
A CONTEXT-AWARE SERVICE CENTRIC APPROACH FOR
SERVICE ORIENTED ARCHITECTURES

Hatim Hafiddi, Mahmoud Nassar, Hicham Baidouri, Bouchra El Asri and Abdelaziz Kriouile
IMS Team, SIME Laboratory, ENSIAS, Rabat, Morocco

Keywords: Context, Ubiquitous computing, Context-Aware Service Oriented Architectures, Model Driven Engineering,
Aspect paradigm.

Abstract: Evolution in the fields of telecommunication and software engineering has promoted the birth of a new
generation of software architectures known as Context-Aware Service Oriented Architectures (CASOA)
which are articulated on a new design and development paradigm called Context-Aware Service (CAS).
However, the ambiguity of the context concept and the multiplicity of services execution contexts make
CAS hard to build and show why a generic approach, in accordance with best practices of software
engineering for designing such services, is necessary. This paper focuses on a CAS design approach for
building CASOA. To deal with such architectures development, challenges such as context management and
dynamic service adaptation have to be faced. We propose in this article a design process that exploits both
of our context and CAS specifications and metamodels in order to fulfil the passage from a core service in
Service Oriented Architecture (SOA) to a CAS in CASOA. This passage is satisfied across a mechanism
that, inspired by the Aspect Paradigm concepts, considers the service adaptations as aspects.

1 INTRODUCTION

Evolution in the fields of telecommunication (e.g.,
fast networking protocols), of mobile infrastructures
(e.g., new generation of mobile devices) and
software engineering in terms of architectures (i.e.,
emergence of new architectures like Service
Oriented Architectures) and in terms of development
paradigms (i.e., from the functional to the service
while passing by the object and component
paradigms) has promoted the birth of a new
generation of software architectures known as
Context-Aware Service Oriented Architectures
(CASOA) which are articulated on a new design and
development paradigm called Context-Aware
Service (CAS). A CAS provides users with a
customized and personalized behaviour depending
on their contexts. For example, a Restaurants
Searching service gives users suggestions depending
on their locations, preferences and even the used
device capabilities. Generally, this kind of
information is called context.

The ambiguity of the context concept and the
multiplicity of context situations to be considered
make CAS hard to build and highlight the need of
universally accepted basic design principles that can

lead to a generic approach for efficient CAS
development as an underlying mechanism for
building CASOA. The traditional approaches for
CAS development produce services which are able
to function only in preset situations and whose
business logic is tightly coupled with both of context
management and adaptation logics. Thus, the result
of such approaches is complex services whose rate
of evolution and reuse is much reduced.

Nowadays, designing systems based on CAS
enables them to sense and react to changes observed
in their environment. This capability is particularly
critical in ubiquitous environments, where context is
the central element of mobile systems (Sheng, Yu
and Dustdar, 2009). Though we base our remarks in
this article on a specific application domain (i.e. The
E-tourism), we follow a Model Driven Engineering
(MDE) approach for CASOA artefacts development
independently of the technical platforms and the
application domains (Platform & Domain
Independent Development Approach: PDIDA).
Model-Driven Engineering (MDE) is a model
centric approach for software development in which
models are used to drive the development of all
software artefacts. It provides great benefits in terms
of cost reduction and quality improvement. Our

176 Hafiddi H., Nassar M., Baidouri H., El Asri B. and Kriouile A..
A CONTEXT-AWARE SERVICE CENTRIC APPROACH FOR SERVICE ORIENTED ARCHITECTURES.
DOI: 10.5220/0003473501760183
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 176-183
ISBN: 978-989-8425-55-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

approach consists on providing CASOA artefacts
metamodels which will serve for constructing
models, then implementations can be generated
automatically by performing a series of model to
model transformations. Thereby, in addition of
profits in terms of reuse, evolution, integration and
maintenance, our approach can be easily transposed
to various domains and target various technical
platforms.

In the rest of this paper, we first present a
scenario that concerns an E-tourism system which
will be used in subsequent sections as an illustrating
example. In Sect. 3, we present and describe our
context specification and metamodel and focus, in
the fourth section, on giving a CAS specification and
metamodel. Sect. 5 introduces how aspect paradigm
can be applied to fulfil service adaptation to its
execution contexts while in Sect. 6 we present our
CASOA design process. Sect.7 briefly compares
related work. Finally, we conclude the paper in Sect.
8 with plans for future work.

2 e-TOURISM SCENARIO

Let’s imagine that a Swedish tourist wants to taste
the local gastronomy of a Moroccan city which he’s
visiting, so he connects himself via his mobile
device (e.g., PDA, iPhone, BlackBerry, etc.) to a
traditional E-tourism system in order to obtain a list
of suitable restaurants. He subscribes to the system,
launches his request (i.e. concerning a restaurants
searching service) and obtains one of the two
following answers:

 Service failure (i.e. the system blocks and the
application closes) because of its inadequacy
for a mobile use (i.e. the memory overloads
considering the great number of returned
records);

 In the contrary case (i.e. limited number of
returned records), the service returns an
inadequate response for tourist’s expectations
(i.e. inadequate display and inappropriate
restaurants because the system doesn’t take
into account parameters like tourist’s device
type, his localization, his language, his
preferences, etc.).

In purpose to use user’s context and face its
changes, this E-tourism system needs to be context-
aware. Indeed, if such system was conceived to be
context-aware, the tourist once connected to the
system will receive automatically (time is taken into
account: it’s midday for example) a list of

restaurants well presented (device type is taken into
account for display adaptation), close to his site
(taken into consideration the localization), described
in his language (the system will consider the user’s
language) and taking account his preferences (food
preferences for instance). Also, let’s note that such
system will resort to a results pagination mechanism
(considering the device capacities, the RAM in this
case) to avoid its blocking and if ever it detects any
change in tourist’s context (e.g., weak battery or
change of the connection type), it will automatically
adapt his behaviour (e.g., passage to a reduced view)
in purpose of optimization.

The development of this E-tourism system, in
particular, and context-aware systems, in general,
imply several challenges. First, Context definition
(i.e. which context information are relevant for the
adaptation of the system), structure (i.e. the
properties and the connections between the
information) and acquisition is not an easy process.
Second, the adaptation process must be based on
mechanisms in accordance with best practices (e.g.,
easy reuse and maintenance) of software engineering
in order to produce well designed CASOA.

3 CONTEXT

Context is the information that characterizes the
interactions between humans, applications, and the
environment (Brezillon, 2003). Context information
is dependent on system domain, as a type of
information might be considered as context
information in one domain but not in another one.
So, several context definitions were proposed in the
literature, (Chen and Kotz, 2000) and (Schmidt,
Beigl and Gellersen, 1999) for example, serving
various domains, however the context definition
given by Dey and Abowd remains the most generic.
Indeed, these authors have defined context as “any
information that can be used to characterize the
situation of an entity. An entity is a person, place or
object that is considered relevant to the interaction
between a user and an application, including the user
and applications themselves” (Dey and Abowd,
1999, para. 2.2). As given in (Truong and Dustdar,
2009), we consider context parameters as any
additional information that can be used to improve
the behaviour of a service in a situation. Without
such information, the service should be operable as
normal but with context information, it is arguable
that the service can operate better or more
appropriately (Truong and Dustdar, 2010).

Rather than giving context formalization, case of

A CONTEXT-AWARE SERVICE CENTRIC APPROACH FOR SERVICE ORIENTED ARCHITECTURES

177

Figure 1: Core context metamodel.

figure for several researches on this topic,
sometimes domain specific and sometimes generic
but not very extensible, we choose to propose a
metamodel which is, at the same time, generic and
abstract (see Fig. 1). This metamodel is based on the
following specification:

 A context decomposes into sub contexts;
 A sub context can be, recursively, decomposed

into categories for its structuring;
 A context, a sub context and a category are

constituted of parameters;
 A parameter is simple, derived or complex;
 A derived parameter is obtained by derivation

from a set of parameters;
 A complex parameter can have many

representations;
 A context view (i.e. a set of parameters) can

have a semantic;
 An entity (e.g., service, user, device, etc.) is

described by a set of parameters.
To illustrate our metamodel, let’s project it on

the case of figure of the E-tourism system presented
in the second section. The context for this system, in
particular, and context-aware computing, in general,
is composed mainly of the following sub contexts
(see Fig.3):

 DeviceSubContext: it contains the parameters
which describe the entity device. It breaks up
into two categories which are the software
category (e.g., operating system, navigator
type, supported type of data, etc.) and the
hardware one (e.g., processor type, screen size,
battery level, memory size, etc.);

 UserSubContext: it’s a sub context which
contains the parameters describing the entity

user (e.g., preferences, localization, profile,
etc.);

 EnvironmentSubContext: this sub context
contains the environment parameters (e.g.,
time, weather, etc.);

 ServiceSubContext: in its turn, this sub context
contains the parameters which characterize a
service (e.g., price, availability, response rate,
response time, etc.).

Figure 2: Ubiquitous context packages.

For organization and context management facility
reasons, we structure our context model in packages
as illustrated in Fig. 2. Some parameters (e.g., device
type, service price, etc.) are common to any
ubiquitous system. Thus, they are defined in non-
domain specific sub context (i.e.,
ServiceSubContext, EnvironmentSubContext,
UserSubContext and DeviceSubContext), while
others are specific to the application domain (E-
tourism in our case), so they are placed in
DomainSpecificSubContext.

DeviceSubContext

ServiceSubContext EnvironmentSubContext

UserSubContext

DomainSpecificSubContext

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

178

Figure 3: Succinct context model for the E-tourism scenario.

4 CONTEXT-AWARE SERVICE

One of the first uses of the term context-aware
appeared in 1994 (Schilit and Theimer, 1994). A
service is context-aware if it provides customized
and personalized behaviour to users depending on
their contexts (Dey and Abowd, 1999). In Service
Oriented Computing (SOC), a service is defined as
self-describing and platform-agnostic computational
element that supports rapid, low-cost and easy
composition of loosely coupled and distributed
software applications (Papazoglou, 2003).

Figure 4: Core service adaptation to its various
ContextViews.

To be context-aware, a service must be able to adapt
dynamically its behaviour to its several execution
context and adapt dynamically its behaviour.
Henceforth, these appropriate context information
relative to a specific execution situation form what
we call the ContextView of the service and the result
of service adaptation to this ContextView forms the
ContextViewService (see Fig .4).
 (i.e. use) contexts. In other words, the service (i.e.
core service) must possess mechanisms in purpose to
exploit only relevant information of the execution

 Fig. 5 illustrates our CAS metamodel. This
metamodel is based on the following specification:

 Both context-aware service and context-view
service are specific services;

 A context-aware service (respectively context-
view service) possesses a CAS adaptation
strategy (respectively CVS adaptation
strategy) which concerns a set of context
views (respectively a given context view);

 A CAS adaptation strategy aggregates a set of
CVS adaptation strategies;

 For a given CVS adaptation strategy and
context view, a set of adaptation conditions is
deduced;

 An adaptation condition can involve the
execution of an ordered set of adaptations;

 For a given CVS adaptation strategy and
adaptation, an adaptation rule is associated;

 A CVS adaptation strategy aggregates a set of
adaptation conditions, ordered adaptations and
adaptation rules.

Thus, CAS is seen as a specific service with a
number of ContextViews. For each one, we associate
an adaptation strategy (i.e. CVSAdaptationStrategy)
which indicates when (i.e. AdaptationCondition:
classical conditions expressed on ContextView
parameters) and how (i.e. AdaptationRule: defines
the places in the service where the dynamic ordered
adaptations will be realized) a set of ordered
adaptations (i.e. Adaptation) must be applied on the
core service in order to provide the expected
behaviour regarding the current execution context.
The adaptation result forms the ContextViewService.
So, for a given service, the set of its

A CONTEXT-AWARE SERVICE CENTRIC APPROACH FOR SERVICE ORIENTED ARCHITECTURES

179

Figure 5: Core CAS metamodel.

Figure 6: Succinct CAS model for the e-tourism scenario.

ContextViewServices (respectively
CVSAdaptationStrategies) forms the CAS
(respectively CASAdaptationStrategy).

For instance, in the E-tourism motivating
scenario (c.f. Sect. 2), battery level and connectivity
type represent one of the Restaurants Searching
service ContextViews which can provoke service
adaptation by reducing the amount of data returned
(i.e. Adaptation) whenever this level is lower than
20% or the connectivity is changed from a high
connectivity to a low one (i.e. AdaptationCondition).
Fig. 6 presents a succinct CAS model in the case of
Restaurants Searching service.

5 CONTEXT AWARE SERVICE
ADAPTATION MECHANISM

Traditional approaches used for CAS design and
development present several problems. In fact,
simple core service duplication for each

ContextView is a software engineering anti-pattern
(e.g., high-cost of maintenance) as far as integrating
adaptations logic into core service makes it complex
and decreases his ability to be reused and
maintained. So, in order to rationalize the
development and maintenance of CAS, we have to
resort to new mechanisms and strategies that allow
core service extension without any duplication or
regression risks. These mechanisms will favourite
loosely coupling between the core service and its
adaptations seen as crosscutting concerns.

Inspired by Separation of Concerns (Hürsch and
Lopes, 1995) and Aspect Paradigm concepts
(Kiczales, Lamping, Mendhekar, Maeda, Lopes,
Loingtier and Irwin, 1997), our CAS design and
development approach consists of considering the
Adaptation as an aspect. So, the core service focuses
only on the business logic and all of its Adaptations
relatives to its ContextViews will be defined
separately as aspects called Adaptation Aspects.

These Adaptation Aspects will be dynamically

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

180

Figure 8: CAS design process.

weaved at runtime into core service by our tool
named Adaptation Aspects Weaver (A2W), in order
to produce the expected ContextViewService.

The Fig. 7 illustrates the mechanism behind our
A2W tool. The Request Notifier notifies the Decision
Maker with the executed service id and the
execution context in order to recuperate the
CASAdaptationStrategy. Then, the Decision Maker
inspects it in order to retrieve and interpret only the
CVSAdaptationStrategy corresponding to the
pertinent current ContextView.

Figure 7: Adaptation Aspects Weaver architecture.

The interpretation mechanism, operated by the
Service Reconfigurator,
consists in checking the AdaptationConditions in
order to weave only the required Adaptation
Aspects, following a set of AdaptationRules, into
core service to produce the corresponding
ContextViewService.~

Let’s mention that our CAS development
approach combined to the A2W tool provide, in
addition to dynamic service adaptation to the
context, the ability to evolve service behaviour
during the CAS life cycle.

6 CONTEXT AWARE SERVICE
DESIGN PROCESS

The Fig. 8 illustrates our CAS design process to
build CASOA. The whole process contains three
main activities: the business design, the context
management design and the CAS design.
The business design activity consists of specifying
and implementing all core services that fulfil the
system business requirements, resulting in an artifact
of the design process: the system model. The two
other activities deal with the context-awareness of
the core services obtained in business design
activity. Thereby, the context management design

A CONTEXT-AWARE SERVICE CENTRIC APPROACH FOR SERVICE ORIENTED ARCHITECTURES

181

activity consists on modelling context information
that has an impact on the system and specifies the
collection process (i.e. parameters handlers) while
the CAS design activity aims at specifying the
services variability according to its ContextViews.

7 RELATED WORK

Several context models have been defined (e.g.,
Key-value pairs (Schilit, Theimer and Welch, 1993),
databases (e.g., CML (Henricksen and Indulska,
2006)), ontologies (e.g., CMF (Korpipää and
Mäntyjärvi, 2003)), profiling (e.g., CC/PP (Klyne,
Reynolds, Woodrow, Ohto, Hjelm, Butler and Tran,
2007), etc.) and various context-aware middleware
and frameworks have been developed (e.g., context
Toolkit (Salber, Dey and Abowd, 1999), CoBrA
(Chen, 2004), K-Components (Dowling and Cahill,
2001), CORTEX (Sorensen, Wu, Sivaharan, Blair,
Okanda, Friday and Duran-Limon, 2004), etc.) to
deal with context- aware systems development. The
main objective of context modelling researches is to
provide an abstraction of context information to
permit easy context management and they do not
deal, in general, with application variability and
adaptation to the context, whereas researches that
focus on frameworks and middleware development
try to simplify context-aware systems development
by decoupling context management from adaptation
logic but they suffer from a lack of well designed
approach and introduce several technical details
reducing systems portability.

Some other projects focus on context-awareness
metamodeling. An important effort is the work
conducted by the Taconet and Kazi-Aoul team in
(Taconet and Kazi-Aoul, 2010). Authors define
metamodels, following a MDE approach, for
modelling context-aware applications by planning
several model views that model system context
sensitivity but they do not deal with adaptability. In
our approach the system variability and adaptability
to the context is realized through the notion of
CASAdaptationStrategy and the A2W tool. Ayed,
Delanote and Berbers (2007) specify a MDD (Model
Driven Development) approach and an UML profile
to design context-aware applications independently
of the platform. They propose a design process that
models the contexts that impact an application and
its variability but does not specify the mechanism to
fulfil application adaptation to the context. In
ContextUML project, Sheng and Benatallah (2005)
define an approach for modelling context-aware
Web Services. The approach is platform dependent

and the context is specialized into AtomicContext
and CompositeContext, so the semantic expressed in
this metamodel is limited. Also, authors don’t
specify the mechanism used to fulfil CAS
adaptation. Keidl and Kemper (2004) propose a
context framework for the development and
deployment of context-aware adaptable Web
Services. In the framework, context is limited to the
information of service requesters and the approach is
platform dependent.

Another important domain concerns Product
Line Engineering (PLE) which has a great potential
in modelling service variability. An important work
is the one conducted in CAPPUCINE project (Parra,
Blanc and Duchien, 2009). Authors focus on
context-aware adaptation in Dynamic Service-
Oriented Product Line (DSOPL) rather than context
modelling and propose two different processes for
the initial and iterative phases of product derivation.
The main challenge to be faced in this work is to
reduce non-deterministic behaviours when non-
deterministic context-aware assets are introduced. In
our work, this challenge is faced by the execution of
an ordered set of adaptations.

8 CONCLUSIONS

In this article, we followed a MDE approach to
realize CASOA artefacts independently of the
technical platforms and the application domains
(PDIDA). Thus, we presented, firstly, our context
specification as a base for the context metamodel.
Secondly, we proposed a CAS specification and
metamodel and an approach that, based on the
separation of concerns (e.g., Aspect Paradigm),
considers the adaptations to a current execution
context as Adaptation Aspects dynamically woven
by the A2W tool at runtime. Finally, we proposed a
CAS design process that allows designers to model
the context that impacts the system and its
variability to its execution contexts independently of
system model.

We focused in this article on context and CAS
specifications and metamodels and proposed an
adaptation approach those lead to a CASOA design
process. In our future work, we project to provide, in
the short term, an applicative layer of context
handling which will allow the collection and the
transmission of pertinent ContextViews to A2W. In
the long term, our objective is to propose a
framework allowing the CAS development. We
target mainly the Web Services as a technical
platform for implementing CASOA.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

182

REFERENCES

Ayed, D., Delanote, D. and Berbers, Y. (2007). MDD
Approach for the Development of Context-Aware
Applications. In CONTEXT’07, the 6th International
and Interdisciplinary Conference on Modeling and
Using Context, Roskilde University, Denmark.

Brezillon, P. (2003). Focusing on context in human-
centered computing. IEEE Intelligent Systems, 18(3),
62-66.

Chen, G. and Kotz, D. (2000). A Survey of Context-Aware
Mobile Computing Research. Technical Report, Issue:
TR2000-381, Dartmouth College.

Chen, H. (2004). An Intelligent Broker Architecture for
Pervasive Context-Aware Systems. PhD thesis,
University of Maryland, Baltimore County.

Dey, A., K. and Abowd, G., D. (1999). Towards a Better
Understanding of Context and Context-Awareness. In
Technical Report GIT-GVU-99-22, GVU Center,
Georgia Institute of Technology.

Dowling, J. and Cahill, V. (2001). The K-Component
Architecture Meta-model for Self-Adaptive Software.
In REFLECTION’01, the 3rd International Conference
on Metalevel Architectures and Separation of
Crosscutting Concerns. Kyoto, Japan.

Henricksen, H. and Indulska, J. (2006). Developing
context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile
Computing, 2(1), 37–64.

Hürsch, W. and Lopes, C., V. (1995). Separation of
concerns. In Technical Report NUCCS-95-03,
Northeastern University. Boston, Massachusetts.

Keidl, M. and Kemper, A. (2004). Towards Context-
Aware Adaptable Web Services. In WWW’04, the 13th
International World Wide Web Conference. New
York, USA.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., V., Loingtier, J., M. and Irwin, J. (1997).
Aspect-Oriented Programming. In ECOOP’97, the
11th European Conference on Object-Oriented
Programming, vol. 1241 of LNCS, Springer-Verlag.

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm,
J., Butler, M., H. and Tran, L. (2007). Composite
Capability/Preference Profile (CC/PP): Structure and
vocabularies 2.0. Technical report, W3C
recommendation.

Korpipää, P. and Mäntyjärvi, J. (2003). An ontology for
Mobile Device Sensor-Based Context Awareness. In
CONTEXT’03, the 4th International and
Interdisciplinary Conference on Modeling and Using
Context. Stanford, USA.

Papazoglou, M., P. (2003). Service Oriented Computing:
Concepts, Characteristics and Directions. In
WISE'03, the 4th International Conference on Web
Information Systems Engineering. IEEE Computer
Society, 3-12.

Parra, C., Blanc, X. and Duchien, L. (2009). Context
Awareness for Dynamic Service-Oriented Product
Lines. In SPLC'09, the 13th International Software
Product Line Conference. San Francisco, USA.

Salber, D., Dey, A., K. and Abowd, G., D. (1999). The
Context Toolkit: Aiding the Development of Context-
Enabled Applications. In CHI’99 Conference on
Human Factors in Computing Systems. Pittsburgh,
Pennsylvania, USA.

Schilit, B., N., Theimer, M., M. and Welch, B., B. (1993).
Customizing mobile applications. In Proc. USENIX
Symposium on Mobile and Location-Independent
Computing. Cambridge, Massachusetts, USA.

Schilit, B. and Theimer, M. (1994). Disseminating Active
Map Information to Mobile Hosts. IEEE Network,
8(5), 22–32.

Schmidt, A., Beigl, M. and Gellersen, H., W. (1999).
There is more to context than location. Computers and
Graphics Journal, 23(6), 893–902.

Sheng, Q., Z. and Benatallah, B. (2005). ContextUML: A
UML-based modelling language for model-driven
development of context-aware web services. In
ICMB’05, the 4th International Conference on Mobile
Business. Sydney, Australia.

Sheng, Q., Z., Yu, J. and Dustdar, S. (2009). Enabling
Context-Aware Web Services: Methods, Architectures
and Technologies (Ed. 2009). London: Chapman and
Hall/CRC.

Sorensen, C., F., Wu, M., Sivaharan, T., Blair, G., S.,
Okanda, P., Friday, A. and Duran-Limon, H. (2004).
Context-aware Middleware for Applications in Mobile
Ad Hoc Environments. In the 2nd workshop on
Middleware for pervasive and ad-hoc computing.
Toronto, Canada.

Taconet, C. and Kazi-Aoul, Z. (2010). Building context-
awareness models for mobile applications. Journal of
Digital Information Management, 8(2), 78-87.

Truong, H., L. and Dustdar, S. (2009). A survey on
context-aware web service systems. International
Journal of Web Information Systems, 5(1), 5–31.

Truong, H., L. and Dustdar, S. (2010). Context Coupling
Techniques for Context-aware Web Service Systems:
An Overview. In Sheng, Q., Z., Yu, J. and Dustdar, S.
(Eds.), Enabling Context-Aware Web Services:
Methods, Architectures and Technologies (pp. 337-
364). London: Chapman and Hall/CRC.

A CONTEXT-AWARE SERVICE CENTRIC APPROACH FOR SERVICE ORIENTED ARCHITECTURES

183

