
FORMALIZING TRUST REQUIREMENTS AND
SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS

Wattana Viriyasitavat1,2 and Andrew Martin1
1Computing Laboratory, Department of Computer Science, University of Oxford, Oxford, U.K.

2Information Technology Division, Department of Statistics, Chulalongkorn University, Bangkok, Thailand

Keywords: Trust, Service, Workflows, Trust, Requirements, Specification, Formalism.

Abstract: The emergence of advance communication technologies such as Internet has changed the nature of face-to-
face towards virtual interactions in the form of services. Proliferation of services has enabled the creation of
new value-added services composed of several sub-services in a pre-specified manner, known as service
workflows. There are a number of security issues as workflows require disparate services to dynamically
collaborate and interact on demand. Trust is an enabling technology serving as an adaptive and platform-
independent solution that fits in this context. However, the lack of consensus on a unified trust definition
and the traditional mindset of treating trust requirements separately pose the difficulty in developing formal
specification. This paper provides a formal framework to this problem. The central part of the paper is logic
based formalism with algebraic expressions to formally specify trust requirements. A trust definition and
three modes of trust are described with algebraic operators to form specification formulae. The contribution
of the framework is to allow trust requirements to be formally and uniformly specified by each distributed
autonomous service, serving as a core component for automatic compliance checking in service workflows.

1 INTRODUCTION

To date, many trust approaches have been proposed
(Viriyasitavat, 2009, Guha et al., 2004, Jøsang et al.,
2006 Galizia et al., 2007); however they neither
provide sufficient formal frameworks nor effective
models in specifying trust. Moreover, the lack of
consensus on a trust definition (O’Donovan and
Smyth, 2005) poses the difficulty in developing
formal specification. It impedes (1) workflow
scalability that tends to be limited in a certain
domain, (2) dynamicity when each service acts in an
autonomous manner, and (3) consistency to deal
with disparate trust requirements.

This paper attempts to fulfill the lack of the
formal specification required by autonomous
services to consistently and uniformly specify their
requirements. Hence, the development of a formal
trust specification (TS) and semantics for reasoning
about trust and service workflows permit services to
automatically check for compliance and therefore
assess trustworthiness from this result. This paper
makes four contributions. (1) Our TS is a means to
formally and uniformly express trust requirements

across multiple domains. (2) With well-defined
semantics, TS serves as a key driver for compliance
checking. Since trust requirements are uniformly
expressed, there is no need to devise distinct
complicated algorithms to deal with unrelated
formats. (3) In rapidly changing environments which
may affect the willingness of a service to participate
in a workflow, our TS provides a flexible means by
allowing services the ability to relax or restrict trust
requirements on-the-fly, subjecting to their
preference. And (4) our TS can be used to facilitate
the service selection processes, which regulates how
a workflow is constructed in order to maximize
utility. As a result, the solution enriches the
proliferation of service provisions and consumptions
over the Internet.

2 REQUIREMENTS FOR TRUST
IN SERVICE WORKFLOWS

This section presents the requirements our work aim
to meet. We propose unique characteristics of
workflows and trust as follows.

196 Viriyasitavat W. and Martin A..
FORMALIZING TRUST REQUIREMENTS AND SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS .
DOI: 10.5220/0003479501960206
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 196-206
ISBN: 978-989-8425-55-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

R1: Interoperability with Local Security
Requirements

In decentralized workflows, no single point of
control exists; instead, the workflow specification
itself travels from service to service (Kuntze and
Sch, 2008). Access to local resources is typically
determined by local security policies. Integrating or
transforming independent local security policies into
global policy enforcement is a very complicated
task; especially, when services dynamically join or
leave the workflow with free will. As such, it is
desirable that security should be maintained locally
and the requirements corresponding to local policies
are specified in a uniformed format and published
among participating services in a workflow.

R2: Separation of Duty (SoD)
Services with complementary competencies are
joined to carry out a special task. SoD ensures that
conflicting services cannot be part of a workflow
execution to circumvent conflict-of-interest
situations. Typically, a service is assigned to a
specific role for a particular task, where SoD
policies are verified based on role assignment
(Nyanchama and Osborn, 1999, Jaeger and Tidswell,
2001). However, this method only permits workflow
owners to enforce policies from their perspectives,
but preventing participating services to express their
SoD requirements. Our TS allows arbitrary services
to impose their own requirements through TS
formulae.
R3: The Association between Tasks and Services
As noted, several services with complementary
capabilities can be gathered to perform a
sophisticated task. On the other hand one service is
also allowed to execute several tasks in a workflow.
For example, an online patient record service is
responsible for acquiring patients’ information and
providing statistical analysis to the National Health
Service. Privacy and confidentiality are two
requirements of the first while the later concerns
with data accuracy. Consequently, the trust level of
such service is differently determined depending on
the task in responsible.

R4: Flow- and Task-oriented Property Specification
There are two perspectives of trust in workflow
executions. The first is flow-oriented perspective
describing that services involved in a flow execution
must possess certain properties. For example, to
protect data secrecy, digital patient’s records must
be transmitted over SSL among services involved
along the flow. Another focuses on task-oriented
executions. Properties of services responsible for a

particular task can be verified before trusting. Since
one task can be connected by many services, the
properties of other services may have an influence
on trust of a target service. For instance, the
insurance claiming task must be approved by two
different services, one from an insurance company
and another from a contracted hospital. To trust a
hospital, an insurance service must be presented.

R5: Enforcement of Sequences
Security of a workflow also depends on the
sequence of tasks that are dependent on one another.
One particular task might require the results from
others occurred before, as well as to provide its
results to the services afterwards (Kuntze and Sch,
2008). From the service viewpoint, it is desirable
that they are able to specify properties related to the
sequence of tasks and service associated. For
example, the task of issuing a check for a tax refund
can be done after a financial and general manager
have approved in order.

R6: Flexible Degrees of Restriction
The absence of the end-to-end visibility of a
workflow has led workflow research to re-examine
and to find the way for workflow cooperation
(Falcone et al., 2003). Flexible degrees of visibility
enable entities to retain the level of privacy and
confidentiality of internal processes. This fact gives
rise to security difficulties for one to accurately
specify properties of other services in a workflow. In
response to this, TS should be flexible to formally
express requirements with several degrees of
restriction based on visibility.

R7: Protection of Workflow Data
Since data is traversed from one service to another in
a workflow path, protecting the data against security
threats becomes necessary. This requirement has
been sufficiently accommodated by protections
offered by traditional security. For example,
integrity refers to the prevention of unauthorized
modification; authentication refers to verifying
identity accessing to information; authorization
refers to access control enforcement; and
confidentiality is achieved by the use of
cryptography. These requirements are essential to be
specified as the required properties where TS should
be developed in a way to address this requirement.

3 RELATED WORK

Although trust has long been investigated, one
topic which has been treated less is in the area of

FORMALIZING TRUST REQUIREMENTS AND SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS

197

formalism.

Table 1: Comparison between Trust Formalisms.

Models R1 R2 R3 R4 R5 R6 R7
Marsh /
Davulcu / /
Altunay /
HEN+
Our
Model

 Direct Support, / Not Obvious, Not Support

The following described the related works in this
area (summarized in tables 1)

 Marsh (Marsh, 1994) addresses key aspects of
trust in providing the social sciences with a tool
where the quantitative trust value, between -1 and 1,
is used to support trusting decisions. This work is
widely regarded as the first introduction of trust
formalism. The notion Tୟ(b, s)୲ denotes ‘a trust b’ in
situation s at a specific point of time t. The main
contribution is to encompass several aspects
including situation, time, utility, importance and
knowledge to quantify trust, providing those who
study on trust with a means of discussion in a
precise manner. However, this work is inadequate to
capture the important aspects of trust requirements
in service workflows, as its original purpose is not
focused on workflow collaboration.

Davulcu et al. (Davulcu et al., 1999) devises a
framework based on Concurrent Transaction Logic
(CTR) for reasoning in virtual enterprises. Workflow
is modelled by Direct Acyclic Graph representing
task coordination. A set of CTR connectives
enforces constraints on workflow structure.
Although these connectives are sufficient to specify
workflow constraints on tasks coordination, they are
less expressive in term of capturing trust
requirements in service workflows. For instance, it is
not possible to realize SoD (R2), and fails to capture
the association between services and tasks (R3).

The earliest work of integrating trust in service
workflow is presented by Altunay et al. (Altunay et
al., 2005). Trust relationships are examined in two
categories: direct and indirect. Direct trust
relationships occur between two services that are
immediate neighbour, whereas indirect trust
relationship describes when two services are not
immediately connected. However, this work is only
applicable to the workflow modelled by a simple
graph, where in the real world it is far more
complex. It is neither formally expressed nor
addressed essential trust requirements such as
Enforcement of Sequence (R5).

In our previous work (Viriyasitavat, 2009), a
petri-net-based trust framework called HENS+ is
used to support inter-domain workflow trust
relationship, addressing service delegation and trust
transitivity in dynamic workflow environments. This
work identifies the necessity of mutual trust
relationships between interacting domains. Despite
addressing comprehensive relationship at the domain
level, it lacks a formal approach for specifying trust
of interacting services inside a workflow.

Despite several approaches being proposed, they
are incomplete as one might be appropriate for
expressing trust in general aspects, and another
might be able to reason. In this paper, the formal TS
is developed to fulfil this lack by focusing on the
lower level at inter-service trust relationship.

4 WORKFLOW MODELLING

Since Petri Net is widely-accepted as a mathematical
workflow modelling (Van der Aalst, 1998,
Salimifard and Wright, 2001, Klai and Tatam 2005,
we generalize the Petri Net by adding a new set of
logic-based connectives, which we call this variant
as Service Workflow Net (SWN).

Def. 1: SWN is a labelled Place/Transition Net, i.e.,
a tuple ℳ = (P, T, F, C, r, i, o, l) is a SWN iff: (1) it
has two specific places, input place (i) and output
place (o), and (2) if a new transition (t) is added to
connect place o and place i, i.e., ∙ t = {o}, t ∙= {i},
where

1. P represents places (services) of a workflow
(circle),

2. T represents transitions(tasks) (rectangle),
3. P and T ≠ ∅; and P ∩ T = ∅,
4. F ⊆ (P × T) ∪ (T × P) represents directed flows,
5. C = {AND, OR, XOR} is a set of connectives that is

opened to support other advanced constructs.
6. l: P → A ∪ {τ} is a labeling function where A is a

set of attributes, and τ denote a null value. It is
used for labelling a service with associated
attributes.

Compared to others like π-calculus (Van der Aalst,
2004) and UML activity diagrams (Eshuis and
Wieringa, 2003), Petri Net provides advantages in
modelling workflows (Van der Aalst, 1998, Best et
al, 2001) However, the best choice for workflow
modelling is ongoing arguments. Different
languages have different advantages depending on
which aspects being approached. The main reason of
using Petri Net is that the powerful mathematical

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

198

foundation makes it possible to set up mathematical
models for reasoning about TS. It contains a set of
places and transitions corresponding to services and
tasks which provides a clear notation of the
association between tasks and services (R3).
Precisely, tasks in elementary form are atomic units
of work that can be fulfilled by a single service, and
in composite form require more than one service to
complete. This assists security analysis such as SoD
(R2). Although there are many arguments on Petri
Net as a workflow language, it suffices in principles
to model a workflow at the service level. However,
our approach is not limited to Petri Net. It can be
extended to any graph-based language.

5 SERVICE WORKFLOW TRUST

5.1 Defining Workflow Trust

The most related trust definition among existing
literatures is provided by Olmedilla, et al.
(Olmedilla, et al., 2005): “Trust of a party A to a
party B for a service X is the measurable belief of A
in that B behaves dependably for a specified period
within a specified context (in relation to service X).”
This implies that trust is unilateral from A acquiring
the service X provided by B in a given context.
However, the definition fails to address trust in
another direction, when B needs to trust A before
providing the service X. In term of service
workflows, B might ascertain that the outcome from
the service X is used only by a trusted party A, and
will not be maliciously disseminated outside trusted
domains.

Despite being claimed that trust is considerable
confusion around the terminology in multiple
meanings, this term is being used effectively in
many contexts. In our aspect, the importance of
incorporating trust in service workflows is that trust
is an enabling technology. We summarize the
definition of trust of service workflows as
(Viriyasitavat and Martin, 2010): “Trust in a
workflow is a subjective, possibly mutual
measurable, relationship between (direct and
indirect) interacting services to act autonomously,
securely, and reliably, in a given situation with a
specific context of a given time.” Direct interaction
takes place between two adjacent services in a
workflow path, while the indirect one occurs when
they are not (immediately) connected. The mutual
trust relationship describes bidirectional measurable
trust exhibited among participating services.
Establishing trust in both directions is crucial, as one

service may need to evaluate trustworthiness of a
subsequent service before passing information,
while the subsequent one perhaps requires trust of
the outcome that is originated from the trusted
source.

5.2 Trust Formalization

In our previous work (Viriyasitavat and Martin,
2010), we formulated trust in service workflows into
three modes: Henceforth Path Trust (HPT),
Backward Path Trust (BPT), and Existence Trust
(ET) (see Figure 1). HPT and BPT addresses the
direction for preceding and

Figure 1: The Workflow Example with HPT, BPT and ET.

succeeding services, respectively, while ET aims at
any service in the workflow.

Def. 2: Let A and B be two services in a service
workflow. TMC is a vector as its elements (tmc୧)
indicate computational trust models in use. A set of
all possible paths (π) originating from A to B is
denoted by π(A, B) = {< p଴, t଴, pଵ, tଵ … , t୬ିଵ, p୬ >}, where A = p଴ , and B = p୬. < p଴, t଴, pଵ, tଵ … , t୬ିଵ, p୬ > is a sequence of
services and task (p and t are services and tasks in
SWN). < p଴, t଴, pଵ, tଵ … , t୬ିଵ, p୬ > ⊆ n଴. F, where n଴ is a SWN. Path Trust is classified into two
directions:

1. Henceforth Path Trust (HPT): α୘୑େ୅→୆ = A ≽୘୑େୀ[୲୫ୡభ,…,୲୫ୡ౤] B

2. Backward Path Trust (BPT): β୘୑େ୅→୆ = A ⋗୘୑େୀ[୲୫ୡభ,...,୲୫ୡ౤] B αେ,୘୑େ୅→୆ and β୘୑େ୆→୅ denote trust values resulted from
binary relation ≽ and ⋗, indicating the trust values
of A placing on B. TMC is a vector where its
elements indicate the desired trust models. α୘୑େ୅→୆ and β୘୑େ୅→୆ are valid if there is one path connecting from
A to B.

FORMALIZING TRUST REQUIREMENTS AND SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS

199

Trust values from HPT and BPT aim at a single
target service, not intermediate services along the
path. However, a property of the intermediate
services might have an influence on the trust value
of the target. This can be precisely addressed by the
following TS algebra that will be described in the
next section. We note that trust relationship is
subjective where trust from one might be different
from others.

Def. 3: Existence Trust (ET): Let the terms A, B and
TMC be as defined. The ET definition is given
below.

1. Existence Trust (ET): Ε்ெ஼஺→஻ = ெ஼ୀ[௧௠௖భ,...,௧௠௖೙]்⊴ ܣ ,⊴ Ε்ெ஼஺→஻ denotes the trust value from binary relation ܤ
indicating the trust value of service A placing on B.
Due to there being no condition on paths, ET is a
looser version of Path Trust. It is more expressive as
being able to address trust in any service in a
workflow. This is worth to be addresses as the
presence of one service might affect trust of others
to participate in a workflow. (Figure 1 demonstrates
HPT and BPT in the forms of α୘୑େ୅→୆ and β୘୑େ୆→୅, and
the two ET trust values are denoted by Ε୘୑େ୅→ୈ and Ε୘୑େ୆→ୈ).

TMC is a vector referring to the use of the
desired trust models, for instance, trust based on
reputation, experience and behaviour, credential,
policies, quality of service, provenance, etc. As
noted, since a trust value can vary from different
perspectives, and some of the models are not
designed to be computable, Def. 4 describes
conversion functions to address this issue.

Def. 4: Let the terms A, B and TMC are similar to
Def 2. The Conversion Function is given as follows: F: [tmcଵ, … , tmc୬] → [aଵ, … , a୬], such that F([tmcଵ, … , tmc୬]) = [fଵ(tmcଵ), … , f୬(tmc୬)], and f୧(tmc୧) ∈ [−1. .1].

Some trust schemes use discreet and continue
value to measure trust. For example, some
approaches use a discrete value [0, 1], while many
others derive trust into a continuous value [0..1].
After analyzing the various metrics, it can be
concluded that there is no universal metric generic
for all applications. The reason to reduce trust to a
single numeric value is that trust is a relative factor.
It makes sense to use a unitless ratio value
normalized in the interval [−1..1]. The analysis of
using this approach can be found in (Marsh, 1994).
At this stage, this metrics are left loose and opened

for different characteristics, merely observing that
TMC (rather than a single value) is needed to
capture them.

6 TS ALGEBRA

6.1 Syntax of TS

Three categories of TS operators are presented:
Composition, Path, and Direction operators.
Composite formulae are built up based on the
association between tasks and services; Path
formulae based on Computational Tree Logic (CTL)
describe sequences of events; and Direction
formulae indicate the direction. The grammars are
presented in the Backus–Naur Form:

1. Direction Formulas W ∷= ⊤ | ⊥ | ℋR | ℬR | ~W | (W ∧ W) | (W∨ W)

2. Path Formulas R ∷= ⊤ | ⊥ | S | ~R | (R ∧ R) | (R ∨ R) | (R ⊕ R) | ∃୲⨀sR | ∃୲ ◊ R | ∃୲□R | ∃୲(R ⋓ R) | ∃୲(R⨃R) | ∀୲⨀R | ∀୲ ◊ R | ∀୲□R | ∀୲(R ⋓ R) | ∀୲(R⨃R)

3. Composite Formulas S ∷= ℱE୲Z | ࣪E୲Z | ℱA୲Z | ࣪A୲Z Z ∷= ε | (s, t, o, A) | ~Z | (Z ⊓ Z) | (Z ⊔ Z) | (Z ⊞Z)
Direction Formulas

The Henceforth (ℋ) and Backward (ℬ) operators
specify the directions from the preceding to
succeeding, and succeeding to preceding services
respectively.

Path Formulas

The Temporal operators consist of a pair of symbols.
The first part is one of ∃୲ or ∀୲ and the second part is
one of ⨀, ◊, □, ⋓, or ⨃. The Next (⨀), Future (◊),
and Global (□)are similarly defined as in CTL. The
Strong Until (Rଵ ⋓ Rଶ) specifies that Rଵ must hold
until the presence of Rଶ and Rଶ must hold in the
future. The Weak Until (Rଵ⨃Rଶ) is similar to the
strong until, but Rଶ is not required to hold. The For
Some Path (∃t) specifies that there must be some
paths through a set of connected services S(t) where t ∈ T in SWN. If t is omitted, it means there is no
condition on paths specific to a particular task.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

200

S଴(t) ⊆ ൜{S୬|S୬ ∈ G(S଴)}, G(S଴): (S଴ × t) × (t × P) → P{S୬|S୬ ∈ H(S଴)}, H(S଴): (P × t) × (t × S଴) → P

The first line is a set of connected services if ℋ is
part of the formula; and the second indicates
connected services in ℬ. Finally, the For All Path (∀୲) specifies for all paths through a task t.
Composite Formulas

In the first (quantifier) part, the Forward (ℱ) and
Previous (࣪) address the target services
immediately connected in the forward direction
(service separation) and previous direction (service
composition), through the task(s) t in E୲ or A୲.
Composite For Some (E୲) indicates there is at least
one services immediately connected, and Composite
For All (A୲) restricts to all services immediately
connected through the task(s) t.

In second (property) part, ε represents a null
element. (s,t,o,A) is an atomic element where s, t
and o are a service name, type, and owner,
respectively. A set of attributes A is used to indicate
properties. For example, one can specify that
services with CA certificate are trusted. Note that s
and t can be null (ε) and A can be empty which
means that there are no properties required.
However, this element is flexible and opened for
extension and implementation. The negation (~)
represents the negation of an expression, such as ℋℱ∀୲~(ε, tଵ, ε, ∅) means that there must be no
subsequent service type tଵ. The Composite
Conjunction (⊓) allows trust requirements to be
specified a service
composition in the Previous operator (࣪), and a
service separation (ℱ) in the Forward operator. The
Composite Disjunction (⊔) indicates that in one or
both services containing a desired property is
trusted. The Composite Exclusive Disjunction (⊞)
indicates only one service with a certain property is
trusted. These are restricted to a task(s) t indicated
by ∃୲ or ∀୲.

The remaining operators (∧, ∨, ~) in Direction
and Path formulae are similar to the definitions in
propositional logic. The graphical explanation for
each operator is illustrated in Figure 2.

6.2 Well-formed Formulas

Def. 5: Well-formed formulas of TS are defined
below:

Atom: A propositional atom (s, t, o, A) is

S0

S1 …

…

…

…

t1
S0 …

…

…S1

…

t1

S1

S1

S0

…

…

…

…

t1 …

…

…S1

…
t2

S1

 ℋ࣪A௧భ ଵܵ ℬℱA௧భ ଵܵ ℋ(⨀∀௧భ൫ℱE௧మ ଵܵ൯)

S0

…

…

…

…

t1

…
t2

S1

S1

S1

S1

S0…
…

…

…

t1
S1 …

…

…S1

…

t1

S0 S1

 ℋ(⨀∀௧భ൫࣪A௧మ ଵܵ൯) ℬ࣪E௧భ ଵܵ ℋℱA௧భ ଵܵ
S1

S0…

…

…

…

t1
S1 …

…

…S1

…

t1

S0 S2

S*

S0…

…

…

…

t1

 ℬ(࣪E௧భ(ଵܵ ⊓ ܵଶ)) ℋ(ℱA௧భ(ଵܵ ⊓ ܵଶ)) ℬ(࣪E௧భ(ଵܵ ⊔ ܵଶ)

S* …

…

…S*

…

t1

S0 S*

S*

S0…

…

…

…

t1
S* …

…

…S*

…

t1

S0 S*

 ℋ(ℱA௧భ(ଵܵ ⊔ ܵଶ)) ℬ(࣪E௧భ(ଵܵ ⊞ ܵଶ)) ℋ(ℱA௧భ(ଵܵ ⊞ ܵଶ))

…

S2

S2

S2

S3

S1

t1

S0

/

S3
 ℬ(࣪E௧భ(ܵଷ ⊓ ~ܵଷ) ∧ ∀௧భ ◊ (࣪A(ଵܵ ⊓ ܵଶ)) ∧ ∃□(࣪E~ܵଶ))

t1

… S2

S2

S2

S3

S1

S3

S3S3

S3

S3

S2/

…

S2/
S4

S4

…

S2/ S2/

t2

t3

S0

 ℬ ൬∀⨀∀௧భ,௧మ,௧య ቀ࣪Aܵଷ ⋓ ൫࣪A(ଵܵ ⊔ ܵଶ) ∨ ࣪A(ܵଶ ⊔ ܵସ)൯ቁ൰ ∧ ℬ(∃ ◊ (࣪A(ܵସ ⊓ ܵଶ))) ∧ ℋ(∀(ℱA~ܵଶ)⨃(ℱEܵସ))

Figure 2: Graphical Illustration of Algebra Operators.

a Composite formula if it is preceded by Composite
quantifier operators, ℱE୲, ࣪E୲, ℱA୲, or ࣪A୲ and a
well-formed formula if further preceded by the
Direction operators, ℋ, or ℬ, for example, ℋℱE୲(s, t, o, A).

Composite Formulas: (Let ∆ be an abbreviation of ℱE୲, ࣪E୲, ℱA୲, or ࣪A୲) If ∆Zଵ and ∆Zଶ are
Composite formulas, then so are ∆~Zଵ, ∆(Zଵ ⊓ Zଶ), ∆(Zଵ ⊔ Zଶ), ∆(Zଵ ⊞ Zଶ), ∆(Zଵ ⟹ Zଶ), and ∆(Zଵ ⇔Zଶ). Every composite formula is also a Path formula.

Path Formulas: If Rଵ and Rଶ are Path formulas,
then so are ~Rଵ, (Rଵ ∧ Rଶ), (Rଵ ∨ Rଶ), (Rଵ ⊕ Rଶ),
(Rଵ → Rଶ), (Rଵ ↔ Rଶ), ∃୲⨀Rଵ, ∃୲ ◊ Rଵ, ∃୲□Rଵ,

FORMALIZING TRUST REQUIREMENTS AND SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS

201

∃୲(Rଵ ⋓ Rଶ), ∃୲(Rଵ⨃Rଶ), ∀୲⨀Rଵ, ∀୲ ◊ Rଵ, ∀୲□Rଵ, ∀୲(Rଵ ⋓ Rଶ), and ∀୲(Rଵ⨃Rଶ). These are well-
formed if preceded by the Direction operators, ℋ, or ℬ.

Direction Formulas: If Wଵand Wଶ are well-formed
formulas, then so are ~Wଵ, (Wଵ ∧ Wଶ), (Wଵ ∨ Wଶ),
(Wଵ → Wଶ), and (Wଵ ↔ Wଶ) (Please note that the
syntax applied to ℋR are similar to ℬR). Every
Direction formula is well-formed.

6.3 Semantics of TS

This section provides more comprehensive detail on
semantics serving as a key element for reasoning
about service workflows. With well-defined
semantics, reasoning algorithms can be developed
based on this property to facilitate automatic
interoperation. We also show that the semantics can
be easily and concisely expressed in term of logic. In
what follows, we write the path as p଴ → t଴ → pଵ →⋯ → p୬. Regardless of tasks, we use ≺ for one-step
connected services p଴ ≺ pଵ ≺ ⋯ ≺ p୬ and <୬ for
abbreviation of p଴ ≺ pଵ ≺ ⋯ ≺ p୬ as p଴ <୬ p୬.

Def. 6: Each formula ω is interpreted over a SWN ℳ. Let q୧ be an abbreviation of (s, t, o, A) and p଴ is
a service imposing a formula. Direction operators
are explicitly integrated into each clause. The
semantics of ℳ ⊨ ω can be understood as follows:
(Note that the following clauses are not exhaustively
listed. It only shows important semantics of the TS)

Composite Formulas:

1. ℳ, p଴ ⊨ ⊤, and ℳ, p଴ ⊭⊥.
2. ℳ, p଴ ⊨ ℬ(࣪A୲q୧) iff from p଴, for all p୧ through

a task t that p୧ ≺ p଴ (p଴ ≺ p୧ in ℋ(ℱA୲q୧)), p୧
satisfies q୧.

3. ℳ, p଴ ⊨ ℬ(ℱA୲q୧) iff from p଴, for all p୧ through
a task t that t → p୧, p଴ (p୧, p଴ → t in ℋ(࣪A୲q୧))
and p୧ ≠ p଴, p୧ satisfies q୧.

4. ℳ, p଴ ⊨ ℬ(࣪A୲(qଵ ⊓ qଶ)) iff from p଴, for all p୧
through a task t that p୧ ≺ p଴ (p଴ ≺ p୧ in ℋ(ℱA୲(qଵ ⊓ qଶ))), p୧ satisfies qଵ and p୨ satisfies qଶ. p୧ and p୨ can be the same service.

5. ℳ, p଴ ⊨ ℬ(࣪A୲(qଵ ⊔ qଶ)) iff from p଴, for all p୧
through a task t that p୧ ≺ p଴ (p଴ ≺ p୧ in ℋ(ℱA୲(qଵ ⊔ qଶ))), p୧ satisfies qଵ or qଶ.

6. ℳ, p଴ ⊨ ℬ(࣪A୲(qଵ ⊞ qଶ)) iff from p଴, for all p୧
through a task t that p୧ ≺ p଴ (p଴ ≺ p୧ in ℋ(ℱA୲(qଵ ⊞ qଶ))), p୧ satisfies only one
property, either qଵ or qଶ.

7. ℳ, p଴ ⊨ ~ ℬ(࣪A୲q୧) iff ℳ, p଴ ⊨ ℬ(࣪E୲~q୧).
8. ℳ, p଴ ⊨ ~ ℬ(ℱA୲q୧) iff ℳ, p଴ ⊨ ℬ(ℱE୲~q୧).

9. ℳ, p଴ ⊨ ~ ℋ(ℱE୲q୧) iff ℳ, p଴ ⊨ ℋ(ℱA୲~q୧).
10. ℳ, p଴ ⊨ ~ ℋ(࣪E୲q୧) iff ℳ, p଴ ⊨ ℋ(࣪A୲~q୧).

(Note that if E୲ is presented instead of A୲, it indicates
only some p୧ instead of for all p୧)
Clause 1 reflects that ⊤ is always true and ⊥ is
always false. Clauses 2-3 mean that Composite
atoms are evaluated either in Henceforth (ℋ) or
Backward (ℬ) directions, in service composition (࣪) or separation (ℱ) restricted to the task t.
Clauses 4-6 extend the Composite atoms with ⊓, ⊔,
and ⊞. ⊓ restricts two properties must be satisfied, ⊔ indicate at least one of the two properties must be
satisfied, and ⊞ restricts that only one of properties
is satisfied, but not both. Finally clauses 7-10
explain how the negation operator from a Direction
part can propagate into the Composite part of the
formula. Notice that the ℋ, ℬ, ࣪, and ℱ are not
affected by the negation propagation.

Path Formulas:

(Let S be the Composite part without Direction
operator, for example, S = ℱA୲q୧, or S = ࣪E୲(qଵ ⊓qଶ) and ∇ be a substitution of ℋ or ℬ)

1. ℳ, p଴ ⊨ ∇(Sଵ ∧ Sଶ) iff ℳ, p଴ ⊨ ∇(Sଵ) and ∇(Sଶ).
2. ℳ, p଴ ⊨ ∇(Sଵ ∨ Sଶ) iff ℳ, p଴ ⊨ ∇(Sଵ) or ∇(Sଶ).
3. ℳ, p଴ ⊨ ℬ∀୲(Sଵ ⋓ Sଶ) iff for all i where p୬౟ <୬ p଴ (p଴ <୬ p୬౟ in the Henceforth direction, ℋ), ℳ, p୬౟ ⊨ ℬ(Sଶ) and for all p୫౟ through a

task t where m = 0, … , n − 1, we have ℳ, p୫౟ ⊨ℬ(Sଵ).
4. ℳ, p଴ ⊨ ∇(∀୲ ◊ (Sଵ)) iff ∇(∀୲(⊤ ⋓ Sଵ)).
5. ℳ, p଴ ⊨ ∇(∀୲□(Sଵ)) iff ∇(~∃୲ ◊ (~Sଵ)).
6. ℳ, p଴ ⊨ ∇(∃୲□(Sଵ)) iff ∇(~∀୲ ◊ (~Sଵ)).
7. ℳ, p଴ ⊨ ∇(∀୲(Sଵ⨃Sଶ)) iff ∇(∀୲(Sଵ ⋓ Sଶ) ∨∀୲□(Sଵ)).
8. ℳ, p଴ ⊨ ∇(∃୲(Sଵ⨃Sଶ)) iff ∇൫∃୲(Sଵ ⋓ Sଶ) ∨∃t□S1.
9. ℳ, p଴ ⊨ ℬ∀୲⨀(Sଵ) iff for all i where p୧ ≺ p଴

(p଴ ≺ p୧ in Henceforth direction, ℋ) through a
task t, such that ℳ, p୧ ⊨ ℬ(Sଵ).

10. ℳ, p଴ ⊨ ℬ∀୲⨀(Sଵ) iff for some i where p୧ ≺ p଴
(p଴ ≺ p୧ in Henceforth direction, ℋ) through a
task t, such that ℳ, p୧ ⊨ ℬ(Sଵ).

(Note that if ∃୲ is presented instead of ∀୲, it indicates
only some i instead of for all i)
Clauses 1 and 2 are similar to the semantics in
propositional logic and the remaining clauses are
similarly described in CTL. The only difference is
that all types of operators must be preceded by one
of the Direction operators indicating the direction of

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

202

Package
Promotion

Services

Package
Creation
Services

Airline Ticket
Services

Transport
Services

Hotel
Services

Searching

Map
Services

Airline Ticket
Services

Transport
Services

Hotel
Services

Booking

Insurance
Services

Payment
Services

Tourist
Information

Services

History
Recording
Services

Combining
Information

Services

Tourist Guide
Services

Promotion
Listing
Services

Represents company owned services

Represents external services
Figure 3: Travel Planning Processes.

Individual Providers

SFC

Airline Companies

…

or
or SFI…

Other Online Agents

SFO…

[flight
query]

or

Hotel

or

SHC…
Other Online Agents

SHO…

Home Stay

SHI…

[transport
query]

Transport Companies

STC…

or

Other Online Agents

STO…

Individual Providers

STI…

[result]
Maps

SM…

[result]

[package
creation]

[Creating
Package]

or

or

[flight
booking]

SFBC

Airline Companies

xor SFBI

Individual Providers

SFBO

Other Online Agents

xor

[hotel
booking]

SHBC

Hotels

SHBO

Other Online Agents

SHBI

Home Stay

[transport
booking]

STBC

Transport Companies

xor STBO

Other Online Agents

STBI

Individual Providers

xor

or

SP

Payment Services

…

[result]

[guide
booking] SGC

Guide Companies

xor

SGI

Freelance Guide

SIN1

Info Services

…

[result]

SI

Insurance Services

…

[result]

or

[insurance]

SH1

History Recording
Services

…

[record]

[search]
[package
promotion]

Packages Listing
Services
Package#1

SFC

SHC

STC

[result]

…
SO1 SO2

SO4

Represents company owned services

Represents external services

Case 1

Case 2

Case 3

Case 4

Case 5

* is a duplicated service for the ease of reading

[Accommodation
query]

or
or

or

[FlightResult]

or
or

or

[HotelResult]

Maps*

SM…

[result]

or
or or

or

or

…
…

…

[result]

xor
xor

[result]

xor
xor

…
…

…or

…
…

…xor
xor SP

Payment Services

…

[result]

or

[result]

xor
xor

…
…

[result]

xor

or

or
or

or

and
and

and
and

or

or
SO3

Figure 4: The Petri-net-based Workflow for All-in-one Travel Planning Processes.

paths in a workflow. For example, the formula ℬ∀୲(Sଵ ⋓ Sଶ) holds on for all paths in backward
direction if it is the case that Sଵ holds continuously
until Sଶ holds.

It is essential to extend the specification
semantics with a formal analysis of satisfiability
property. In the light of Def 6, this is used to
determine whether a given TS formula is satisfied by
a workflow.

Def. 7: Let ω be a TS formula and ℳ be the formal
representation of SWN. Whether TS satisfies,
partially satisfies, or contradict with ℳ is defined by
the following relations.

1. ℳ ⊨ ω is called Satisfiability, when TS
issatisfied in every case in ℳ,

2. ℳ ⊢ ω is called Partial Satisfiability, when TS ⊨ ℳ ′ and ℳ′ ⊆ ℳ, and
3. ℳ ⊭ ω is called Contradictory, when TS does not

satisfy any part of ℳ

7 APPLICATION EXAMPLE

7.1 Motivating Scenario

Suppose there is a travel planning workflow offering
travel services by incorporating with multiple
services including: (1) Searching Services:
Transport, Airline, and Hotel Companies
(S୘େ,S୊େ,Sୌେ), Individual Transport, Ticket, and

FORMALIZING TRUST REQUIREMENTS AND SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS

203

Hotel Providers (S୘୍,S୊୍,Sୌ୍), and Online Transport,
Ticket, and Hotel Agents (S୘୓, S୊୓,Sୌ୓), (2) Map
Services: S୑ providing hotels or transports locations,
(3) Booking Services: Transport, Airline, and Hotel
Companies (S୘୆େ,S୊୆େ,Sୌ୆େ), Individual Transport,

Ticket, and Hotel Providers (S୘୆୍,S୊୆୍,Sୌ୆୍) and
Other Online Transport, Ticket, and Hotel Agents
(S୘୆୓,S୊୆୓,Sୌ୆୓), and (4) Others: Insurance
Services S୍. Payment S୔, Information Services S୍୒,
History Recording Services Sୌ, and the services S୓భ. . . S୓౤ belong to the workflow owner.

The workflow is preliminarily depicted in Figure
3, and the detailed workflow with its connectives is
illustrated in Figure 4. Two options are available to
the customers. To serve accurate demands, the first
product, originated by the Package Creation, allows
users flexibility in selecting flight tickets, hotel
nights, and transports, while the Package Promotion
provides more convenience by catering promotion
packages in bundle. The Transport, Airlie Ticket,
and Hotel services can perform in parallel and are
optional. All transactions will be processed through
the Booking service, Payment service, Tourist Info
service, and History recording service consecutively.
The Insurance service and Tourist Guide service are
two additional purchasing depending on the
customers’ demands.

7.2 Applying TS

Five examples corresponding to the trust
requirements (section 2) are described and
summarized in table 2.

CASE 1: Credential-based Trust. In the situation
when the Flight Booking (S୊୆େ) processes
transactions of flight booking requests, S୊୆େ trusts
the transactions originated from the airline
companies certified by Business Airline Registry
(C୆୅ୖ). The formal specification in Table 2
demonstrates the certificate requirement by the

labeling function (Def 1), C୆୅ୖ ∈ l(S୊େ). A as the
property of S୊େ. The formula ℬ(∀ ◊ ൫࣪A୊୪୧୥୦୲ୖୣୱ୳୪୲(ε, S୊େ, ε, {C୆୅ୖ})൯) is imposed
to restrict for Backward (ℬ) direction and for all
path in future (∀ ◊) to reach all target services
executing the FlightResult task. Because the formula
satisfies only some paths (e.g. ۴۱܁(target) → S୓మ →S୓య → it is partially satisfied by the ,((source)۴۰۱܁
workflow. The formula falls into the BPT mode
where the trust value is presented as β୘୑ୌూాి→ୗూి. This
example demonstrates the Association between
Tasks and Services (R3) by explicitly restricting the
services responsible for FlightResult task. (2)
Flexible Degrees of Restriction (R6) can be
described when parts of the workflow is not visible
making the FlightResult invisible to S୊୆େ. The
formula can be relaxed as ℬ(∀ ◊ (࣪A(ε, S୊େ, ε, {C୆୅ୖ}))) by not specifying
FlightResult task in A. (3) Task-oriented Property
(R4) is addressed as the formula concern with trust
of services executing FlightResult task.

CASE 2: Trust in Providing Information. The
online hotel provider Sୌ୓ wants to protect the secret
of the information of a price promotion. In order to
pass such information along a workflow path until
reaching the Booking service Sୌ୆୓, it trusts only the
services owned by the workflow owner (S୓౟),
expressed by ℋ(∀(ℱA൫ε, S୓౟, ε, ∅൯ ⨃ ℱA(Sୌ୆୓, ε, ε, ∅))))). Since
the specification satisfies only some paths
(e.g. ۽۶܁(source) → S୓మ → S୓య → it ,((target)۽۶۰܁
is partially satisfied by the workflow. This
specification falls into the HPT mode, and the trust
value is presented by α୘୑ୌౄో→ୗౄాో. This case
demonstrates that the relative property (services
owned by the workflow owner) of other services has
an influence on the trust value of a target service (Sୌ୆୓). From this example, the TS is able to

Table 2: Examples of Trust Specification of Case 1 to 5.

Case Source Target Trust Specification
(Formulas)

Trust Modes
(source to target)

Satisfiability
check (ℳ)

1 S୊୆େ S୊େ ℬ(∀ ◊ ൫࣪A୊୪୧୥୦୲ୖୣୱ୳୪୲(ε, S୊େ, ε, {C୆୅ୖ})൯)
where C୆୅ୖ ∈ l(S୊େ). A

β୘୑ୌూాి→ୗూి

Partially
Satisfy

2 Sୌ୓ Sୌ୆୓ ℋ(∀ ቀℱA൫ε, S୓౟, ε, ∅൯ቁ ⨃൫ℱA(Sୌ୆୓, ε, ε, ∅)൯))) α୘୑ୌౄో→ୗౄాో

Partially
Satisfy

3 S୍୒ Sୌ୓,S୘୓,S୔

ℬ൫࣪A(ε, S୔, ε, ∅)൯ ∧ ℬ(∀ ◊ (࣪A(ε, Sୌ୓, ε, ∅)))) ∧ ((∀ ◊ (࣪A(ε, S୘୓, ε, ∅))))

β୘୑ୌ౅ొ→ୗౄో, β୘୑ୌ౅ొ→ୗ౐ో,
β୘୑ୌ౅ొ→ୗౌ

Partially
Satisfy

4 S୍ S୔୊୓, S୔ୌ୓, S୔୘୓
ℬ(∀ ◊ (࣪AS୔୊୓ ∨ ࣪AS୔ୌ୓ ∨ ࣪AS୔୘୓)) β୘୑ୌ౅→ୗౌూో, β୘୑ୌ౅→ୗౌౄో,

β୘୑ୌ౅→ୗౌ౐ో
Contradict

5 Sୌ୍భ Sୌ୆୍ → S୔ ℋ(∀⨀(ℱAS୔)) Ε୘୑ୌౄ౅→ୗౄా౅ Satisfy

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

204

address Flow-oriented Property Specification (R4)
and Protection of Data (R7).

CASE 3: Trust in Service Provider. The
Information service S୍୒ is willing to provide the
service right after making a payment, and requires
that the transactions must be originated from Sୌ୓
and S୘୓. The formal specification is given as ℬ(࣪A(ε, S୔, ε, ∅)) ∧ ℬ(∀ ◊ (࣪A(ε, Sୌ୓, ε, ∅)))) ∧((∀ ◊ (࣪A(ε, S୘୓, ε, ∅)))). The first term ℬ(࣪A(ε, S୔, ε, ∅)) describes all services directly
connected to S୍୒ must be the Payment service type (S୔), while the later two terms restrict the flow to be
originated from Sୌ୓ and S୘୓. This falls in the BPT
mode where the trust values are β୘୑ୌ౅ొ→ୗౌ, β୘୑ୌ౅ొ→ୗౄో
and β୘୑ୌ౅ొ→ୗ౐ో. The first term illustrates our approach
can address Enforcement of Sequences (R5). (Due to
the page limits, the explanation of the remaining
cases is discussed briefly)

CASE 4: Trust in Service Provisions. The
Insurance service S୍ requires that the Private Online
Agent services must be involved in all paths. In this
case, there are no private agents presented in the
workflow which make this requirement contradicts
with the satisfiability check. This can result in two
consequences either the service S୍ changes the
requirement in order to participate in the workflow
or decides not to participate. Alternatively, the
workflow owner might replace the service S୍ to
avoid the conflict, or adjust the workflow to comply
with this requirement.

CASE 5: Existence Trust. Suppose that Tom
wants to participate in the workflow by letting one
of his apartments. He creates the service Sୌ୍ and
purchases the service Sୌ୆୍ for the Room Booking
process. Tom trusts the payment service S୔ that have
to be connected right after the service Sୌ୆୍. He has
no concern with path from Sୌ୍ to Sୌ୆୍. This formula
falls into the ET mode and represents Enforcement
of Sequences (R5).

8 ANALYSIS OF TS

Interoperability with Local Security Requirements
(R1): Obviously, the TS formula is a formal
approach enabling Interoperability with Local
Security Requirements since it allows each service
to uniformly express its own requirements to other
services.
Separation of Duty (R2): Although not illustrated by
the example cases, our TS can address this specific
requirement. For example, in a financial audit

scenario, the annual financial statement must be
audited by two different auditing companies. In this
case, it is not necessary to precisely identify the
specific companies, but instead have to make sure
that they are not the same. The atomic proposition
can be extended by introducing a dummy variable dଵ
as ℬ࣪Aୟ୳ୢ୧୲((dଵ, ε, , ε, {audit}) ⊓ ((~dଵ, ε, , ε, {audit}))).
It means that two different services must be present
to execute the audit task. The remaining trust
requirements (R3-R7) are explicitly discussed along
the way in the example cases.
Mutual Relationship: In some cases the relationship
exists only in one direction. For example, if A trusts
B, it is not necessary B to trust A. However, based
on our definition of trust, the lack of trust
relationship does not imply that there is no trust
value in the computational sense. According to
Conversion Function, if there is no trust, the
function will return “0” as a default value.

9 CONCLUSIONS

This paper presents formal trust specification in
service workflow environments. Three modes of
trust and algebraic operators are developed to
formally and uniformly express trust requirements
from each autonomous service. The specification is
also discussed with its syntax and semantics. TS
formulas are incrementally built-up from Direction,
Path, and Composite operators. The binding
convention is described for operator priorities. To be
able to reason about a service workflow,
satisfiability relations are defined. Our solution
provides advantages for the success of secure
workflow interoperation in compliance with local
trust requirements and grounds for automatic
reasoning processes.

REFERENCES

Altunay, M., Brown, D., Byrd, G., Dean, R., 2005. Trust-
Based Secure Workflow Path Construction, In Proc.
Of Intl. Conf. on Service Oriented Computing.

Best, E., Devillers, R., Koutny, M., 2001. Petri Net
Algebra, EATCS Monographs on Theoretical
Computer Science. Springer-Verlag.

Davulcu, H., Kifer, M., Pokorny, L., Ramakrishnan, C. R.,
Ramakrishnan, I. V., Dawson, S., 1999. Modeling and
Analysis of Interactions in Virtual Enterprises.

Falcone, R., Pezzulo, G., Castelfranchi, C., 2003. A fuzzy
approach to a belief-based trust computation, In
Lecture Notes on Artificial Intelligence.

Guha, R., Kumar, R., Raghavan, P., Tomkins, A., 2004.

FORMALIZING TRUST REQUIREMENTS AND SPECIFICATION IN SERVICE WORKFLOW ENVIRONMENTS

205

 Propagation of trust and distrust, In Proc. of the 13th
Intl. conf. on World Wide Web, ACM.

Galizia, S., Gugliotta, A., Domingue, J., 2007. A trust
based methodology for web service selection, In Proc.
of the Intl. Conf. on Semantic Computing.

Jaeger, T., Tidswell, J. E., 2001. Practical Safety in
Flexible Access Control Models, ACM Transactions
on Information and System Security.

Jøsang, A., Marsh, S., Pope, S., 2006. Exploring different
types of trust propagation, In Proc. of the 4th Intl.
Conf. on Trust Management.

Klai, K., Tata, S., 2005. Abstraction-based Workflow
Cooperation Using Petri Net Theory, In Proc of the
14th IEEE Intl. Workshops on Enabling Technologies:
infrastructure For Collaborative Enterprise.

Kuntze, N., Sch, J., 2008. Securing Decentralized
Workflows in Ambient Environments, In Intl. Conf.
on Embedded and Ubiquitous Computing, IEEE/IFIP.

Marsh S., 1994. Formalising Trust as a Computational
Concept. PhD thesis, University of Stirling\.

Nyanchama, M., Osborn, S., 1999. The Role Graph Model
and Conflict of Interest, ACM Transaction on
Information System Security.

O’Donovan, J., Smyth, B., 2005. Trust in recommender
systems, In Proc. of the 10th Intl. Conf. on Intelligent
User Interfaces.

Salimifard, K., Wright, M., 2001. Petri-Net based
Modeling of Workflow Systems: An Overview.
European Journal of Operational Research.

Olmedilla, D., Rana, O., Matthews, B., Nejdl, W., 2005.
Security and trust issues in semantic grids, In Proc. of
the Dagsthul Seminar, Semantic Grid: The
Convergence of Technologies.

Van der Aalst, W. M. P., 1998. Chapter 10: Three Good
reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama, S. Kannapan,
C. M. Khoong, S. Navathe, and J. Yates, editors,
Information and Process Integration in Enterprises:
Rethinking Documents, Vol 428 of the Kluwer Intl.
Series in Engineering and Computer Science.

Van der Aalst, W. M. P., 2004. Pi calculus versus petri
nets: Let us eat”humble pie” rather than further
inflate the ”pi hype”.

Viriyasitavat, W., 2009. Modeling Delegation in
Requirements-Driven Trust Framework. In Congress
on Services- I.

Viriyasitavat, W., Martin, A., 2010. Formal trust
specification in Service Workflows, In IEEE/IFIP
International Conference on Embedded and
Ubiquitous Computing.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

206

