
ENHANCING ADAPTIVITY AND INTELLIGENT TUTORING IN
DISTRIBUTED PAIR PROGRAMMING SYSTEMS TO SUPPORT

NOVICE PROGRAMMERS

Despina Tsompanoudi and Maya Satratzemi
Department of Applied Informatics, University of Macedonia, 54006, Thessaloniki, Greece

Keywords: Pair programming, Distributed pair programming, Adaptive collaboration support, Intelligent tutoring.

Abstract: Pair programming is a computer programming technique where two programmers share one computer for
software development. When applied in an educational context, pair programming has been reported as an
effective teaching method, mainly improving student satisfaction, retention rates and program quality.
Several systems have been developed to cover the need for pair programming over distance. We present the
features of such systems including their advantages and weaknesses, and we examine if these systems
eliminate known issues of pair programming, such as unequal participation. Finally, considering the
limitations of current systems of distributed pair programming and taking into account common difficulties
encountered by novice programmers, we propose adaptation strategies for supporting student collaboration
in a distributed pair programming environment.

1 INTRODUCTION

Computer programming is still very challenging for
many students, especially for novices. Novice
programmers lack the skills for problem solving and
show poor performance (Lister et al., 2004). As a
result, introductory computer science courses have
low pass rates and relatively high dropout rates. An
alternative approach to teaching programming,
which can be particularly valuable to novice
programmers, is Pair Programming (PP). In pair
programming two programmers, sitting side by side,
share one computer to develop software. One of
them, called the “driver”, has control of the mouse
and keyboard and is writing the code, while the
other partner, called “navigator” or “observer”
checks for syntax or logic errors and suggests
alternative approaches. The roles of the driver and
the navigator should be switched regularly.

Pair programming has been applied in classroom
settings and evaluated for its effectiveness in several
studies, as an alternative approach to teach computer
programming. Compared to solo programming,
research reports that PP improves program quality
and reduces defects (Cockburn and Williams, 2001;
Duque and Bravo, 2008; McDowell et al., 2003a;
Sanjay and Vanshi, 2010; Zacharis, 2009). Students

working in groups are more confident in their
assignment solutions, experience less frustration and
enjoy their work more (Boyer et al., 2008; Cockburn
and Williams, 2001; Zacharis, 2009). Moreover,
students show improved performance in exams or
programming assignments (Benaya and Zur, 2006;
Jun et al., 2007; McDowell et al., 2003b; Williams et
al., 2002), and are more likely to continue in a
computing-related major after completing the course
(McDowell et al., 2003b). Since PP is a form of
collaborative learning (Preston, 2005), students
practicing this method get involved in discussing
and negotiating problems, they learn from each other
and share problem solving skills (Sanjay and
Vanshi, 2010; Williams et al., 2002). Retention and
pass rates were also examined with positive results
(McDowell et al., 2003b; Williams et al., 2002).
Finally, teachers report reduced workload during
programming assignments because students are able
to solve more problems on their own (Williams et
al., 2002; Hanks, 2007).

Nevertheless, there are some drawbacks in PP
too. Students’ performance depends largely on the
team composition. Various group formation
strategies were tested (e.g. random assignment,
based on students’ preferences or students’ skill
levels) but none of them has shown to be more
effective. When students collaborate there’s always

339
Tsompanoudi D. and Satratzemi M..
ENHANCING ADAPTIVITY AND INTELLIGENT TUTORING IN DISTRIBUTED PAIR PROGRAMMING SYSTEMS TO SUPPORT NOVICE PROGRAM-
MERS.
DOI: 10.5220/0003469603390344
In Proceedings of the 3rd International Conference on Computer Supported Education (CeLS-2011), pages 339-344
ISBN: 978-989-8425-50-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

an issue if they contribute equally in their assigned
work. Particularly in PP, the roles of the “driver”
and the “navigator” should be switched regularly.
Aforementioned issues depend on students’ skills
and their personality. Some studies also report that
pairing students need more time than solo students
to complete the programming assignments due to
coordination effort (Cockburn and Williams, 2001;
Duque and Bravo, 2008). Another drawback of PP is
the collocation requirement, because students have
to plan their meetings and this can lead to scheduling
conflicts.

To address the problem of the collocation
requirement various systems were proposed to
support distributed pair programming. Distributed
pair programming (DPP) is a variation of PP where
the team members are at different locations and they
collaborate through a real-time editor or by sharing
their desktop (Sanjay and Vanshi, 2010). In this way
students are more flexible and they are not required
to meet physically. Compared to collocated PP,
studies show that DPP does not appear to have any
negative impact on students’ performance (Hanks,
2008; Jun et al., 2007). Therefore DPP inherits all
benefits of PP eliminating the collocation constraint,
and is suitable for distance learning.

In this paper we present our study results of DPP
systems which were evaluated from an educational
perspective (Section 2). Then we propose some
features to be embedded in systems for DPP in order
to eliminate known issues of PP and effectively
support students’ collaboration (Section 3). We
conclude in Section 4 with our study results and our
suggestions.

2 SYSTEMS FOR DISTRIBUTED
PAIR PROGRAMMING

In order to implement DPP some basic requirements
must be met. Winkler et al. (2010) investigated the
basic requirements of DPP tools, indicating among
them a shared workspace, floor control,
communication channels, gesturing support and
awareness features. In more detail, a DPP
application should provide a shared editor where
students can collaborate adopting the roles of the
“driver” and the “navigator”. If the specific roles are
not supported via a token, students could end up
programming individually, which has a negative
impact. Providing a means of communication is
another key feature of DPP systems. Since students
are not collocated, it’s important to provide them a

way to communicate. Well known communication
means for distributed teams are e-mails, instant
messaging services, discussion forums, wikis and
audio/video conferences. Most DPP systems support
text communication, but an audio channel would be
preferable because for programmers it’s more
convenient to use an audio communication while
typing the source code. As mentioned before, the
role of the “navigator” is to review the code written
by the “driver” and check for errors. He needs to
point out code parts, hence gesturing support by
means of a remote highlighting feature should also
be provided.

Most current tools cover the basic requirements
to implement PP over distance. However, we wanted
to examine if they support additional features, such
as logging capability and shared debugging.
Although log files are not proposed by research as a
DPP requirement, we believe that by saving and
analysing interaction data some useful conclusions
can be drawn about students’ collaboration and
system’s DPP implementation. We also examined if
collaborative debugging or executing a program is
supported, since this phase is very demanding for
novice programmers (Cross et al., 2002; Gries et al.,
2005).

We present the following tools for DPP that were
available to download and install:

 Sangam (http://sangam.sourceforge.net/)
 RIPPLE (http://research.csc.ncsu.edu/ripple/)
 DocShare

(http://wiki.eclipse.org/DocShare_Plugin)
 XPairtise

(http://sourceforge.net/projects/xpairtise/)
 Saros (http://sourceforge.net/projects/dpp/)
 PEP (http://pep-pp.sourceforge.net/)
 GrewpEdit

(http://groupscheme.sourceforge.net/grewpedit/)
Additionally, two applications with shared text

editors are presented as an alternative way to
implement collaborative programming: collabedit
and ec-Coffee.

We excluded out of our presentation systems that
we couldn’t locate and systems that in our opinion
aren’t suitable for novice programmers such as Jazz
(http://jazz.net/) and wave-vs.net (www.wave-
vs.net).

In our study we examined if the above systems
meet the requirements of DPP. Specifically, we
examined systems’ support of the roles of the
“driver” and the “navigator”, how they’re
implemented and if there’s a mechanism to force or
suggest role rotation. We checked also if systems
provide a communication channel and gesturing

CSEDU 2011 - 3rd International Conference on Computer Supported Education

340

support, if they keep statistical log files and if they
support concurrent debugging and running of
programs. Most tools were plugins for Eclipse which
is a widely used IDE for software development.

Sangam. Sangam is an open source plugin for
Eclipse and supports DPP in Java (Chih-Wei Ho et
al., 2004). During one PP session, the two users take
the roles of the “driver” and the “navigator” and they
can communicate via a chat-window. Only the
“driver” is allowed to type in the shared code
document while the navigators’ typing attempts are
ignored and not visible for the driver. Users can
switch roles whenever they want to. Another feature
of Sangam is allowing users to launch or debug the
same Java application at the same time.

RIPPLE. RIPPLE (Remote Interactive Pair
Programming and Learning Environment) was
developed in order to support DPP, distributed
tutoring and data collection for research (Boyer et
al., 2008). It extends Sangam by providing a logging
capability. When logging is enabled, users’
interactions are stored in a database and can be used
for further research. RIPPLE was tested in an
introductory computer science course during a
laboratory assignment. Its evaluation showed that
students found it easy to use, they enjoyed the lab
assignment and they would use it again if given the
opportunity (Boyer et al., 2008).

DocShare. ECF (Eclipse Communication
Framework) includes DocShare, an Eclipse plugin
that implements real-time shared editing in the Java
Editor but it can be modified to support editors for
other languages too (e.g. php, C/C++). DocShare
offers connections through various providers such
XMPP, MSN or IRC so that associated contacts can
be retrieved. The roles of the “driver” and the
“navigator” do not exist here because both users can
type code concurrently in the shared editor.
Additional features of DocShare include a chat tool,
URL sharing, sending a screen capture or sharing a
file. Users may also highlight parts of the code in
order to indicate potential problems. Code execution
is available only to the user who sends the
collaboration request because the shared file is
stored to a temporary folder at the second user’s
workspace.
XPairtise. XPairtise is another plugin for Eclipse
which introduces the “spectator” role in addition to
the “driver” and “navigator” roles. “Spectators” are
not allowed to change or highlight code but they can
participate in conversations. XPairtise supports user
and session management, remote code highlighting
and provides chat communication and a shared

whiteboard. When entering a session, each user’s
local project is compared to the one that is stored in
the XPairtise server to ensure that users have
synchronised projects. Code saving and execution
occur at both users. XPairtise was evaluated during
an 18 week period in order to study its contribution
in PP sessions. The results showed that students’
participation was unequal and that they used rarely
the whiteboard and the remote selection feature.
Students communicated via an audio channel
(Skype) so the chat function was used less than
expected (Schümmer and Lukosch, 2009).

Saros. Saros is an Eclipse plugin which introduces
some gesturing and awareness functionalities. These
functionalities include code highlighting with users’
assigned colours when they type or select text,
displaying remote cursor and scroll-bar positions,
icons indicating if Eclipse is the active window and
highlighting which files are opened. (Salinger et al.,
2010). The “driver” and “navigator” roles are
supported, and furthermore users are allowed to be
both “drivers” in order to type code concurrently.
Additional features of Saros include file sharing,
screen sharing, follow-mode, VoIP (in progress) and
chat communication. Saving a shared file works for
both users, but not running or debugging a program.

PEP. PEP (Pair Eclipse Programming) is an easy to
use Eclipse plugin that implements PP by adopting
the roles of “driver” and “navigator”. Two users can
connect into a PP session, as client or as server,
simply by providing the server’s IP address. PEP
provides a feature to check the projects’
synchronism and allows the driver to force project
synchronization. An embedded chat is also provided
but running and debugging programs doesn’t work
remotely.

GrewpEdit. GrewpEdit runs as a standalone
application and supports collaborative editing and
programming (Granville and Hickey, 2005). The
roles of the “driver” and the “navigator” are not
supported since all users can type concurrently. A
shared whiteboard and chat communication are also
provided. GrewpEdit supports collaborative
programming in Java, C, HTML and Scheme.
Program compilation and execution is not common
for all users, but everyone can see each user’s output
in separate tabs.
Another approach to implement collaborative
programming is via a shared text editor. However
such applications lack important functionalities of
most IDE’s and are not recommended for systematic
software development. Two examples are

ENHANCING ADAPTIVITY AND INTELLIGENT TUTORING IN DISTRIBUTED PAIR PROGRAMMING
SYSTEMS TO SUPPORT NOVICE PROGRAMMERS

341

Table 1: Comparison of DPP systems’ supported features.

Tool Floor Control Communication
Channel

Gesturing
Support

Collaborative
Debug & Run

Log Files

Sangam 3 3 3 3 -
RIPPLE 3 3 3 3 3
DocShare - 3 3 - -
XPairtise 3 3 3 Run -
Saros 3 3 3 - -
PEP 3 3 3 - -
GrewpEdit - 3 - Run -

collabedit (http://collabedit.com/) and Ec-coFFEE
(http://sourceforge.net/apps/trac/coffee-soft/wiki/Ec-
CoFFEE).

Collabedit. Collabedit is a web-based collaborative
editor which provides the simplest way to implement
PP. Each collaborative programming session is
given a unique URL, which can be used by other
users to enter the session. Collabedit provides a chat
area, document history and syntax highlighting
according to the chosen programming language, but
there’s no option to compile or run a program.

Ec-CoFFEE. Although this plugin is not especially
designed for PP, it offers very powerful and useful
features for student collaborations through Eclipse.
Ec-Coffee is based on local area networks and
provides following collaborative tools: co-browser,
threaded discussion tool, drawing tool, co-writer,
chat, document sharing and voting tool. PP can
implemented through the co-writer tool, but is
limited to the functionalities that a simple text editor
can deliver.

In Table 1 we summarize the supported features
of the DPP tools we’ve examined. The term Floor
Control indicates if the system supports the roles of
the “driver” and the “navigator”. We see that two
systems do not support role assignments since
concurrent code typing is allowed. A communication
channel is provided by all systems but is limited to
instant messaging exchange. Gesturing support
refers here to remote code highlighting, i.e. users’
ability to select code parts in order to indicate
potential problems. However, three systems support
this feature only for the driver (Sangam, RIPPLE
and PEP). We found out that only two systems
support collaborative debugging and running, while
another two systems support only collaborative
running. At last, as mentioned before, log files are
available only in RIPPLE.

3 ADAPTIVE COLLABORATION
SUPPORT

In this section we’ll discuss about limitations of
previously presented systems as seen from an
educational perspective. Considering known issues
of PP and reported problems that novice
programmers encounter, we suggest how to improve
DPP in introductory computer science courses. We
present also which features should be embedded in
systems for DPP in order to support students’
collaboration, and finally we explain why IDE’s
can’t easily incorporate these features.

A major problem in group work, and therefore in
PP, is to assess each participant’s contribution. To
avoid unequal participation several group formation
strategies were suggested, including partner
assignment by comparable skill levels (Zacharis,
2009), by students preferences (McDowell et al.,
2003b), random assignment (Sanjay and Vanshi,
2010) and peer evaluations (Williams et al., 2002).
Diziol et al. (2010) suggest that collaborative
systems should be able to assess students’
contributions to a shared workspace and intervene
when unequal participation is observed. In DPP this
could be implemented by suggesting role switching
or by displaying contribution levels. None of the
systems mentioned in the previous section integrates
a mechanism to motivate participation. Although
RIPPLE keeps a log file, its data is not processed to
estimate students’ participation.

Another issue similar to equal participation is a
balanced knowledge acquisition. When a system
detects asymmetries in student’s knowledge
acquisition, it could intervene to avoid such
situations (Diziol et al., 2010). This means that in
DPP the system could store each student’s written
code in order to calculate which commands were
used quite often or not at all. If a student avoids
usage of a specific command then it could be
assumed that he has not yet acquired the appropriate

CSEDU 2011 - 3rd International Conference on Computer Supported Education

342

skills. In order to help the student, the system could
provide immediate feedback by showing him
additional learning material.

Hanks (2007) conducted a study of problems that
novice pair programmers encounter. Most of the
problems reported were syntax errors and trivial
mechanical problems (e.g. missing semicolons).
Another study reported that when students got stuck,
they used their book, the Java API or Google to look
for assistance (Hanks and Brandt, 2009). Systems
for DPP need to incorporate adaptive feedback
features in order to cover students’ needs. Retrieving
respective course material or providing relevant
examples could be beneficial for students who face
difficulties or don’t know how to proceed. Current
systems for DPP do not incorporate such features.

Conclusively, none of the systems we’ve tested
did contain a student profile with an underlying
student model in order to keep track of student’s
interactions and collaboration history.

When applied in educational settings, DPP aims
to improve students’ performance and enhance the
learning experience. For this reason we propose to
incorporate the suggested collaboration support in an
Adaptive System for Collaborative Learning
(ASCL). Students’ interaction data, their
contributions and their skills acquisition could be
stored in a student profile inside the ASCL. When
adaptive feedback is provided, course material or
additional resources could be immediately retrieved
from course’s site. Teachers could also benefit from
such an implementation. Collective data about their
students would be available and they could try out
different group formation strategies depending on
student’s profile and collaboration history.
Furthermore, some social interaction features could
be embedded, like displaying which classmates are
online or which group has already completed an
assignment. Thus, students that face difficulties,
even after adaptive feedback, could seek assistance
from their classmates.

4 CONCLUSIONS

In this paper we examined whether current DPP
systems eliminate known issues of PP and if they
address common problems encountered by novice
pair programmers. We found out that none of the
available DPP tools incorporates such features.
Based on our findings we proposed new features that
should be embedded in DPP systems in order to
support PP in education.

We noticed that most DPP tools are plugins for
the Eclipse IDE and contain similar functionalities.
Although they cover the basic requirements for pair
programming, none of them keeps log files of
students’ interactions or provide adaptive feedback.
In order to support students’ collaboration we
propose that systems should integrate a student
model, store collaboration data and provide
computer mediated adaptive assistance. An Adaptive
System for Collaborative Learning seems more
convenient for this purpose instead of using an IDE.
Furthermore, novice programmers could benefit
from such an implementation both from pair
programming and from adaptive collaboration
support. We aim to investigate this issue in the near
future.

REFERENCES

Benaya, T., Zur, E., 2006. Collaborative Programming in
an Advanced Programming Workshop Conducted in a
Distance Learning Environment, Methods, Materials
and Tools for Programming Education, 48-55.

Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A.,
Lester, J. C., 2008. A Development Environment for
Distributed Synchronous Collaborative Programming,
In Proceedings of the 13th annual conference on
Innovation and technology in computer science
education, ACM, New York, NY, USA, 158-162.

Cockburn, A., Williams, L., 2001. The costs and benefits
of pair programming. In Extreme programming
examined, Giancarlo Succi and Michele Marchesi
(Eds.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA 223-243.

Cross, J. H. I. I., Hendrix, T. D., Barowski, L. A., 2002.
Using the debugger as an integral part of teaching
CS1, Frontiers in Education, 2002. FIE 2002. 32nd
Annual, vol.2, no., pp. F1G-1- F1G-6 vol.2, 6-9 Nov.
2002.

Diziol, D., Walker, E., Rummel, N., Koedinger, K. R.,
2010. Using intelligent tutor technology to implement
adaptive support for student collaboration.
Educational Psychology Review.

Duque, R., Bravo, C., 2008. Analyzing Work Productivity
and Program Quality in Collaborative Programming.
In Proceedings of the 2008 The Third International
Conference on Software Engineering Advances
(ICSEA '08). IEEE Computer Society, Washington,
DC, USA, 270-276.

Granville, K., Hickey, T. J., 2005. The design,
implementation, and application of the grewpEdit tool.
Proceedings of the 2005 conference on Diversity in
computing, Albuquerque, New Mexico, USA.

Gries, P., Mnih, V., Taylor, J., Wilson, G., Zamparo, L.,
2005. Memview: a pedagogically-motivated visual
debugger. Frontiers in Education,2005 FIE '05.

ENHANCING ADAPTIVITY AND INTELLIGENT TUTORING IN DISTRIBUTED PAIR PROGRAMMING
SYSTEMS TO SUPPORT NOVICE PROGRAMMERS

343

Proceedings 35th Annual Conference, vol., no.,
pp.S1J-11, 19-22 Oct. 2005.

Hanks, B., 2008. Empirical evaluation of distributed pair
programming. Int. J. Hum.-Comput. Stud. 66, 7 (July
2008), 530-544.

Hanks, B., 2007. Problems encountered by novice pair
programmers. In Proceedings of the third
international workshop on Computing education
research (ICER '07). ACM, New York, NY, USA,
159-164.

Hanks, B., Brandt, M., 2009. Successful and unsuccessful
problem solving approaches of novice programmers.
In Proceedings of the 40th ACM technical symposium
on Computer science education (SIGCSE '09). ACM,
New York, NY, USA, 24-28.

Ho, C. W., Raha, S., Gehringer, E., Williams, L., 2004.
Sangam: a distributed pair programming plug-in for
Eclipse. In Proceedings of the 2004 OOPSLA
workshop on eclipse technology eXchange (eclipse
'04). ACM, New York, NY, USA, 73-77.

Jun, S., Kim, S., Lee, W., 2007. Online Pair-
Programming for Learning Programming of Novices.
WSEAS TRANSACTIONS on ADVANCES in
ENGINEERING EDUCATION, Issue 9, Volume 4,
September 2007.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Moström, J. E.,
Sanders, K., Seppälä, O., Simon, B., Thomas, L.,
2004. A multi-national study of reading and tracing
skills in novice programmers. In Working group
reports from ITiCSE on Innovation and technology in
computer science education (ITiCSE-WGR '04). ACM,
New York, NY, USA, 119-150.

McDowell, C., Hanks, B., Werner, L., 2003a.
Experimenting with pair programming in the
classroom. In Proceedings of the 8th annual
conference on Innovation and technology in computer
science education (ITiCSE '03), David Finkel (Ed.).
ACM, New York, NY, USA, 60-64.

McDowell, C., Werner, L., Bullock, H. E., Fernald, J.,
2003b. The impact of pair programming on student
performance, perception and persistence. In
Proceedings of the 25th International Conference on
Software Engineering (ICSE '03). IEEE Computer
Society, Washington, DC, USA, 602-607.

Preston, D., 2005. Pair programming as a model of
collaborative learning: A review of the research,
Consortium for Computing Sciences in Colleges, 39-
45.

Salinger, S., Oezbek, C., Beecher, K., Schenk, J., 2010.
Saros: an eclipse plug-in for distributed party
programming. In Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE '10). ACM, New York,
NY, USA.

Sanjay, G., Vanshi, K., 2010. A Novel Approach for
Collaborative Pair Programming. Journal of
Information Technology Education, USA, Vol. 9, 183-
196.

Schümmer, T., Lukosch, S., 2009. Understanding Tools
and Practices for Distributed Pair Programming.
Journal of Universal Computer Science, vol. 15, no.
16, 3101-3125.

Williams, L., Yang, K., Wiebe, E., Ferzli, M., Miller, C.,
2002. Pair Programming in an Introductory Computer
Science Course: Initial Results and Recommendations.
OOPSLA Educator's Symposium, pages 20-26.

Winkler, D., Biffl, S., Kaltenbach, A., 2010. Evaluating
Tools that Support Pair Programming in a Distributed
Engineering Environment. Conference on Evaluation
and Assessment in Software Engineering (EASE),
Keele, Great Britain.

Zacharis, N., 2009. Evaluating the Effects of Virtual Pair
Programming on Students’ Achievement and
Satisfaction. International Journal Of Emerging
Technologies In Learning (IJET), 4(3).

CSEDU 2011 - 3rd International Conference on Computer Supported Education

344

