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Abstract: Developing software without failures is indeed important. Still, it is also important to detect as soon as 
possible when a running application is likely to fail, so that corrective actions can be taken. Following the 
guidelines of Agile Methods, the goal of our research is to develop a statistical prediction model for failures 
that does not require any additional effort on the side of the developers of an application; the key concept is 
that the developers concentrate on the code and we use the information that is naturally generated by the 
running application to assess whether an application is likely to fail. So the developers concentrate only on 
providing direct value to the customer and then the model takes care of informing the environment of the 
possible crash. The proposed model uses as input data that is commonly produced by developers: the log 
files. The statistical prediction model employed comes from biomedical studies about cancer survival 
prediction based on gene expression profiles where gene expression measurements and survival times of 
previous patients are used to predict future patients' survival. One of the most prominent models is the Cox 
Proportional Hazards (PH) model. In this work, we draw a parallel between our context and the biomedical 
one; we consider types of operations as genes, and operations and their multiplicity in the sequence as 
expression profiles. Then, we identify signature operations applying the above mentioned Cox PH model. 
We perform a prototypical analysis using real-world data to assess the suitability of our approach. We 
estimate the confidence interval of our results using Bootstrap. 

1 INTRODUCTION 

Moving from proactive maintenance to preventive 
maintenance may reduce wastes caused by 
downtime costs. Therefore, much of current research 
is focused on predicting software failures with a 
sufficient lead of time before actual failure. 

Failure prediction models are usually built upon 
historic data to predict the occurrence of failures. In 
general, some predictor variables are collected or 
estimated at the beginning of a project and fed into a 
model. This approach is reasonable for traditional 
processes. 

One of the key guidelines of Agile Methods is to 
consider feedback, since "it is rare to find control 
without feedback, because feedback gives much 
better control and predictability than attempting to 
control complicated processes with predefined 
algorithms" (Poppendieck and Poppendieck, 2003). 
Therefore, an Agile failure prediction model is 
required to use feedback to refine itself during the 
development process. 

Moreover, to cope and even accomodate Agile 
Methods, a failure prediction model needs not to 
require any additional effort on the side of the 
developers of an application. Developers need to 
eliminate waste of time and to concentrate on the 
code providing direct value to the customer. 
Therefore, failure prediction models are required to 
inform of the possible crash using information that is 
naturally generated by the running application. 

Being cognizant of the mentioned challenges, the 
key objective of our study can be outlined as 
follows: we propose a new, incremental failure 
prediction tool which uses data from previous 
iterations to refine itself at every iteration.  

Our idea is to use as input for the model data that 
is commonly produced by developers: the log files. 
These files contain a series of events marked with 
their occurrence times. Thus, we deal with 
prediction of failure event(s) based on the analysis 
of event sequence data. 

To this purpose, some techniques already exist 
and can be classified into design-based methods and 
data-driven rule-based methods. In a design-based 
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method, the expected event sequence is obtained 
from the system design and is compared with the 
observed event sequence. A system logic failure can 
be identified by use of this comparison. Untimed and 
timed automata models, and untimed and timed Petri 
net models have been proposed in (Chen et al., 2009, 
Sampath et al., 1994, Srinivasan and Jafari, 1993); 
time template models (Holloway 1996, Pandalai and 
Holloway, 2000) establish when events are expected 
to occur basing on timing and sequencing 
relationships of events, which are generated from 
either timed automata models (system design) or 
observations of manufacturing systems. The major 
disadvantage of these methods is that in many cases, 
events occur randomly and thus there is no system 
logic design information available. 

Data-driven rule based methods do not require 
system logic design information. These methods are 
made of two phases: 1) identification of the temporal 
patterns, i.e., the sequences of events that frequently 
occur, and then development of prediction rules 
based on these patterns (Agrawal 1996, Mannila et 
al., 1997), and 2) prediction of the occurrence of a 
failure event basing on the time relationships among 
events (Dunham, 2003; Klemettinen 1999; Li et al., 
2007). 

Survival analysis models have been also 
proposed to solve this issues. Code metrics are given 
as input to Cox PH model in (Wedel et al., 2008) to 
analyze failure time data from bug reports of open 
source software. In (Li et al., 2007) the Cox PH 
model is used to predict system failures based on the 
time-to-failure data extracted from the event 
sequences. Only event combinations identified as 
signatures are treated as explanatory variables in the 
Cox PH model. 

We propose a mechanism for lean, non invasive 
control of applications. The idea is to build devices 
that read logs of running applications and signal the 
likely crash of such systems, thus adding no "muda" 
(Liker 2003) to the development of each application. 

We propose to collect (Dubson 2006) data using 
Automated In-process Software Engineering 
Measurement and Analysis (AISEMA) systems 
(Coman et al., 2009). Then, we address the analyse 
and decide phases (Dubson 2006) looking at 
biological studies about cancer survival prediction 
based on gene expression profiles. The idea is to 
follow biomedical guidelines to:  
 analyse data and identify signature operations of 
failure; 
 assign a risk score to future sequences of 
operations; 
 decide if these sequences will fail or not. 

This mechanism looks at the running system as a 
“black box”, meaning that we do not have any other 
information about the system except the log files. 
Altogether, the proposed approach is: 
 lean, because there is no need of an explicit 
mechanism on the applications (Liker, 2003); 
 non-invasive, because data is collected by an 
AISEMA system (Coman et al., 2009); 
 intended to become an incremental failure 
prediction tool which is built after each end of a 
sequence of operations and uses data from previous 
iterations to refine itself at every iteration. 

In this work, we first draw a parallel between our 
context and the biomedical one, since they deal with 
different types of entities. As a result of this parallel, 
we consider types of operations as genes, and 
operations and their multiplicity in the sequence as 
expression profiles. Signature operations of failures 
are identified applying the Cox PH model, one of the 
most prominent models in biomedical studies. 

Then, we present a prototypical analysis using 
real-world data, consisting in log files collected 
during approximately 3 months of work in an 
important Italian company that prefers to remain 
anonymous. We propose to use Bootstrap methods 
to determine the confidence interval of our results 

The paper is structured as follows: in Section 2, 
we present some background about survival analysis 
together with the Cox Proportional Hazard (PH) 
model and its applications; in Section 3, we 
introduce our approach to failure prediction. In 
Section 4, sample applications are presented. In 
Section 5 we discuss our results. 

2 BACKGROUND 

2.1 Survival Analysis 

The term “survival data” is used in a broad sense for 
data involving time to the occurrence of a certain 
event. The event of interest is usually death, the 
appearance of a tumor, the development of some 
disease, or some negative experience; thus, the event 
is called “failure”. However, survival time may be a 
positive event, like time to return to work after an 
elective surgical procedure (Kleinbaum and Klein, 
2005), or cessation of smoking, and so forth. 

In the past decades, applications of the statistical 
methods for survival data analysis have been 
extended beyond biomedical research to other fields, 
for example criminology (Benda, 2005; Schmidt and 
Witte, 1989), sociology (Agerbo, 2007; Sherkat and 
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Ellison, 2007), and marketing (Barros and Machado, 
2010; Chen et al., 2009). 

The study of survival data has previously 
focused on predicting the probability of response, 
survival, or mean lifetime, and comparing the 
survival distributions of experimental animals or of 
human patients. 

In recent years, the identification of risk and/or 
prognostic factors related to response, survival, and 
the development of a disease has become equally 
important (Persson, 2002). 

The analysis of survival data is complicated by 
issues of censoring. Censored data arises when an 
individual’s life length only is known to occur in a 
certain period of time (Kleinbaum and Klein, 2005). 

2.2 The Cox Proportional Hazards 
(PH) Model 

Introduced by D.R. Cox in 1972 (Cox, 1972), the 
semiparametric Cox PH model estimates the hazard 
function, which assesses the instantaneous risk of 
failure. 

The data, based on a sample of size n, consists of 
(xi, ti, δi), i = 1, ... , n where: 
 xi is the vector of p covariates or risk factors for 
individual i which may affect the survival 
distribution of the time to event; 
 ti is the time under observation for individual i; 
 δi is the event indicator (δi =1 if the event has 
occurred, δi =0 otherwise). 

The Cox PH model has became the most commonly 
used model to give an expression for the hazard at 
time t with a given specification of p covariates x: 

 
(1)

The Cox PH model formula says that the hazard at 
time t is the product of two quantities: 
 the baseline hazard function h0(t), which is equal 
for all the individuals. It may be considered as a 
starting version of the hazard function, prior to 
considering any of the x´s; 
 the exponential expression e to the linear sum of 
βixi, where the sum is over the p explanatory x 
variables. 

The Cox PH model focuses on the estimation of the 
vector of regression coefficients β leaving the 
baseline hazard unspecified. In the p < n setting 
(Bøvelstad, 2010), β´s are estimated by maximizing 
the log partial likelihood, which is given by: 

 

 
(2)

 

The key assumption of the Cox PH model is 
proportional hazards; this assumption means that the 
hazard ratio (defined as the hazard for one individual 
over the hazard for a different individual) is constant 
over time. 

This model is widely used because of its 
characteristics:  
 even without specifying h0(t), it is possible to 
find the β´s; 
 no particular form of probability distribution is 
assumed for the survival times. A parametric 
survival model is one in which survival time (the 
outcome) is assumed to follow a known distribution. 
The Cox PH model is not a fully parametric model. 
Rather it is a semi-parametric model because even if 
the β's are known, the distribution of the outcome 
remains unknown; 
 it uses more information than the logistic model, 
which considers a (0,1) outcome and ignores 
survival times and censoring. Therefore it is 
preferred over the logistic model when survival time 
is available and there is censoring (Kleinbaum and 
Klein, 2005). 

2.3 Applications of the Cox PH Model 

The Cox PH model was first used in biomedical 
applications (Collett, 1994), mainly to determine 
prognostic factors that affect the survival time of 
patients to some type of diseases (mostly cancers) 
(Eliassen et al., 2010, Pope et al., 2002). 

After the completion of DNA sequencing, the 
Cox PH model has been applied to gene expression 
data to detect novel subtypes of a disease, or to 
explore the potential associations between the high-
dimensional gene expression data and some clinical 
outcome. 

Cancer patient survival based on gene expression 
profiles is an important application of genome-wide 
expression data. The goal is to identify the optimal 
combination of the gene expression data in 
predicting the risk of cancer death. 

The most common approach to model covariate 
effects on cancer survival is the Cox PH model, 
which takes into account the effect of censored 
observations (Bøvelstad et al., 2007, Hao et al., 
2009, Yanaihara et al., 2006, Yu et al., 2008). Gene 
expression measurements and survival times of 
previous patients are used to obtain a prediction rule 
that predicts the survival of future patients. 
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Given n patients diagnosed with a specific type 
of cancer, for each of the n patients the observations 
(xi, ti, δi ) are available, where: 
 xi = (xi1 , … , xip) contains the measurements of p 
gene expression values for patient i; i = 1, ... , n; 
 ti is the time under observation of patient i; 
 the censoring index δi keeps track of whether 
patient i died (δi = 1) or was censored (δi= 0), i.e., 
patient i was still alive at the end of the study or if 
she or he dropped out of the study or died from 
another cause. 

Applications of the Cox PH model can be found in 
several fields of research other than biomedicine, 
such as criminology (Benda, 2005; Schmidt and 
Witte, 1989), sociology (Agerbo, 2007; Sherkat and 
Ellison, 2007), marketing (Barros and Machado, 
2010; Chen et al., 2009), and cybernetic (Li et al., 
2007). There is also an application of the Cox PH 
model to software data in (Wendel 2008) where, 
using as input code metrics, failure time data coming 
from bug reports have been analysed. 

2.4 The Bootstrap Method  

In statistics the average is often used to guess the 
overall behavior of a population using the 
information coming from a sample; depending on 
the structure of the population, the average could 
then be implemented by taking the means, the 
median, or the mode (Fisher and Hall, 1991). 
However, it is interesting also to know how reliable 
is an estimate done with the average. To this end, 
other statistical properties are often used, based on 
the structure of the population (e.g., standard 
deviations, percentiles, histograms). Clearly, a 
reliable estimation of the confidence interval can 
provide a very valuable information to the user of an 
estimation. 

To this end the Bootstrap technique has been 
devised (Efron, 1987). Bootstrap is a computer-
based (it can be both parametric and non-parametric) 
method to compute estimated standard errors, 
confidence intervals, and hypothesis testing (Efron 
and Tibshirani, 1993). 

The Bootstrap algorithm first creates n datasets 
of the same size of the original sample by randomly 
picking elements of it with replacement; this 
technique is called resampling. The number of the 
generated sets needs to be high; a suitable number 
could be 1000.  

Then, the Bootstrap algorithm computes the 
averages of each of the newly generated datasets – 
the specific kind of average depends from the 

statistical properties of the population. The results 
are then used to determine the confidence interval of 
the population from which the original sample was 
drawn.  

In this study we want to determine the reliability 
of our estimations for failures. However, we have a 
very limited dataset and we do not know the 
parameters of the random variables of interest, and 
the overall transformations are non-linear. 
Therefore, we propose to use Bootstrap method. 

Each time an estimation of failure or success is 
done, we use Bootstrap to determine the reliability 
of it, that is, the percentage of times in which the 
results remain consistent with the original 
prediction. 

3 APPROACH 

3.1 Schema of the Approach 

To build devices that read logs of running 
applications and signal the likely crash of such 
systems, we have to address the four main activities 
reported in (Dobson et al., 2006): 1) collect, 2) 
analyse, 3) decide, and 4) act. 

Figure 1 presents a schematic view of the 
proposed approach. 

While the system is running, an AISEMA system 
(Coman et al., 2009) collects data to track the actual 
execution path. In this work, we look at the running 
system as a “black box”, meaning that we do not 
have any other information about the system except 
the log files. 

The monitoring process takes log data as input, 
analyses them, and basing on the analysis performed 
decides the “likely failure” of the running 
application and gives to the supervisor a message. 
 

 

Figure 1: Schema of the devices that read logs of a 
running system and signal the likely failure. 

The supervisor can act directly on the running 
system to avoid the predicted failure, or send an alert 
to the outside world. Possible actions could be to 
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abort the running system, to restart it, to dynamically 
load components, or to inform the running system if 
it was a suitably structured autonomic system 
(Müller et al., 2009). 

The monitoring process is based on the Cox PH 
model. Our context seems to have the characteristics 
needed to apply Cox PH model; in fact, survival 
time and censored observations are available. 
Moreover, the Cox PH model needs no assumption 
of a parametric distribution for the event sequence 
data. Therefore, we can benefit of the following 
advantages: 
 we can discover information that may be hidden 
by the assumption of a specific distribution (Yu et 
al., 2008); 
 we obtain results comparable to the parametric 
model even without this assumption (Kalbfleisch 
and Prentice, 2002). 

Our context is completely different from the 
biomedical one. Therefore, before applying the Cox 
PH model, we first drew a parallel between the two 
contexts to provide an interpretation of the 
biomedical entities in our case. 

3.2 Parallel between Our Context and 
the Biomedical One 

The idea behind biomedical studies is that different 
gene expression profiles may result in different 
survival times. In software processes, the activities 
performed may affect the time of survival to a 
failure. Therefore, in our context, types of operations 
in some sense play the role of genes. 

The expression profile may be formed by each 
operation's multiplicity, since it provides 
information about the level of presence of the 
operation. 

Time under observation of a sequence is defined 
as its length in terms of time, meaning that we 
evaluate it as the difference between the time stamp 
of the last operation and the time stamp of the first 
operation in the sequence. 

In our case, the “observed event” is the end of 
the sequence because of a failure. Therefore, we 
have the following definition: δi =1 if i is a failure, δi 

=0 otherwise. 
Our type of censoring is type II with a 

percentage of 100% (Lee and Wang, 2003), meaning 
that δi is never equal to zero because of the end of 
the period of observation. 

Table 1 summarizes the interpretation of 
biological entities in our context. In biomedical 
studies, gene expression measurements and survival 

times of previous patients are used to obtain a 
prediction rule that predicts the survival of future 
patients. In this work, we consider types of 
operations as genes, and operations and their 
multiplicity in the sequence as expression profiles. 

Table 1: Parallel between our context and the biomedical 
one. 

Variable Biological data Our data 
ti Time under 

observation of 
patient i 

Time under 
observation of 
sequence i (last 
date – first date) 

δi δi =1 if survival 
time is observed 
δi =0 elsewhere 

 

δi =1 for failures 
δi =0 elsewhere 

 

xi = 
(xi1, …, xip) 

xij is the 
expression value 

of gene j in 
patient i 

xij is the 
multiplicity of 
operation j in 

sequence i 
i=1, …, n   j=1, …, p 

3.3 Structure of the Monitoring 
Process 

3.3.1 Dimensional Reduction of the Problem 

Our method consists of the following steps to get 
from raw logs to temporal event sequences (Zheng 
et al., 2009) to be used as input for the analyses: 
 data are parsed to extract operations together 
with their associated time stamps and severities for 
each event in the log file; 
 duplicate rows are deleted together with logs that 
are missing information in one or several of the 
fields Operation, Time stamp, Severity; 
 sequences of activities are extracted: a new 
sequence starts either if there is a “Log in” operation 
or if the day changes. 

Failures are defined as sequences containing at least 
one severity “Error”. Table 2 summarizes the 
definitions used in this work.  

Table 2: Definitions used in this work. 

Notion Definition 
sequence A chronologically ordered set of log entries 

in the maximum time frame of 1 day. Two 
sequences during the same day are 
separated by a “Log in” operation  

 
Failure A sequence containing at least one severity 

“Error” 
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3.3.2 Preparation of the Input for the Cox 
PH Model 

Each temporal event sequence i is described by (xi, 
ti, δi), where: 
 xi = (xi1, ..., xip), and xij is the multiplicity of 
operation j in sequence i; 
 ti is the lifetime of the sequence, defined as the 
difference between the last time stamp and the first 
time stamp of sequence i;  
 δi = 1 when the event is “observed” (failure 
sequences) and δi = 0 elsewhere (censored 
observations). 

3.3.3 Training of the Model 

We propose to follow the guidelines given in 
biomedical studies (Bøvelstad et al., 2007, Hao et 
al., 2009, Yanaihara et al., 2006, Yu et al., 2008) to 
analyse data about past sequences and decide about 
the likely failure of the current sequence of 
operations of the running system. In particular, the 
training of the monitoring process includes the 
following steps: 
 the Schoenfeld test (Hosmer et al., 2008; 
Kalbfleisch and Prentice, 2002; Kleinbaum and 
Klein, 2005) is applied to select the operations 
satisfying the PH assumption; 
 hazard ratios from a multivariate Cox PH model 
are used to identify which operations are associated 
to a failing end of sequences. The k operation 
included in the model are those operations whose 
multiplicity in the sequence is expected to be related 
to failure. Protective operations are defined as those 
with hazard ratio for failure lower than 1. High-risk 
operations are defined as those with hazard ratio for 
failure greater than one; 
 the k-operations signature risk score RS is 
assigned to each sequence in the dataset, according 
to the exponential value of a linear combination of 
the multiplicity of the operation, weighted by the 
regression coefficients derived from the 
aforementioned Cox PH model; 
 the following values are extracted: 1) m, the third 
quartile of risk scores of non failure sequences, and 
2) M, maximum risk score of non failure sequences. 

3.3.4 Deciding the “Likely Failure” and the 
Associated Confidence Interval 

The k-operations signature risk score RS is evaluated 
for the new sequence, and basing on its value the 
sequence is defined as: 

 “likely no failure” if RS ≤ m; 
 “likely failure” if RS ≥ M; 
 “still unknown” if m < RS < M.  

In order to compute estimates of confidence 
intervals of our dataset we propose to use the 
Bootstrap method of resampling. We perform a 
Bootstrap of 1000 times on the original data and 
then we consider for each sequence the resulting 
prediction. 

The sets of the predictions is then used to 
determine the likelihood of correctness of the 
original prediction. 

4 SAMPLE APPLICATIONS 

To assess the suitability of our approach, we have 
performed two prototypical analysis intended to 
determine if it is worth pursuing the approach 
further. We use two datasets consisting of log files 
collected during approximately 3 months of work in 
an important Italian company that prefers to remain 
anonymous. 

We prepared each dataset as discussed in Section 
3.3.1 and Section 3.3.2. Then we assigned randomly 
the sequences to training set (60%) or test set (40%). 
Afterwards, we proceeded as discussed in Section 
3.3.3 and Section 3.3.4 to 1) identify the k signature 
operations of failure in the training set, 2) compute 
the values of m and M, 3) assign the the k-operations 
signature risk score to each sequence in the test set, 
and 4) decide the “likely failure” of the sequences in 
the test set.  

4.1 First Sample 

Table 3 contains the training set pre-processing 
summary of the first sample 

Table 3: Training set pre-processing summary (first 
sample). 

Notion Definition N % 
Cases 

available in 
the analysis 

Event1 28 12.9 
Censored 157 72.0 

Total 185 84.9 
Cases 

dropped 
Censored before the first 

event in the stratum 
33 15.1 

Total  218 100 
1Dependent variable: survival time 

 

Six out of the eight initial operations were 
satisfying the proportional hazards assumption and 
were therefore kept in the input dataset for the Cox 
PH model. Three out of the six initial operations 
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were kept in the output of the model. Table 4 
contains the output of this model, together with the 
definition of each operation as “protective” (or 
“high-risk”) according to the exponential value of 
the regression coefficient β. 

Table 4: Output of Cox PH model on training set (first 
sample). 

 β Sig Exp(β) definition 
Operation 1 -0.40 0.013 0.961 Protective 
Operation 2 0.06 0.015 1.006 High-risk 
Operation 3 -0.52 0.055 0.592 protective 

-2 Log Likelihood: 200.112 
 

The comparison between failures and non 
failures shows that higher risk scores have been 
assigned to failure sequences (Figure 2).  

 

 

Figure 2: Risk scores in failure and non-failure sequences 
(first sample). 

Altogether we obtained a value of m = 0.59 and 
M = 1.85. 

In the test set, the comparison of the risk scores 
with m and M provides the following results: in 40% 
of the cases the system is able to predict correctly 
the failure and only in 1% of the cases a predicted 
failure is not a failure, which means that a message 
of expected failure is quite reliable. On the contrary, 
the prediction of non-failure is not as reliable. 50% 
of the failing sequences are  predicted as non-failing. 

4.2 Second Sample  

Table 6 contains the training set pre-processing 
summary of the second sample. 
 
 
 

Table 5: Training set pre-processing summary (second 
sample). 

Notion Definition N % 
Cases 

available in 
the analysis 

Event1 139 1.8 
Censored 7445 98.2 

Total 7584 100 
Cases 

dropped 
Censored before the first 

event in the stratum 
0 0 

Total  7584 100 
1Dependent variable: survival time 

 

Six out of the ten initial operations were 
satisfying the proportional hazards assumption and 
were therefore given as input to the Cox PH model. 
Two out of the six initial operations were kept in the 
model. Table 7 contains the output of this model, 
together with the definition of each operations as 
“protective” (or “high-risk”) according to the 
exponential value of the regression coefficient β. 

Table 6: Output of the Cox PH model on the training set 
(second sample). 

 β Sig Exp(β) definition 
Operation 1 0.66 0.001 1.925 High-risk 
Operation 2 0.32 0.001 1.380 High-risk 

-2 Log Likelihood: 1746.471 
 

The comparison between failures and non 
failures shows that higher risk scores have been 
assigned to failure sequences (Figure 3).  

 

 

Figure 3: Risk scores in failure and non failure sequences 
(second sample). 

In this case, we obtain a value of m = 1.00 and M 
= 1.93. 

In the test set, the comparison of the risk scores 
with m and M provides the following results: in 
100% of the cases the approach taken is able to 
predict correctly the failure, and in 99.6% of the 
cases the system is able to predict correctly the non 
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failure. Both the messages of expected failure and 
non failure appear to be quite reliable. 

5 CONCLUSIONS 

In this work we propose a mechanism for lean, non 
invasive control of applications. We use an 
AISEMA system (Coman et al., 2009) to collect 
data; then we apply the Cox PH Model following the 
biomedical guidelines to find the k signature 
operations of failure and to decide about the “likely 
failure” of future sequences. 

Altogether, the proposed approach presents the 
following advantages: 
 it is lean, because there is no need for an explicit 
mechanism on the application; 
 it is non invasive, because data is collected using 
AISEMA systems; 
 data collection is low cost;  
 measurement is continuous and accurate; 
 developers' efficiency is not affected by data 
collection since they can concentrate on their tasks 
as usual. 

The proposed mechanism is intended to become an 
incremental failure prediction tool which is built 
after each end of a sequence of operations and 
refines itself at every iteration using data from 
previous iterations. 

Results from our preliminary, prototypical 
analysis appear quite interesting and worth further 
investigations; higher risk scores are assigned to 
failure sequences in the test set. Overall, the 
proposed approach appears very effective in the 
identification of True Positives and True Negatives, 
meaning that the sequences identified as leading to a 
failure are very likely to lead to a failure. 

Additional work is now needed to use Bootstrap 
methods to determine the confidence interval of our 
results; we are now accomplishing this task. 

Moreover, we need to study more in-depth our 
promising mechanism to determine the 
generalizability of our results. To this end, we are 
going to study more in-depth our model, trying to 
generalize our results. In particular, we plan to 
replicate the analysis on more industrial datasets. 

We are also considering the following 
approaches to achieve higher levels of precisions: 1) 
the Cox PH model with strata to analyse covariates 
not satisfying the PH assumption, 2) specific 
techniques to manage datasets with a limited number 
of cases (Bøvelstad, 2010), and 3) application of 

Bootstrap methods in order to identify the 
confidence interval of the prediction.  

We should also investigate how other “black-
box” properties of applications (e.g., memory usage, 
number of open files, processor usage) can be 
considered to predict failures. 

We will also deal with the bias introduced when 
calculating survival time without considering the 
duration of the last operation. 

We will then try to predict a failure analysing 
only an initial portion of a sequence, to obtain an 
early estimation of failure, providing additional time 
to take corrective actions.  

Finally, the proposed model could be particularly 
useful dealing with autonomic systems (Müller et 
al., 2009). 
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