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Abstract: This article presents the solution adopted for tackling the problem of incompatibility inherent in process com-
positions during a workflow’s construction. The proposed approach is based on a context of pre-constructed
resource hierarchies (data and processes) and consists of finding possible composition “paths” between pro-
cesses within GRSYN and GRSEM resource graphs constructed from the context. We explain the stage of
constructing the context from a simple formal description of resources. The stage for resolving the incom-
patibility is then covered in detail. We briefly present the implemented prototype before highlighting future
avenues of research.

1 INTRODUCTION

Scientific domains dealing with topics such as biodi-
versity, ecology, and agronomy require the drawing
up of experimentation plans using various resources
(data and processes). These resources, while available
in ever-increasing quantities, remain, for the most
part, expensive – and thus their reuse becomes almost
a necessity.

To design these complex experiments, scientists
often need to locate suitable resources and then to or-
ganize or reorganize them. In addition, each experi-
mentation plan deserves to be saved so that it can be
re-executed several times, either in various different
configurations or with diverse test data. In such a con-
text, the use of a scientific workflow proves to be an
invaluable help. Several dedicated software applica-
tions for this purpose now exist and research in the
field is relatively advanced. A first study (Libourel
et al., 2010) presented the concept of the workflow
environment. Our approach aims to help the user:
� design experimentation plans (in as abstract a

manner as possible),
� better organize resources (data and processes)

which will be elements in the concretization of
these plans,
� capitalize on the existing by constructing new pro-

cesses from previously devised plans.

This article develops our research advances in
terms of resource organization and semi-automatic
verification of validity of workflows designed within
a prototype.

Section 2 lists the problem to be addressed, the
work context and the definitions we will rely on for
our validation approach. Section 3 presents a state of
the art on process composition. Section 4 explains
the validation process in terms of algorithms. Sec-
tion 5 presents the prototype. Section 6 concludes our
proposal by listing planned perspectives.

2 PROBLEM AND CONTEXT

Referring again to the idea (Libourel et al., 2010) that
experimentation requires a stage of abstract planning
followed by a concretisation stage in which the user
selects the most suitable data and processes, we aim
to address the basic problem of the validation of the
concrete experimental chain.

In figure 1, the user designs, in a biological con-
text, an experiment in which he aligns sequences fol-
lowed by a tree reconstruction based on the alignment
results. To do so, he uses two concrete processes,
Blastx and PhyML1

1In the adopted graphic formalism, “abstract” and “con-
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Figure 1: Problem.

Validation of a workflow consists of verifying the
compatibility of each of its composition based on the
concept of work context (which we will define in
greater detail in section 4).

A composition between two processes corre-
sponds to a link between the input parameter and out-
put parameter of these processes.

The verification of a composition’s compatibility
ensures its later executability. Various approaches can
be considered, for example, that of analyzing pro-
cess signatures or one based on the analysis of differ-
ences between communication protocols or on meth-
ods governing exchanges between heterogeneous and
distributed systems, etc.

As far as we are concerned, we will mainly focus
on the verification of signatures of two linked pro-
cesses. The signature of a process encompasses, in
our opinion, two important aspects:
� The syntactic aspect, which defines the data for-

mats used by each parameter.

� The semantic aspect, which determines a pro-
cess’s functionality. This not only concerns the
process’s name (which has to make sense) but also
the significance of each input and output parame-
ter.
The verification of a composition’s compatibility

will therefore relate to these two levels: the syntactic
and the semantic. However, before presenting the ver-
ification algorithms for workflow validation, we first
survey the existing approaches from which we have
drawn inspiration.

3 PROCESS COMPOSITION: A
STATE OF THE ART

Our survey consists of two parts: one concerning var-
ious representative projects, the other discussing dif-
ferent existing research efforts concentrating on the
problem of compatibility.

crete” processes are represented by rectangles, and input
and output parameters by circles. Data flow is represented
by arrows.

3.1 Workflow Environments

All the environments we list use graphical inter-
faces. These permit scientists to construct experimen-
tal plans using distinct formalisms. Nevertheless, all
of these environments are located at a level that we
call “concrete”.

Kepler (Ludäscher et al., 2006; Altintas et al.,
2006) is a complete scientific workflow environment
based on the Ptolemy II platform of the University
of Berkeley. In this environment, actors correspond
to different possible processes and operations, and
they are equipped with ports representing their in-
put/output parameters. The compositions between
processes are made interactively by scientists by link-
ing actor ports with channels. The control and or-
chestration of the workflow model is the responsibil-
ity of directors. Necessary adaptations are made via
intermediary programs (senders and receivers), thus
ensuring compatibility of data transferred via a chan-
nel.

Taverna (Hull et al., 2006; Oinn et al., 2006) is a
workflow project created by the myGrid team in Eng-
land and used mainly in the biological domains. Pro-
cesses in this environment are essentially web ser-
vices (which can be supplemented by local libraries,
manuscript scripts, etc.). During process composi-
tion, the user manually couples input/output param-
eters of web services or invokes shim services, spe-
cific adaptors designed earlier from couplings made
for already constructed and tested experiments.

NetBeans is a general-purpose IDE environment.
One of its modules allows the construction, via the use
of the BPEL (Business Process Execution Language)
(Andrews et al., 2003), language of workflows by the
composition of web services. A thorough knowledge
of the BPEL standard is however required. The com-
position is done by manual coupling or transforma-
tion between XML elements of exchanged messages.
These coupling rules are then translated with the help
of the XSLT language (eXtensible Stylesheet Lan-
guage Transformations) (Kay, 2007).

Weka (Cunningham and Denize, 1993) is an ap-
plication from the machine learning and data mining
domains, created by the University of Waikato, New
Zealand. It includes one component, Weka Knowl-
edgeFlow, which allows chaining of processes re-
lating to data mining experimentation. The general
model of KnowledgeFlow follows the sequence Se-
lecting data ! Filtering ! Classifying ! Evaluat-
ing! Visualizing. Thanks to Weka’s graphical inter-
face, scientists can interactively concretize their ex-
periments, and choose pre-existing converters to en-
sure their workflows’ compatibility. The environment
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is based on data categories and algorithms relating to
various processes constructed beforehand.

3.2 Existing Approaches

The approaches we list below are essentially those re-
lating to the semantics of processes. They originate
from the domain of artificial intelligence.

Ontological Approach. The ontological approach
assumes the pre-existence of domain ontolo-
gies, constructed beforehand for the resources
(data/processes), by using standards such as OWL
(Group, 2004). During the design of the workflow,
the user locates resources and composes processes
guided by these ontologies. For example, in the
METEOR-S project of the University of Georgia,
USA, the workflow system controls the compati-
bility of the chaining of web services by using the
SAWSDL extension (Joel Farrell, 2007) for estab-
lishing relationships between WDSL descriptions
(Christensen et al., 2001) of these web services with
the concepts of an OWL ontology. In (Liu et al.,
2007), web-service messages are expressed in the
form of RDF graphs (W3C, 2004). Compatibility
is verified by pairing between these graphs and the
ontology concepts.

Planner Approach. In the field of artificial intelli-
gence, planners are used when, to attain a fixed ob-
jective, an action plan is considered. In a workflow
context, planner algorithms can help find all possi-
ble process compositions so as to obtain, given a de-
scription of an initial state, the final desired state.
The authors of the article (Beauche and Poizat, 2008)
use two specific structures: CSS (Capacity Semantic
Structure), which represents the workflow in the form
of a tree, with nodes being either abstract processes
or control operators (sequence, choice or parallelism);
and DSS (Data Semantic Structure), which represents
the structure of data allowable for each process. The
planner calculates all the possibilities of constructing
the workflow using the services chosen by the users.
Several plans can be proposed that take the adapta-
tion of the concerned DSS’s into account. The plan
selected by the user is transformed into YAWL or-
chestrators (van der Aalst and ter Hofstede, 2005).
A prototype based on this approach has been im-
plemented (GraphAdaptor). The article (Klusch and
Gerber, 2005) uses a set of web service descriptions in
OWL-S (Martin et al., 2004) and an associated OWL
ontology. They are converted into the PDDL language
(Planning Domain Definition Language). The Xplan
planner can, using these translations, calculate vari-
ous possible plans that will allow the predetermined

objective to be attained. Similarly, the article (Sirin
et al., 2004) shows how to use the SHOP2 planner
(Nau et al., 2003) for arriving at plans of web ser-
vices compositions (described in OWL-S). The article
(Julien Bourdon and Fiorino, 2007) uses a multi-agent
architecture for the planning of web services using
an interaction between agents (services) for achiev-
ing the predetermined goal. The article (Claro et al.,
2008) uses the SPOC system planner (CLARO, 2006)
for determining and putting in sequence the web ser-
vices discovered in the initial localization stage. It
offers an optimization of the planning process based
on the user’s profile.

Other Approaches. The articles (Limthanmaphon
and Zhang, 2003) use case-based reasoning ap-
proaches. The process chain is created after learning
from analogous cases (composition) and adaptation to
the target context.

3.3 Summary

The work surveyed focuses, for the most part, on the
composition of web services. Ontological descrip-
tions prove to be essential in detecting semantic in-
compatibilities. The adaptations require transforma-
tions between incompatible message structures. The
planner approach is not necessarily natural and can
prove complex and demanding for users who are not
experts in informatics. Therefore, we have retained
essentially the “ontological” approaches but we wish
to provide an environment in which process chains
can reach beyond web services to invoke libraries and
specific processes.

4 OUR APPROACH

Given the problem stated in section 2, we thus pro-
pose an approach based on the analysis of a work-
flow’s compositions and guided by the concept of
work context (cf. sub-section 4.1). We define dif-
ferent types of composition compatibilities in sub-
section 4.2. From this categorization, we identify
three compatibility situations, which we then put
through a semi-automatic repair algorithm (cf. sub-
section 4.3).

4.1 Work Context

The verification of a workflow’s validity consists of
verifying the compatibility of each of its compositions
in terms of the work context. This work context con-
sists of three major organizations or arrangements of
resource descriptions, namely:
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Figure 2: Work context.

� Organization of human resources, for managing
the description of the users of the platform and
their various roles and associated access rights,

� Organization of data, for managing data cate-
gories, concrete data, and the various associated
data formats2.

� Organization of processes, for managing the de-
scription of process categories and concrete pro-
cesses.
The concept of Converter introduced in the figure

2 refers to the concept of a specific process to con-
vert between different formats of data belonging to
the same data category3.

To construct this environment, a simple formal-
ism, designed for resource descriptions has been pro-
posed and formalized by using XML schemas4. Fig-
ure 3 depicts the schematic structures of data- and
process-description categories, of data formats, and of
the data and processes themselves. Properties of these
resources are listed within parentheses. The different
levels of the structure represent its sub-elements, with
the numbers before each element indicating its cardi-
nality. The relationships between these descriptions
are guaranteed by the references stored in the various
elements, for example, the DataCategoryRef element
in the Input element of a TaskDescription points to the
data category that this parameter uses.

To illustrate the concept of work context, we take
a concrete example relating to the biological domain
(cf. fig.4). The upper part of each hierarchy (pro-
cesses and data) represents a set of categories (shown

2It should be noted that several data categories can share
the same data format.

3This concept will be useful for resolving syntactic in-
compatibility.

4These XML Schema files are available online at
http://www.lirmm.fr/ lin/project. However, we have not
covered the organization of human resources.
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Figure 3: Schematic representation of the simple formalism
designed for description of resources.

as ovals), ordered on the basis of the generaliza-
tion/specialization relationship. The description of
concrete resources (data or processes) are then associ-
ated with their category. A set of data formats (bare,
txt, Fasta, Tgf, Newick) is also presented.

To take both the syntactic and semantic aspects
into account, we propose the following formal de-
scription for the signature of every concrete process:

Name (list of Param I) : (list of Param O), with

� Name representing the name of the concrete pro-
cess or operation.

� Param I and Param O which represent, respec-
tively, one of the input or output parameters p. p
is of the form (dc:fo), with dc and fo relating to
the data category and format used.

Graphically, both aspects, syntactic and semantic,
of each signature are represented by dashed arrows
which connect concrete processes with their data cat-
egories and formats. For example, the graphical de-
scription of the Blastx process shows that this process
has one input parameter and one output parameter.
The arrows labelled ref.DC and ref.FO connect these
parameters (input and output) to the associated data
categories and formats. And, finally, the signature of
the Blastx process can be represented as

Blastx(NucleicSeqs:txt):(ProteinSeqs:txt).

4.2 Verification of Composition
Compatibility in our Context

Verifying the conformity of a workflow’s composition
before execution consists of detecting and correct-
ing the incompatibilities in each of its compositions.
More specifically, it is a matter of verifying the com-
patibility of the two ends (parameters) of each link.
The formal description of signatures proposed for the
processes allows us to define the concepts of syntac-
tic and semantic compatibilities. Let two processes
T1 and T2 be described by the following signatures:
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Figure 4: An example of a work context.

T1(dc1:fo1) : (dc2:fo2, dc3:fo3)
T2(dc4:fo4) : (dc5:fo5)
Supposing a link connecting T1’s output parame-

ter p1 (dc3:fo3) to T2’s input parameter p2 (dc4:fo4).
This composition p1 ! p2 allows us to define two
types of compatibilities:

� Syntactic Compatibility. p1 ! p2 is syntacti-
cally compatible if (fo3 = fo4) _ (fo3 is a sub-

format of fo4), denoted p1
Syn! p2. Two parameters

are syntactically compatible if they use the same
data format or if they use an output format which
is a sub-format of the input format. In the same
way, p1! p2 is not compatible at the syntactical
level if (fo3 6= fo4) ^ (fo3 is not a sub-format fo4),

denoted p1
Syn9 p2.

� Semantic Compatibility. p1 ! p2 is semanti-
cally compatible if (dc3 = dc4) _ (dc3 is a sub-
category of dc4), denoted p1 Sem! p2. Two param-
eters are semantically compatible if they use the
same category, or if they use an output category
which is a sub-category of the input category. In
the same way, p1 ! p2 is not compatible at the
semantic level if (dc3 6= dc4) ^ (dc3 is not a sub-
category of dc4), denoted p1 Sem9 p2.

From these two definitions, we identify three com-
patibility situations for the composition p1! p2:

� Situation 1 (p1 Sem! p2) ^ (p1
Syn! p2). p1 and p2

are compatible at the semantic and syntactic lev-
els. This is the ideal situation in our context, we
designate it as valid.

� Situation 2 (p1 Sem! p2) ^ (p1
Syn9 p2). p1 and p2

are compatible at the semantic level but not at the
syntactic level. The composition is syntactically
adaptable. An adaptation between the two data
formats will be necessary (cf. converters).

� Situation 3 p1 Sem9 p2. The two parameters are
not semantically compatible. In such a case, it is
pointless to proceed to verify their syntactic com-
patibility (in fact, for us, two parameters with dif-
ferent significations cannot be paired). The com-
position is semantically adaptable.

From these definitions, we develop our proposed
approach for resolving the incompatibilities.

4.3 Repairing an Incompatible
Composition

Of the three situations we have arrived at, the latter
two require additional adaptations before moving on
to the execution stage.

The general procedure that is used to verify the
validity of a workflow’s composition corresponds to
the following algorithm 1 Repair(p1, p2). This pro-
cedure can trigger two types of adaptations: semantic
adaptation to overcome semantic incompatibility and
syntactic adaptation to do the same with syntactic in-
compatibility.

To illustrate our approach, a sample dataset has
been created. It consists of definitions of 10 data cat-
egories and 4 integrated data formats, as well as of 14
descriptions of processes, of which 3 are converters
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Algorithm 1: Repair(p1, p2).
Input: Parameter p1, Parameter p2
begin

Situation =
DetermineCompatibleSituation(p1, p2);
if Situation == 1 then

ok;
end
else if Situation == 2 then

SyntacticAdaptation(p1, p2);
//select one of the proposed solutions
UpdateComposition();

end
else if Situation == 3 then

SemanticAdaptation(p1, p2);
// select one of the proposed solutions
UpdateComposition();
for All sub-compositions px!py added
between p1!p2 do

SyntacticAdaptation(px, py);
// select one of the proposed
solutions
UpdateComposition();

end
end

end

TD111, TD121 and TD131. Their signatures are:

TD1(DC1:FO1) : (DC2:FO2),

TD2(DC2:FO1) : (DC3:FO2, DC4:FO1),

TD3(DC3:FO3) : (DC5:FO1),

TD4(DC3:FO2) : (DC6:FO4),

TD5(DC4:FO3) : (DC8:FO2),

TD6(DC5:FO1, DC6:FO2) : (DC7:FO3),

TD7(DC1:FO1) : (DC3:FO2, DC4:FO4),

TD8(DC1:FO1) : (DC1:FO3),

TD9(DC8:FO2) : (DC7:FO4, DC9:FO2),

TD10(DC4:FO1) : (DC4:FO2, DC7:FO3),

TD11(DC7:FO4) : (DC3:FO2),

TD12(DC10:FO2) : (DC7:FO4),

TD111(DC2:FO2) : (DC2:FO3),

TD121(DC4:FO1) : (DC4:FO3),

TD131(DC2:FO3) : (DC2:FO1)

Taking the composition between T1 and T11,
(DC2:FO2) ! (DC7:FO4) (cf. fig.5), we see that it
corresponds to Situation 3. To validate this compo-
sition, we have to find a solution to, first, ensure se-
mantic compatibility, then, as a second step, ensure
syntactic compatibility.

T1
DC1:FO1 DC2:FO2

T11
DC7:FO4 DC3:FO2

？

Figure 5: Initial composition.

These two successive adaptations will require the
definition and construction of two types of resource
graphs (GRSEM and GRSYN), constructed from the
work context.

4.3.1 Semantic Adaptation

For a semantically incompatible composition, the pro-
posed solution consists of finding processes or pro-
cess compositions which permit the conversion of the
source data category into that of the destination. To
achieve this first goal, we construct the resource graph
(GRSEM).

GRSEM is an oriented graph GRSEM = (N, A),
with:

� A set of nodes N = NP [ NDC, with NP being the
set of process description nodes and NDC being
the set of data category nodes.

� A set of arcs A. If an arc a=(n1, n2) 2 A5, then
(n1 2 N)^ (n2 2 N)^ (n1 6= n2).
Two types of arcs are present in the GRSEM,
A = AR[ AS :

1. AR is the set of reference arcs going to the
data categories used by a process parameter. If
ar=(n1, n2) 2 AR, then (n12NP ^ n22NDC) _
(n12NDC ^ n22NP).

2. AS is a set of specialization arcs between data
categories. If as=(n1, n2) 2 AS, then (n12NDC
^ n22NDC) ^ (n1 represents a direct sub-
category of that represented by n2).

The GRSEM of figure 6 was generated from the
sample dataset: circular nodes represent data cate-
gories, rectangular ones correspond to process de-
scriptions. The reference and specialization arcs are
then added between the nodes.

Semantic adaptation can be considered as a path-
finding problem between two data category nodes in
the GRSEM resource graph.

A recursive algorithm is used. It takes as input
the nodes of the two data categories concerned and
generates all the possible paths between them in the
GRSEM. Each path found includes a set of interme-
diary nodes and represents a potential semantic adap-
tation (sequence of intermediary processes). For the
composition (DC2:FO2)! (DC7:FO4), and the con-
structed GRSEM graph, we obtain the following po-
tential adaptations:

5From n1 to n2.
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Figure 6: A GRSEM resource graph.

� DC2 7! TD2 7! DC3 7! TD3 7! DC5 7! TD6 7! DC7

� DC2 7! TD2 7! DC3 7! TD4 7! DC6 7! TD6 7! DC7

� DC2 7! TD2 7! DC4 7! TD10 7! DC7

� DC2 7! TD2 7! DC4 7! TD5 7! DC8 7! DC10 7!
TD12 7! DC7

� DC2 7! TD2 7! DC4 7! TD5 7! DC8 7! TD9 7! DC7

The user selects one of these paths, and all its
intermediary processes are added to the instantiated
workflow. Supposing the user chooses the itinerary
DC2 7! TD2 7! DC4 7! TD5 7! DC8 7! DC10
7! TD12 7! DC7, the intermediary processes TD2,
TD5 and TD12 are added to the workflow (cf. fig-
ure 7). The input signature of TD12 is modified to
(DC8:FO2) because DC8 is more specialized than
DC10 (as shown in figure 6).

Moreover, a set of links “tmpCategoryLink” indi-
cating the semantic compatibilities of this composi-
tion is added to the workflow. The following stage
consists of verifying the syntactic compatibility.

T1
DC1:FO1 DC2:FO2

T11
DC7:FO4 DC3:FO2

？

T5
DC4:FO3 DC8:FO2

T2DC2:FO1
DC3:FO2

DC4:FO1
T12

DC8:FO2

DC7:FO4

T1
DC1:FO1 DC2:FO2

T11
DC7:FO4 DC3:FO2

tmpCategoryLink

tmpCategoryLink
tmpCategoryLink

tmpCategoryLink

Figure 7: Modified composition 1.

4.3.2 Syntactic Adaptation

As already mentioned, syntactic adaptation consists
of resolving syntactic incompatibility between two
parameters of a composition. It is a matter of finding
adaptations between different data formats present in
the parameters. Note that this adaptation has a pre-
requisite: the composition concerned should already
be semantically compatible.

To undertake this stage, a second, specific resource
graph (GRSYN) is constructed using converters6.

GRSYN is an oriented graph GRSYN = (N, A),
with:

� a set of nodes N = NComb [NConvert , with N Comb
the combined nodes, which designate the data cat-
egory and the associated data format used by the

converter (we will represent the node by
dc
f o

), and

by NConvert the converter nodes.

� a set of arcs A. An arc a=(n1, n2) 2 A im-
plies (n12NConvert ^ n22NComb) _ (n12NComb ^
n22NConvert ). This set corresponds to the refer-
ence links between a converter node and a com-
bined node.

The GRSYN generated using the sample dataset
is shown in figure 8.

TD111 TD131

DC2
FO2

DC2
FO3

DC2
FO1

TD121

DC4
FO1

DC4
FO3

Figure 8: The GRSYN resource graph.

As is the case for the semantic adaptation, the
syntactic adaptation can be considered as a path-
finding problem in the GRSYN. Let us consider again
the composition between T1 and T11: after the first
stage of semantic adaptation, we have obtained a new
model (cf. fig.7) which is semantically compatible for
all its compositions. Only the syntactic compatibil-
ity of each “tmpCategoryLink” needs to be verified.
Considering the link between T1 and T2, the two con-
nected parameters are (DC2:FO2) and (DC2:FO1).
Therefore, a syntactic adaptation has be found be-
tween FO2 and FO1. A single itinerary was found

in our GRSYN:
DC2
FO2

7! TD111 7! DC2
FO3

7! TD131

7! DC2
FO1

. If we retain this solution, the two convert-
ers TD111 are TD131 are substituted for the “tmp-
CategoryLink” link between T1 and T2. In the same
way, we can also establish syntactic adaptations for
the composition (DC4:FO1)! (DC4:FO3) between
TD2 and TD5. The final updating of the instantiated
workflow (cf. fig.9) corresponds to the replacing of
the “tmpCategoryLink” links by the concerned con-
verter(s).

6Note that to us, as previously defined, a converter is a
specific process which converts data between different for-
mats of the same data category. We thus assume that these
converters exist.
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Figure 9: Modified composition 2.

According to this approach, the example in fig-
ure 1 will require only a syntactical adaptation of the
composition (ProteinSeq:txt) ! (ProteinSeq:Fasta)
which can be achieved using a converter between the
txt and Fasta formats.

5 PROTOTYPE

The formal approach was tested via a prototype im-
plemented in Java. This prototype consists of five
main modules:

1 : Resource centre: component responsible for man-
aging resources, itself consisting of two sub-
components:

(a) Resource manager which offers a graphical ed-
itor to help enter resource descriptions (these
descriptions are then stored locally in XML
files).

(b) Search engine which accommodates requests to
search for resources necessary to construct con-
crete workflows7.

2, 3 : Workflow editor for editing abstract and instanti-
ated workflows. This is a graphical editor which
allows workflow models to be constructed. The
simple workflow language that we proposed in the
article (Lin et al., 2009) is used.

4 : Validation module is the component that verifies
and validates an instantiated model. It provides
adaptation solutions to overcome the incompati-
bility situations encountered.

7For the time being, requests are constructed by taking
into account the elements associated with each description
of a resource.

5 : Learning module, as yet un-implemented, should
allow the enriching of the work context using
analyses of models already constructed.
Figure 10 shows the prototype’s functioning in a

schematic form. The user first creates an abstract
model of the desired experimentation plan. He then
proceeds to its instantiation by using the search en-
gine which provides him with the description of con-
crete resources. The instantiated workflow is then
analysed by the validation module before execution
takes place.
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Figure 10: Functional presentation of the prototype.

A demonstration of the prototype is online at
http://www.lirmm.fr/ lin/project.

6 CONCLUSIONS AND
PERSPECTIVES

The incompatibility problem discussed in this article
is one of the major issues in process composition.
The approach we have presented proposes the data
flow checking based on the work context, i.e., on a
set of pre-constructed resource hierarchies. The al-
gorithms for constructing different types of resource
graphs (GRSEM and GRSYN) and for validating a
concrete workflow’s compositions are operational in
a working prototype.

Planned future research will explore:
� Extension of resource descriptions:

– Use of formalisms such as richer WSDL or
OWL-S for improving resource descriptions.
The formalism currently proposed is simple.
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The semantic aspect of resource descriptions
could be thus complemented. The construction
of the work context could benefit from the use
of ontologies originating from the target exper-
imental domains.

– The semantic level of process is currently only
covered by the name and the parameters’ data
categories. They could be extended by using
terminological relationships (synonymy, etc.),
as well as by adding complementary informa-
tion to the descriptions relating to the process’s
behaviour (state machine, for example).

� The development of the learning module. It could,
on the basis of analyses of constructed models,
lead to the enriching of the resource centre and
the work context (trace analysis, model statistics,
etc.).

� The connection of the validated workflow to an
execution engine.

Other approaches like type or composition con-
tract checking (Comerio et al., 2009; Milanovic,
2005), behaviour checking based on the Petri-net
(Kiepuszewski et al., 2003; Hamadi and Benatallah,
2003) have also been found in lecture. These research
results will be taken into account in our futur works.
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