the UF-Evolve algorithm, 
which utilizes the shuffling and merging techniques 
to generate iterative versions of the mUF-tree, is 
applied for discovering new uncertain frequent 
patterns. 

4 MUF-TREE: DESIGN AND 
CONSTRUCTION 

Given an uncertain database, we propose to use an 
mUF-tree to store summarized and uncertain 
information about frequent patterns. An mUF-tree 
with its header table is shown in Figure 2. 
 

 
Figure 2: mUF-tree. 

Definition 5. Uncertain Frequent Pattern Tree 
(mUF-tree). An mUF-tree has the following 
characteristics. 
1. An mUF-tree has a virtual root. Each node in the 
mUF-tree consists of five attributes, item, 
lowerbound, upperbound, frequency and node-link. 
Lowerbound and upperbound register the spread of 
probabilities of the corresponding item. To facilitate 
tree traversal, nodes with the same 
item:(lowerbound-upperbound) are linked in 
sequence via node-links. In Figure 2, ai:[li-ui]:fi in 
each node Ni represents item:(lowerbound-
upperbound):frequency. 
2. In the mUF-tree, each entry in the header table 
consists of four fields: (1) item, (2) lowerbound-
upperbound, (3) support (the cumulative frequency 
of the item:(lowerbound-upperbound) in the mUF-
tree), and (4) head of node-links (a pointer pointing 
to the first node in the mUF-tree carrying the 
item:(lowerbound-upperbound)). 
3. In the header table, item:(lowerbound-
upperbound) pairs are in the descending order of 
supports. 
 

The UF-Construct algorithm is used to construct an 
mUF-tree from an uncertain database, and its output 
is the initial mUF-tree. Unlike the FP-tree 
construction algorithm, UF-Construct scans the 
database without specifying a minimum support 
threshold. With this change, the mUF-tree built 
contains all information. Compared with FP-tree, the 
mUF-tree stores uncertain information about items, 
and maintains the structure to be further modified 
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for discovering more uncertain frequent patterns. 
Figure 3 shows the steps of the UF-Construct 
algorithm. 
 
UF-Construct algorithm. 
Input: A UDB. 
Output: An mUF-tree T. 
 
Procedure UF-Construct(UDB) 
(1) 
 
 
(2) 
(3) 
(4) 
 
(5) 
(6) 
(7) 
(8) 
 
(9) 
(10) 
(11) 
 
(12) 
 
(13) 
 
(14) 
 
 
(15) 

scan UDB once and collect a_set = the set of items 
with their respective supports in descending order; 

create T with a root; 
for each record R in UDB do { 

R’ = the item:probability pairs in R with items 
putting in the same order as in a_set; 

r = root(T); 
for i = 1 to length(R’) do { 

(ai:pi) = the ith item:probability pair of R’; 
find Nc = child(r), where (Nc.ac = ai) ∧  (Nc.lc = 
pi); 

if ∃  Nc then Nc.fc ++; 
else { 

create node Nc with (Nc.ac = ai) ∧  
(Nc.lc = Nc.uc = pi) ∧  (Nc.fc = 1); 

insert Nc as the rightmost child of r; 
} 
update header table and node-links within T; 
r = Nc; 

} 
} 
return T; 

Figure 3: UF-Construct. 

With the records in Table 2, the mUF-tree 
together with the associated node-links are shown in 
Figure 4. Since the constructed mUF-tree is large, 
we split it into two parts. Figure 4(a) shows the 
header table with the left half of the mUF-tree, and 
Figure 4(b) shows the right half of the mUF-tree. 
For the ease of understanding, we only show several 
node-links. 

5 DISCOVERING NEW 
UNCERTAIN FREQUENT 
PATTERNS 

If we want to use the FP-growth algorithm to mine 
frequent patterns with mUF-tree(right) in Figure 
4(b), we can consider ai:[li-ui] as an item. 

Then FP-growth will discover a set of frequent 
patterns {(b:[0.2-0.2]):4, (a:[0.1-0.1]):4, (f:[1.0-
1.0])(a:[0.1-0.1]):4, (f:[1.0-1.0]):5} with the 
minimum support threshold be 3. 

In an mUF-tree, it is often that an item with a 

 
(a) mUF-tree(left). 

 
(b) mUF-tree(right). 

Figure 4: The mUF-tree for data in Table 2. 

(lowerbound-upperbound) appears in a node while 
the same item with another (lowerbound-
upperbound) appears in another node. For example, 
in Figure 4(b), d:[0.4-0.4] appears in N15 while 
d:[0.5-0.5] appears in N18. One can consider to 
merge the same items with only small differences in 
their various (lowerbound-upperbound) for 
satisfying the support. For example, we can merge 
d:[0.4-0.4] and d:[0.5-0.5] as d:[0.4-0.5]. Hence, for 
a group of item: (lowerbound-upperbound) pairs of 
the same item, we can use a combined (lowerbound-
upperbound) to represent it. Once the 
item:(lowerbound-upperbound) pairs are grouped, 
more general frequent patterns can be found. 
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Hence, we are proposing to further discover new 
uncertain frequent patterns by utilizing shuffling and 
merging of the mUF-tree. Nodes can be merged to 
evolve into another mUF-tree for further pattern 
mining. The steps can be repeated until merging is 
not possible. 

5.1 Preliminary Definitions 

For the ease of future discussion, we have further 
definitions before presenting the algorithms. 
 

Definition 6. Within Range. Given a maximum 
merging threshold γ , we define two nodes Nb and 
Nc are within range if (Nb.ab = Nc.ac) ∧  (abs(Nb.ub 
– Nc.lc) γ≤ ) ∧  (abs(Nc.uc – Nb.lb) γ≤ ). 
 

In Figure 4(b), given a maximum merging threshold 
0.3, then N15 and N18 are within range, as well as N16 
and N19 are within range. 
 

Definition 7. Common Items (CI). Given a pair of 
paths PB = <Nb1Nb2…Nbk> and PC = 
<Nc1Nc2…Ncm>, we define CI(PB, PC) = {a1, a2, …, 
an} as a sequence of ordered items, where (n ≤  k) 
∧  (n ≤  m) ∧  (∀  i ∈  {1, 2, …, n}, there is a node 
in PB and a node in PC, such that these two nodes 
contain ai and are within range). 
 

In Figure 4(b), given a pair of paths PB = <N15N16> 
and PC = <N17N18N19>, then CI(PB, PC) = {d, e}. 

We want to merge the nodes corresponding to 
common items in the two paths. However, it is 
difficult to merge N15 with N18 and N16 with N19 
directly. We need to shuffle these nodes to be in the 
same order. Here, we define the Maximum 
Attainable Peak (MAP) of a node in a path first. 
 

Definition 8. Maximum Attainable Peak (MAP). 
Given a_set = {a11, a12, …, a1k} as a sequence of 
ordered items, and a path PB = <N21N22…N2m>, 
where the items in a_set is a subset of the items in 
PB. We take out each item a1i in a_set sequentially 
and trace along PB. If the position of a1i in PB is not 
as in a_set, the node N2j containing a1i will be 
shuffled upward until the position of a1i in PB is as 
in a_set. The final position is called the MAP of N2j 
in PB. 
 

Now, we are ready to describe two cases for 
shuffling the node N2j with its parent node Nq. 
• Case 1: N2j.f2j = Nq.fq. Swap N2j and Nq. 
• Case 2: N2j.f2j < Nq.fq. Create a new node, Nr, 
with the same property of Nq except Nr.fr = Nq.fq – 
N2j.f2j. Make Nr as another child of the parent of Nq. 
Set Nq.fq = N2j.f2j. Update the header table and node-

links within the mUF-tree, and then follow the 
handling of Case 1 for N2j and Nq. 
 

The node N2j will be shuffled until it reaches its 
MAP in PB. 

In Figure 4(b), given a_set = {d, e}, then the 
MAP of N18 in the path <N17N18N19> is the 1st 
position. We shuffle N18 with N17, which follows 
Case 1. mUF-tree(right) evolves into mUF-
tree(right)2, as shown in Figure 5. 
 

 
Figure 5: mUF-tree(right)2. 

After shuffling N18 to its MAP, the MAP of N19 
in the updated path <N18N17N19> is the 2nd position. 
We shuffle N19 with N17, which follows Case 2. We 
create a new node N24 and modify N17, which 
evolves into mUF-tree(right)3, as shown in Figure 6. 
Then we shuffle N19 with N17, which evolves into 
mUF-tree(right)4, as shown in Figure 7. 

 
Figure 6: mUF-tree(right)3. 
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Figure 7: mUF-tree(right)4. 

After shuffling, the nodes corresponding to 
common items are above the other nodes in the two 
paths. It is much easier to merge N15 with N18 and 
N16 with N19. 

Next, we define the merging criteria, which 
determine how two candidate nodes can be merged 
to a new node. 
 

Definition 9. Merging Criteria. If two nodes Nb 
and Nc are within range, they can be merged as a 
new node Nq, where (Nq.aq = Nb.ab) ∧  (Nq.lq = 
min(Nb.lb, Nc.lc)) ∧  (Nq.uq = max(Nb.ub, Nc.uc)) ∧  
(Nq.fq = Nb.fb + Nc.fc). 

We merge N15 with N18 as a new node N25, 
which evolves into mUF-tree(right)5, as shown in 
Figure 8. And then we merge N16 with N19 as a new 
node N26, which evolves into mUF-tree(right)6, as 
shown in Figure 9. 
 

Definition 10. Overlap. Given a path PB, 
overlap(PB) is true if PB shares common nodes with 
any other path in the mUF-tree. 
 

In Figure 4(b), given PB = <N13N14N15N16>, PC 
= <N13N14N17N18N19> and PD = <N17N18N19>, then 
overlap(PB) since PB shares N13 and N14 with PC, 
and !overlap(PD) since PD does not share common 
nodes with any other path. 
 

Definition 11. Above. Given a_set = {a11, a12, …, 
a1k} and a path PB = <N21N22…N2m>, above(a_set , 
PB) is true if (k ≤  m) ∧  (∀  i ∈  {1, 2, …, k}, a1i = 
N2i.a2i). 

In Figure 4(b), given a_set = {d, e}, PB = 
<N15N16> and PC = <N17N18N19>, then above(a_set, 
PB) since d and e are above other items in PB, and 
!above(a_set, PC) since d and e are not above other 
items in PC. 

 
Figure 8: mUF-tree(right)5. 

 
Figure 9: mUF-tree(right)6. 

There can be five cases for shuffling a pair of 
paths PB and PC. In Case 1, both PB and PC do not 
share common nodes with any other path in the 
mUF-tree. Therefore, PB and PC can be shuffled 
without influencing others. In Case 2, PB does not 
share common nodes with any other path, but PC 
does. However, in PC, the nodes with common items 
are above other nodes. Therefore, we do not need to 
shuffle PC. Case 3 is similar to Case 2 with the 
information in PB and PC inter-changed. In Case 4, 
both PB and PC share common nodes with other 
paths, but with nodes having common items above 
other nodes. Therefore, neither PB nor PC needs to 
be shuffled. For all the four cases, PB and PC can be 
merged after shuffling if necessary. 

All other conditions beside the above are 
considered as Case 0. In Case 0, shuffling is not 
allowed. Since shuffling in the two paths may induce 
much effort in re-structuring of the whole mUF-tree. 
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Definition 12. Shuffle Case (SC). Given a pair of 
paths PB and PC, and a_set = CI(PB, PC), there are 
five shuffle cases. 
• SC(PB, PC) = 1 if !overlap(PB) ∧  !overlap(PC). 
• SC(PB, PC) = 2 if !overlap(PB) ∧  overlap(PC) 
∧  above(a_set, PC). 
• SC(PB, PC) = 3 if overlap(PB) ∧  above(a_set, 
PB) ∧  !overlap(PC). 
• SC(PB, PC) = 4 if overlap(PB) ∧  above(a_set, 
PB) ∧  overlap(PC) ∧  above(a_set, PC). 
• SC(PB, PC) = 0 for other conditions. 
 

For the ease of understanding, the shuffle cases are 
shown in Table 3. 

Table 3: Shuffle cases. 

SC(PB, PC) !overlap(PC) overlap(PC) ∧  
above(a_set, PC) 

!overlap(PB) 1 2 
overlap(PB) ∧  
above(a_set, PB) 3 4 

Take the mUF-tree in Figure 4 as an example. 
Given a maximum merging threshold 0.3, then the 
shuffle cases with the corresponding path pairs are 
shown in Table 4. 

Table 4: Shuffle cases with corresponding path pairs. 

PB PC CI(PB,
PC) 

SC(PB,
PC) 

<N15N16> <N17N18N19> {d, e} 1 
<N10N11N12> <N20N21N22> {b, c} 2 
<N2N3N4N5> <N7N8N9> {a, d} 3 

<N1N2N3N4N5> <N13N14N15N16> {f, a, d} 4 
<N10N11N12> <N13N14N17N18N19> {c} 0 
<N1N7N8N9> <N20N23> {f} 0 

<N1N2N6> <N10N11N12> {b} 0 
<N1N2N6> <N20N23> {b, f} 0 

<N1N7N8N9> <N20N21N22> {c, d} 0 

Definition 13. Common Ancestor Path (CAP). 
Given a pair of paths PB = <Nb1Nb2…Nbk> and PC = 
<Nc1Nc2…Ncm>, we define CAP(PB, PC) = 
<Nb1Nb2…Nbn>, where (n ≤  k) ∧  (n ≤  m) ∧  (∀  
i ∈  {1, 2, …, n}, Nbi and Nci are the same node). 
 

In Figure 4(b), given a pair of paths PB = 
<N13N14N15N16> and PC = <N13N14N17N18N19>, then 
CAP(PB, PC) = <N13N14>. 
Definition 14. Single Prefix-Path Part and 
Multipath Part. The single prefix-path part of an 
mUF-tree consists of a single path from the root to 
Nk, the first node containing more than one child. 
The multipath part of an mUF-tree consists of the 
descendants of Nk, with a virtual root connecting to 
the children of Nk as the parent. 

For the mUF-tree shown in Figure 2, the single 
prefix-path part and the multipath part are shown in 
Figure 10. 

 
Figure 10: Single prefix-path part and multipath part of 
mUF-tree. 

5.2 The UF-Evolve Algorithm 

With  the aforementioned definitions, we present the 
UF-Evolve algorithm for mining frequent patterns in 
an uncertain database by using an mUF-tree. The 
algorithm integrates the UF-Mine algorithm for 
finding out the possible frequent patterns and the 
UF-Shuffle algorithm for moving and merging the 
nodes in the mUF-tree iteratively. Figure 11 shows 
the steps of the UF-Evolve algorithm. 

UF-Evolve algorithm. 
Input: An mUF-tree T, a minimum support threshold 
σ , and a maximum merging threshold γ . 

Output: A set of uncertain frequent patterns. 
 
Procedure UF-Evolve(T, σ , γ ) 

(1) FPS = φ ;  // Frequent pattern set 
(2) 
(3) 
(4) 

do { 
FPS = FPS ∪  UF-Mine(T, null, σ ); 
T = UF-Shuffle(T, γ ); 

(5) 
(6) 

} while T has been modified; 
return FPS; 

Figure 11: UF-Evolve. 

In line (17) of Figure 12, (FPS(P) ×  FPS(Q)) 
means concatenating each frequent pattern FPi in 
FPS(P) with each frequent pattern FPj in FPS(Q), 
with support equal to FPj.support. 

In order to illustrate how the different algorithms 
work, we will use a running example with mUF-
tree(right) in Figure 4(b). Suppose the minimum 
support threshold is 3, and the maximum merging 
threshold is 0.3. UF-Evolve calls UF-Mine, and UF- 
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UF-Mine algorithm. 
Input: An mUF-tree T, an uncertain frequent pattern α  = 
(a1:[l1-u1])(a2:[l2-u2])…(ak:[lk-uk]):s, and a minimum 
support threshold σ . 

Output: A set of uncertain frequent patterns. 
 

Procedure UF-Mine(T, α , σ ) 
(1) 
(2) 

P = the single prefix-path part of T; 
Q = the multipath part of T; 

(3) FPS(P) = φ ;  // Frequent pattern set in P 

(4) FPS(Q) = φ ;  // Frequent pattern set in Q 

(5) for each pattern β  formed from P where all 
 nodes in β  have sufficient support do { 

(6) β .support = minimum support of nodes in 
 β ; 

(7) append α  to the end of β ; 

(8) FPS(P) = FPS(P) ∪ β ; 
 
(9) 

} 
for each (ai:[li-ui]) in Q with sufficient support do { 

(10) β  = (ai:[li-ui]); 

(11) β .support = (ai:[li-ui]).support; 

(12) append α  to the end of β ; 

(13) FPS(Q) = FPS(Q) β∪ ; 
(14) find cond_tree from Q constructed with the 

conditional pattern-base of β ; 

// Conditional mUF-tree of β  
(15) 
(16) 

if ∃  cond_tree then 
FPS(Q) = FPS(Q) ∪  

UF-Mine(cond_tree, β , σ ); 
} 

(17) return FPS(P) ∪  FPS(Q) ∪  
(FPS(P) ×  FPS(Q)); 

Figure 12: UF-Mine. 

Mine returns a set of uncertain frequent patterns, 
which is {(b:[0.2-0.2]):4, (a:[0.1-0.1]):4, (f:[1.0-
1.0])(a:[0.1-0.1]):4, (f:[1.0-1.0]):5}. 

The core algorithm is the UF-Shuffle algorithm, 
which is shown in Figure 13. Each time it is called 
by UF-Evolve, it collects the set of paths under the 
root and finds the most suitable pair of paths to 
shuffle and merge. 

There can be different versions of the UF-Shuffle 
algorithm. Figure 14 shows UF-Shuffle_2, which is 
a variant of UF-Shuffle. Each time it is called by 
UF-Evolve, it collects the set of paths under the root 
and tries to shuffle and merge each pair of paths. If a 
pair of paths are shuffled and merged, they will be 
removed from the set of paths since they have been 
modified and no longer exist. 

After shuffling, candidate nodes can then be  

UF-Shuffle algorithm. 
Input: An mUF-tree T, and a maximum merging threshold γ . 
Output: A shuffled mUF-tree T. 
Procedure UF-Shuffle(T, γ ) 
(1) 
 
(2) 
 
(3) 
(4) 
(5) 
(6) 
 
(7) 
 
 
 
(8) 
(9) 
(10) 
 
 
(11) 
 
(12) 
 
(13) 
 
(14) 
 
 
(15) 

scan T once and collect P_set = the set of paths under 
root(T); 

for each pair of paths PB and PC in P_set do { 
P = CAP(PB, PC); 
PB = PB excludes P; 
PC = PC excludes P; 
get CI(PB, PC) and SC(PB, PC); 

} 
suppose (PB’, PC’) is a pair of paths that (has maximum 

length(CI(PB, PC))) ∧  (length(CI(PB’, PC’)) > 0) ∧  
(SC(PB’, PC’) > 0); 

if ∃  (PB’, PC’) then { 
switch SC(PB’, PC’) { 

case 1: shuffle the nodes corresponding to CI(PB’, 
PC’) to their MAP in PB’ and PC’; 

case 2: shuffle the nodes corresponding to CI(PB’, 
PC’) to their MAP in PB’; 

case 3: shuffle the nodes corresponding to CI(PB’, 
PC’) to their MAP in PC’; 

case 4: do nothing; 
} 
T = UF-Merge(T, PB’, PC’, 

length(CI(PB’, PC’))); 
} 
return T; 

Figure 13: UF-Shuffle. 

Procedure UF-Shuffle_2(T, γ ) 
(1) 
 
(2) 
 
(3) 
(4) 
(5) 
(6) 
 
(7) 
(8) 
 
(9) 
 
(10) 
 
(11) 
 
(12) 
 
(13) 
 
 
 
(14) 

scan T once and collect P_set = the set of paths under 
root(T); 

for each pair of paths PB and PC in P_set do { 
P = CAP(PB, PC); 
PB = PB excludes P; 
PC = PC excludes P; 
if (length(CI(PB, PC)) > 0) ∧  

(SC(PB, PC) > 0) then { 
switch SC(PB, PC) { 

case 1: shuffle the nodes corresponding to CI(PB, 
PC) to their MAP in PB and PC; 

case 2: shuffle the nodes corresponding to CI(PB, 
PC) to their MAP in PB; 

case 3: shuffle the nodes corresponding to CI(PB, 
PC) to their MAP in PC; 

case 4: do nothing; 
} 
T = UF-Merge(T, PB, PC, 

length(CI(PB, PC))); 
remove PB and PC from P_set; 

// Updates will be used in loop at line (2) 
} 

} 
return T; 

Figure 14: UF-Shuffle_2. 

merged with some updating. The algorithm of UF-
Merge is shown in Figure 15. 
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UF-Merge algorithm. 
Input: An mUF-tree T, a pair of paths PB = <Nb1Nb2…Nbk> and 

PC = <Nc1Nc2…Ncm>, and n, the number of nodes to be merged 
in each path. 

Output: A merged mUF-tree T. 
 
Procedure UF-Merge(T, PB, PC, n) 
(1) 
(2) 
 
 
 
(3) 
(4) 
 
(5) 

for i = 1 to n do { 
Nq = the new node formed by merging Nbi and Nci and 

updating its item, lowerbound, upperbound, 
frequency, node-link, parent and children; 

remove Nbi and Nci from T; 
update header table and node-links within T; 

} 
return T; 

Figure 15: UF-Merge. 

In continuing the example, UF-Evolve calls UF-
Shuffle to shuffle mUF-tree(right) in Figure 4(b), 
and UF-Shuffle generates mUF-tree(right)4, as 
shown in Figure 7. 

UF-Shuffle calls UF-Merge and recommends the 
pair of paths to be merged (i.e. <N15N16> and 
<N18N19N17>). UF-Merge merges the pair of paths, 
and returns the generated mUF-tree(right)6, as 
shown in Figure 9. 

UF-Evolve calls UF-Mine, and UF-Mine returns 
a new set of uncertain frequent patterns, which is 
{(d:[0.4-0.5]):3, (a:[0.1-0.1])(d:[0.4-0.5]):3, (f:[1.0-
1.0])(d:[0.4-0.5]):3, (f:[1.0-1.0])(a:[0.1-0.1])(d:[0.4-
0.5]):3, (b:[0.2-0.2]):4, (a:[0.1-0.1]):4, (f:[1.0-
1.0])(a:[0.1-0.1]):4, (f:[1.0-1.0]):5}. 

UF-Evolve combines the original set of uncertain 
frequent patterns with the new set. Now, the set of 
uncertain frequent patterns becomes {(b:[0.2-0.2]):4, 
(a:[0.1-0.1]):4, (f:[1.0-1.0])(a:[0.1-0.1]):4, (f:[1.0-
1.0]):5, (d:[0.4-0.5]):3, (a:[0.1-0.1])(d:[0.4-0.5]):3, 
(f:[1.0-1.0])(d:[0.4-0.5]):3, (f:[1.0-1.0])(a:[0.1-
0.1])(d:[0.4-0.5]):3}. 

The algorithms continue to attempt building new 
mUF-trees until not successful. At the end, the 
patterns are stabilized. 

6 PERFORMANCE STUDY 

6.1 Experimental Environment 
and Data Preparation 

In this section, we present some performance 
comparison of UF-Evolve with FP-growth. All the 
experiments are performed on a 2.83 GHz Xeon 
server with 3.00 GB of RAM, running Microsoft 
Windows Server 2003. The programs are written in 
Java. Runtime here means the total execution time, 

i.e. the period between input and output, instead of 
CPU time. Also, all the runtime measurements of 
UF-Evolve/FP-growth included the time of 
constructing mUF-trees/FP-trees from the original 
databases. 

The experiments are done on a synthetic 
database (T10.I4.D3K), which is generated by using 
the methods in (IBM). In this database, the average 
record length is 10, the average length of pattern is 
4, and the number of records is 3K. Besides, we set 
the number of items as 1000. All the probabilities 
for the items are randomly generated. 

For UF-Evolve, each record in the database 
consists of multiple item:probability pairs. However, 
for FP-growth, each record in the database consists 
of multiple items. These two representations have 
different semantic meanings. In order to carry out a 
consistent comparison of UF-Evolve with FP-
growth, we make the following arrangements. 
• First we generate UDB for UF-Evolve. Each 
record in UDB consists of multiple (ai:pi). 
• Based on UDB, we generate a special database 
UDB’ for FP-growth. Each record in UDB’ consists 
of multiple (aj:[lj-uj]), where aj = ai, and lj = uj = pi. 
FP-growth treats each (aj:[lj-uj]) as an item. 
• While constructing an mUF-tree from UDB, we 
keep the Record IDs in the corresponding nodes. 
When UF-Evolve generates iterative versions of the 
mUF-tree, we record the changes of (lowerbound-
upperbound) in the nodes together with their Record 
IDs. 
• We use the Record IDs to trace back to the 
records in UDB’ and change the corresponding lj 
and uj. Then there will be iterative versions of UDB’ 
for discovering new frequent patterns by FP-growth. 
 

With these arrangements, we will have a consistent 
comparison for the runtime and number of mined 
frequent patterns from the two algorithms. 

6.2 Experiments 

In the first experiment, we measured the runtime, 
number of shuffles and number of mined frequent 
patterns with different numbers of records for UF-
Evolve and FP-growth. The number of records 
varies from 0.1K to 3K, the minimum support 
threshold is 3%, and the maximum merging 
threshold is 0.3. The runtime of UF-Evolve and FP-
growth are shown in Figure 16. UF-Evolve is faster 
and more scalable than FP-growth. The number of 
shuffles of UF-Evolve is shown in Figure 17. Since 
when the number of records increases, UF-Evolve 
shuffles a bigger mUF-tree. The numbers of mined 
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frequent patterns of UF-Evolve and FP-growth are 
shown in Figure 18. The two algorithms mined the 
same numbers and the same sets of frequent 
patterns. 
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Figure 16: Runtime with number of records for UF-Evolve 
and FP-growth. 
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Figure 17: Number of shuffles with number of records for 
UF-Evolve. 
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Figure 18: Number of mined frequent patterns with 
number of records for UF-Evolve and FP-growth. 

In the second experiment, we measured the 
runtime, number of shuffles and number of mined 
frequent patterns with different minimum support 
thresholds for UF-Evolve and FP-growth. The 
minimum support threshold varies from 0.1% to 8%, 
the number of records is 3K, and the maximum 
merging threshold is 0.3. The runtime of UF-Evolve 
and FP-growth are shown in Figure 19. UF-Evolve 
is faster and more scalable than FP-growth. When 
the minimum support threshold increases, the 
runtime of both UF-Evolve and FP-growth 

decreases. Since when the minimum support 
threshold is high, UF-Evolve processes fewer and 
smaller conditional mUF-trees. The number of 
shuffles of UF-Evolve is shown in Figure 20. When 
the minimum support threshold increases, the 
number of shuffles of UF-Evolve remains the same. 
This is because UF-Evolve always shuffles the same 
mUF-tree. The numbers of mined frequent patterns 
of UF-Evolve and FP-growth are shown in Figure 
21. The two algorithms mined the same numbers and 
the same sets of frequent patterns. When the 
minimum support threshold increases, the numbers 
of mined frequent patterns of both UF-Evolve and 
FP-growth decrease. This is because when the 
minimum support threshold is high, the frequent 
patterns are short and the set of such patterns is not 
large. 
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Figure 19: Runtime with minimum support threshold for 
UF-Evolve and FP-growth. 
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Figure 20: Number of shuffles with minimum support 
threshold for UF-Evolve. 

In the third experiment, we measured the number 
of mined frequent patterns in each iteration for UF-
Evolve. The number of records is 3K, the minimum 
support threshold is 0.1%, and the maximum 
merging threshold is 0.3. As shown in Figure 22, 
UF-Evolve discovers new frequent patterns from 
iterative versions of mUF-tree, and the number of 
mined frequent patterns keeps increasing until 
stabilized. 

For the above experiments, UF-Evolve and FP- 

UF-EVOLVE - UNCERTAIN FREQUENT PATTERN MINING

83



 

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Minimum support threshold (%)

N
u
m

b
er

 o
f 

m
in

ed
 f

re
qu

en
t

p
at

te
rn

s 
(l

og
 s

ca
le

)
UF-Evolve FP-growth

 
Figure 21: Number of mined frequent patterns with 
minimum support threshold for UF-Evolve and FP-
growth. 
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Figure 22: Number of mined frequent patterns in each 
iteration for UF-Evolve. 

growth mined the same numbers and the same sets 
of frequent patterns. Some of the discovered 
frequent patterns are shown in Table 5. Here, the 
supports for frequent patterns are shown as (support 
count)/(number of records in UDB) in percentage. 

Table 5: Discovered frequent patterns. 

Frequent patterns 
mined in 1st 

iteration 

New frequent 
patterns mined in 

2nd iteration 

New frequent 
patterns mined in 

3rd iteration 
(59757:[0.3-0.3]) 
:4% 
(45370:[0.7-0.7]) 
:5% 

… 

(29340:[0.1-0.3]) 
:3% 
(59757:[0.3-0.4]) 
(22360:[0.3-0.3]) 
(18474:[0.5-0.7]) 
(29340:[0.1-0.3]) 
:3% 

… 

(45973:[0.2-0.3]) 
:4% 
(38212:[0.8-0.8]) 
(8885:[0.2-0.5]) 
(45973:[0.2-0.3]) 
:4% 

… 

7 CONCLUSIONS 

We have proposed the mUF-tree structure, which is 
a novel uncertain-frequent-pattern discover 
structure, and the UF-Evolve algorithm, which 
utilizes the shuffling and merging techniques on the 
mUF-tree for repeatedly discovering new uncertain 
frequent patterns. Also, we proposed a variant of the 

UF-Shuffle algorithms. Our preliminary 
performance study shows that the UF-Evolve 
algorithm is efficient and scalable for mining 
additional uncertain frequent patterns with different 
sizes of uncertain databases. 
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