
HURDLES IN MULTI-LANGUAGE REFACTORING OF HIBERNATE
APPLICATIONS∗

Hagen Schink, Martin Kuhlemann, Gunter Saake
Otto-von-Guericke University, Magdeburg, Germany

Ralf Lämmel
University of Koblenz-Landau, Koblenz, Germany

Keywords: Refactoring, Multi-language Software Application, Object-relational Mapping, Hibernate, Database.

Abstract: Different programming languages can be involved in the implementation of a single software application.
In these software applications, source code of one programming language interacts with code of a different
language. By refactoring an artifact of one programming language, the interaction of this artifact with an
artifact written in another programming language may break. We present a study on refactoring an software
application that contains artifacts of different languages.

1 INTRODUCTION

Today, different programming languages are used in
concert to implement software applications (Strein
et al., 2006; Linos et al., 2007; Chen and Johnson,
2008; Visser, 2008; Ford, 2008). The use of different
programming languages allows developers to accom-
plish specific tasks with less effort. However, artifacts
of different languages may interact. For instance, we
can use Java together with SQL (Andersen, 2006) and
artifacts of both languages must be kept consistent.

A refactoringis a transformation which alters the
structure but not the semantics of an artifact (Opdyke,
1992; Fowler, 1999). Refactorings exist for several
artifact types, e.g. source code of object-oriented pro-
gramming languages, UML diagrams, and database
schemas (Fowler, 1999; Li, 2006; Schrijvers et al.,
2004; Van Gorp et al., 2003; Sunyé et al., 2001; Am-
bler, 2003). However, a refactoring for an artifact of
one type does commonly not describe changes that
must be done in artifacts of other types.

We applied different refactorings on a soft-
ware application that contains artifacts of object-
oriented and functional programming languages, and
a database (Schink, 2010; Schink and Kuhlemann,

∗An extended version of this paper has been published
as Master thesis and technical report before (Schink, 2010;
Schink and Kuhlemann, 2010).

2010). In the following we focus on object-oriented
and database refactorings for brevity. Based on our
observations, we implemented two refactorings and
performed experiments. We conclude that a general
approach to refactoring multi-language software ap-
plications is hard, if not impossible, to automate.

A coupled transformation describes the consis-
tent transformation of software applications after the
(possibly semantic-preserving) transformation of a
database schema or XML schema (Cunha and Visser,
2007; Cleve, 2009). Our study differs to work on cou-
pled transformations in that (1) we focus on refactor-
ings only, (2) our software application uses an object-
oriented mapper to communicate with a relational
database, (3) we discuss problems of refactoring a
software application on the one hand and a database
on the other hand.

2 BACKGROUND

In this section we define the term describing applica-
tions that are implemented by means of different pro-
gramming languages and describe the idea of refac-
toring these applications.

129Schink H., Kuhlemann M., Saake G. and Lämmel R..
HURDLES IN MULTI-LANGUAGE REFACTORING OF HIBERNATE APPLICATIONS.
DOI: 10.5220/0003469501290134
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 129-134
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



2.1 Multi-language Software
Application

A software application is aMulti-Language Soft-
ware Application(MLSA) if it is implemented using
different general-purpose and domain-specific lan-
guages (Linos et al., 2007). Different languages
are combined frequently, e.g. SQL is a standard-
ized query language for databases and was not in-
tended to be a general-purpose programming lan-
guage (Michels et al., 2003). But it is possible to em-
bed SQL statements in general-purpose programming
languages like C++ or Java (ISO/IEC, 2008; Ley-
derman, 2005; Andersen, 2006). Other examples of
language interaction exist (Chen and Johnson, 2008;
Harold and Means, 2002; Grogan, 2006). The com-
bination of different programming languages reduces
the effort to implement common tasks in software de-
velopment, e.g. data storage (Fjeldberg, 2008).

2.2 Multi-language Refactoring

A refactoring is a semantic-preserving modification
of a software application (Fowler, 1999). A common
refactoring is Rename Field that is used, if the name
of a field does not describe the purpose of that field.

Besides source code, a software application may
contain documentation, design documents, specifi-
cations, and unit tests et cetera (Mens and Tourwé,
2004). Anartifact typedescribes a set of artifacts that
share a common paradigm. For example we consider
artifacts of the object-oriented languages Java and
C++ to have a common artifact type. Refactorings for
artifacts of individual types exist, e.g. for artifacts of
object-oriented (Fowler, 1999), functional (Li, 2006),
and logical programming languages (Schrijvers et al.,
2004), and others (Van Gorp et al., 2003; Sunyé et al.,
2001; Ambler, 2003).

Refactorings for individual artifact types do not
describe at all or not in detail how they influence
artifacts of other artifact types, so developers are
forced to adapt interacting artifact types manually.
For instance, consider a classEmployee and a table
Employee. Let us assume that the classEmployee re-
lates to the tableEmployee by name (common with
object-relational mappers). Based on the relation, an
object-relational mapper retrieves datasets from the
table Employee and provides these datasets as in-
stances of classEmployee. If we apply a Rename
Class refactoring on classEmployee, we have to mod-
ify the database schema to preserve the relation be-
tween classEmployee and tableEmployee, though,
this modification of the database schema is not part of
the standard refactoring definition. We call a refactor-

ing that describes a semantic-preserving modification
on artifacts of at least two different artifact types a
multi-language refactoring(MLR).

3 ANALYSIS

HRManager is a software application we imple-
mented to manage employee data (Schink and Kuhle-
mann, 2010). HRManager is the basis upon which we
show effects of refactoring MLSAs. HRManager has
been implemented using the object-oriented program-
ming language Java and the functional programming
language Clojure. Application data is stored in a rela-
tional database. Datasets in the database are accessed
through the object-relational mapper Hibernate. As
we use HRManager as our running example through-
out the paper, we will present the different artifact
types and their relations in detail. In this paper we fo-
cus on the description of the Java/Hibernate artifacts
and the database.

All classes representing domain entities in
HRManager, e.g. employees or managers, are im-
plemented in Java. For each class that represents a
domain entity a table exists as counterpart in the rela-
tional database, whereas table columns represent the
states of the respective class. We map the class hi-
erarchy to multiple tables, i.e., a table for each class
(other options are possible). Class hierarchies are de-
scribed by foreign key references between the tables
that represent the classes of the respective hierarchy.

Java classes are mapped onto tables of the re-
lational database by anobject-relational mapping
(ORM). We use Hibernate1 to realize the ORM in
HRManager. To describe the ORM between Java
classes and the respective tables in the database
schema, we use Java annotations defined by the Java
Persistence API (DeMichiel, 2009) that is imple-
mented by Hibernate. Listing 1 shows an excerpt of
the ORM of classEmployee. We use the@Entity
annotation (Line 1) to mark the classEmployee as
persistent class of which instances are stored in the
database. With the@Table annotation we specify that
Hibernate shall store instances ofEmployee in table
employees (Line 1). Without using the@Table an-
notation, Hibernate would map the classEmployee to
an equally named tableEmployee.

Hibernate maps object states to the respective ta-
ble columns. We use Hibernate in property-access
mode, i.e., we use getter and setter methods to de-
fine the properties to store in the database (Keith and
Schincariol, 2009).

1http://www.hibernate.org

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

130



1 @Entity @Table(name="employees")
2 public class Employee implements

aaSerializable { ... }

Listing 1: Excerpt of the ORM of the classEmployee.

3.1 Refactoring an MLSA

We applied a number of refactorings manually to our
sample MLSA and evaluated whether the refactorings
can be automated. Our aim was to preserve the se-
mantics of HRManager. First, we applied a refactor-
ing to one artifact. If the refactoring broke the interac-
tion with other artifacts, e.g. by introducing compiler
or runtime errors, we tried to re-establish the interac-
tion by refactoring the interacting artifacts of possibly
different artifact types. We call an MLR on HRMan-
agersuccessful, if the MLR describes a set of refactor-
ings for different artifact types, that together preserves
the semantics of HRManager. By semantics we refer
to the specification of HRManager.2

We apply a special definition for semantics on the
database to take the existence of persistent data in the
database into account. A transformation of a database
schema and the related data instances is semantic-
preserving, if the transformation is reversible (Hain-
aut, 1996). For databases, we distinguish two terms
of semantic-preservation that describe if a database
refactoring can be undone:reversibleandsymmetri-
cally reversible(Hainaut, 1996). That is, a transfor-
mationT1 is reversible, if forT1 a transformationT2
exists, that undoesT1. A transformation of a database
is symmetrically reversible, if forT1 a transformation
T2 exists, so thatT2 is the inverse transformation of
T1 and vice versa (Hainaut, 1996). Hence, we can
undo symmetrically reversible transformation without
loosing any data already stored in the database.

In the following, we present the necessary modifi-
cations to realize an object-oriented (Pull Up Method)
and a database (Introduce Default Value) refactoring
on the MLSA HRManager.

3.1.1 Pull Up Method Refactoring

In HRManager, only the classManager provides the
methodsgetBoss andsetBoss to manage the super-
visor of a manager. But also employees have a su-
pervisor, though, the classEmployee (superclass of
Manager) does not provide any method to manage su-
pervisors. Hence, we want to pull up the methods

2There exist different semantic definitions for the differ-
ent languages discussed. As HRManager is a simple pro-
gram, we refer to the unmodified HRManager source code
as specification of HRManager’s semantics. An exhaustive
discussion of semantics is not in the scope of this paper.

1 UPDATE managers
2 SET boss = (SELECT id FROM

employees aaaaaa a WHERE
surname = ’B’)

3 WHERE (SELECT id FROM employees
aa aaaaWHERE employees.surname
= ’S’ aaaaAND employees.id =
managers.id);

Listing 2: Establishing a supervisor relationship between
subordinateSand bossB.

1 UPDATE employees
2 SET boss = (SELECT id FROM

employees aaaaaaaaaWHERE
surname = ’B’)

3 WHERE employees.surname = ’S’;

Listing 3: Establishing a supervisor relationship between
subordinateSand bossB after refactoring.

getBoss andsetBoss from Manager to Employee.
The following modifications are necessary to per-
form the Pull Up Method refactoring (Fowler, 1999)
on HRManager: (1) pull-up methodgetBoss from
Manager to Employee, (2) pull-up fieldboss from
Manager to Employee, (3) pull-up methodsetBoss
from Manager to Employee, (4) move columnboss
and data stored in this column from tablemanagers
to tableemployees, and (5) update all references to
columnboss of tablemanagers to reference column
boss in tableemployees. Step 2 is necessary, be-
cause after being pulled upgetBoss in Employee
can no longer access the private fieldboss defined in
Manager. We use Hibernate in property-access mode,
so Hibernate maps getter/setterpairsdefined in a Java
class to columns defined in the database schema; so
we need to apply step 3 to restore the getter/setterpair
getBoss/setBoss in Employee.

The transformation of the database schema de-
scribed in the Steps 4 and 5 is reversible, because
we can move the columnboss from employee back
to managers without losing any of the original infor-
mation in columnboss. However, the transformation
is not symmetrically reversible, because with remov-
ing the columnboss from tableemployees (required
when inverting the refactoring) tuples of employees
that are not managers lose their relation to an em-
ployee tuple representing their boss. That is, we can-
not guarantee the informational integrity of each tu-
ple inemployees when undoing the Pull Up Method
refactoring. Hence, we may not be able to revert the
Pull Up Method refactoring by a reverse refactoring.

In the refactored database schema the column
boss is part of tableemployees and removed from
tablemanagers. Listings 2 and 3 show that the mod-
ification of SQL statements referencing the column

HURDLES IN MULTI-LANGUAGE REFACTORING OF HIBERNATE APPLICATIONS

131



boss can be challenging.3 In Listing 2, theUPDATE
statement introduces a subordinate-boss-relation be-
tween the datasets ofB (boss) andS (subordinate).
One way to adapt theUPDATE statement in Listing 2
to the new database schema is to swap the table refer-
enced in Line 1 (managers) and the table referenced
in the FROM clause in Line 3 (employees). Listing
3 shows an additional modification. We can simplify
the WHERE clause in Listing 2, Line 3, by replacing
the SELECT statement with a comparison (Listing 3,
Line 3). We conclude, there exist at least 2 possible
modifications of theUPDATE statement of Listing 2
that differ in the amount of changes to apply. We fur-
ther conclude that the described transformations can
possibly only be realized by means of semantic anal-
ysis of the SQL statement at hand (e.g. Listing 2).

3.1.2 Introduce Default Value Refactoring

We use the Introduce Default Value refactoring (Am-
bler, 2003) to unify already existing default values (in
the database itself and in HRManager) by introducing
a single default value.

In HRManager, we want to set the default value
for the columnaccount in tablemanagers to acqui-
sition, because we define that a manager has to re-
port to the accountacquisition, by default. We have
to modify HRManager in the following way to in-
troduce the default valueacquisition: (1) define the
default valueacquisitionfor the columnaccount of
the tablemanagers by using the keywordDEFAULT,
(2) initialize the fieldaccount of the classManager
with the valueacquisition. Step 2 is necessary to pre-
serve the semantics of the default value defined in the
database for classes implemented in Java. Consider,
we would not have applied Step 2; when we create a
new instance of classManager the fieldaccount is
initialized with null. When we store this instance in
the database,null is written to the columnaccount.
The default value of the columnaccount would never
be applied to the instances of classManager.

There can be methods assuming the fieldaccount
being initialized withnull. Those methods would be-
have differently after refactoring, so the modification
described in Step 2 can be semantics-changing.

If property access for Hibernate is set, the modi-
fications in Step 2 may require semantic analysis be-
cause from Hibernate’s point of view the representa-
tion of the stateaccount is hidden in the implemen-
tation of its getter/setter methods (Keith and Schin-
cariol, 2009). The analysis of the implementation
of getter/setter methods may be achieved statically

3The SQL statements are defined with the syntax of
SQLite (http://www.sqlite.org).

1 public void setAccount(String acc)
{

2 int l = acc.length();
3 String accID=account.substring(l

-3, l);
4 accountName=acc.substring(0,l-3);
5 accountID=Integer.parse(

accIDString); }

Listing 4: Method definitionsetAccount.

for trivial implementations, but needs advanced treat-
ment for non-trivial getter/setter methods. In Listing
4, we defined a non-trivial example for the method
setAccount. In this method, we parse a parameter of
type String and store the parsed values in two dif-
ferent fieldsaccountName (Line 4) andaccountID
(Line 5). Without semantic analysis ofsetAccount
we would not know how to implement the new default
value in the fieldsaccountName andaccountID. But
static source code analysis may not reveal all needed
information (Laski et al., 1998), and, hence, does not
offer a general solution to the problem of finding the
fields accessed by getter/setter pairs.

4 EVALUATION

We implemented an MLR version of the Rename
Method and the Push Down Method refactoring for
applications written in Java, Hibernate, and SQL. The
Push Down Method refactoring removes a method
definition from a superclass and copies the method
definition to all subclasses (Fowler, 1999).

We evaluated the refactorings on applications
which use the Rich Internet Application Framework
JBoss Seam.4 Depending on the application, we are
able to automate MLRs at least partially. The reason
for a partial application of a refactoring is the missing
support of certain artifact types by our prototype. We
identified all manual modifications required to com-
plete refactorings to be semantic-preserving.

The refactoring of the evaluated software appli-
cations is possible, because their implementation is
slightly different to the implementation of HRMan-
ager (Schink and Kuhlemann, 2010). The different
implementation allows the refactoring of an artifact of
one type without applying semantics-changing modi-
fications to artifacts of a different artifact type. Hence,
a refactoring applied on two MLSAs containing the
same artifact types may be successful on one MLSA
while the refactoring fails on the other MLSA due to
differences in the implementation of the MLSAs.

4http://seamframework.org

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

132



5 RELATED WORK

The following approaches share the idea of finding
commonalities between artifact types.Generic Refac-
torings describe refactorings of concepts, program-
ming languages have in common, for instance meth-
ods (Lämmel, 2002). Our study shows that artifact-
specific concepts exist which we cannot treat in a
generic way, because these concepts do not exist in
all languages. So the use cases for Generic Refactor-
ings in multi-language software applications may be
limited to languages which share at least some com-
mon concepts.

An approach to describe a refactoring in an
abstract way is to use meta models of source
code. The meta models FAMIX (Tichelaar, 2001),
MOOSE (Ducasse et al., 2000), and UML (Van Gorp
et al., 2003) are used for describing refactorings of
OOP languages independently from the OOP lan-
guage at hand. Therefore, FAMIX, MOOSE, as
well as UML cannot be used to abstract artifacts of
MLSAs in general. Another meta model based ap-
proach is used in the IDEX-Develop(Strein et al.,
2006). X-Develop realizes MLR on top of aCommon
Meta-Modelwhich unifies the concepts of the sup-
ported languages in a single representation. The au-
thors evaluate the Rename Method refactoring imple-
mented in X-Develop on a project that utilizes differ-
ent languages. But these languages can be compiled
into a common base language, hence, the languages
share common properties and, therefore, belong to the
same artifact type in our understanding. Refactorings
of other artifact types are not considered by the au-
thors.

Some authors analyze and implement renaming
for different artifact types (Chen and Johnson, 2008;
Kempf et al., 2008). The authors show that the im-
plementation of MLR is possible for certain relations
(e.g. frameworks and the corresponding configuration
files). We analyzed and implemented refactorings be-
yond renaming and showed that under certain condi-
tions MLR is not easy to automate.

Coupled Software Transformationsor Co-
transformations are modifications of different
interacting artifact types (Lämmel, 2004). Co-
transformations describe semantics-preserving as
well as semantics-changing modifications (Lämmel,
2004). We argue that a general application of
semantics-changing modifications is irreconcilable
with the term refactoring. But co-transformations
exist for semantics-preserving database schema
transformations and the associated program transfor-
mations (Cleve, 2009). In (Cleve, 2009) the authors
argue that a semantic-preserving transformation of

a database schema leads to transformations that do
not modify the functionality of related applications.
We applied both, object-oriented and database refac-
torings. Although we applied semantic-preserving
transformations, i.e. refactorings, on Java source
code and a relational database, we found cases
where semantic-changing modifications are hardly
avoidable.

In (Cunha and Visser, 2007) another approach to
the consistent transformation of a data schema and re-
lated queries is presented. Refactorings are not dis-
cussed, and transformations of the application source
code are not considered.

Some of the problems shown in this paper may
be directly related to theobject-relational impedance
mismatch(Carey and DeWitt, 1996). But not all prob-
lems, like alternative refactoring realizations and the
need for possibly semantics-changing modifications,
can be explained by the object-relational impedance
mismatch.

6 CONCLUSIONS

We applied an object-oriented and a database refac-
toring on a multi-language software application
(MLSA). The MLSA uses the object-relational map-
per Hibernate to communicate with a database. When
we applied the refactorings, we observed that (1) a
refactoring of artifacts of one artifact type can lead to
semantic-changing modifications in artifacts of other
artifact types, and that (2) there can be alternative
ways to realize a refactoring for artifacts of differ-
ent types. The alternative ways can differ substan-
tially in the amount of modifications or may not even
preserve program-semantics. The latter case leads to
conflicts with the refactoring term. We argue that a
general approach to automated multi-language refac-
torings (MLR) covering all possible MLSAs is not
feasible due to the different concepts of existing ar-
tifact types.

We automated the Rename Method and the Push
Down Method refactoring for software applications
using the object-relational mapper Hibernate. We
conclude that we are able to realize automated MLRs
if the conditions described in our study are met.

In an MLSA artifacts of different types are in-
volved. When we refactor an artifact of one type, ar-
tifacts of different types may be subject to semantic-
changes. Thus, we think that a modified definition
of semantics-preservation for MLSA is required. We
think that we will not be able to treat a range of
potentially useful semantics-preserving modifications
of single artifact types on MLSAs as MLRs, other-

HURDLES IN MULTI-LANGUAGE REFACTORING OF HIBERNATE APPLICATIONS

133



wise. Therefore, the issue of semantics- preservation
in MLSAs is subject of our ongoing work.

REFERENCES

Ambler, S. (2003).Agile Database Techniques: Effective
Strategies for the Agile Software Developer. John Wi-
ley & Sons, Inc., New York, NY, USA.

Andersen, L. (2006).JDBCTM 4.0 Specification. Sun Mi-
crosystems, Inc., Santa Clara, USA, final edition.

Carey, M. and DeWitt, D. (1996). Of objects and
databases:A decade of turmoil. In VLDB. Citeseer.

Chen, N. and Johnson, R. (2008). Toward Refactoring in
a Polyglot World: Extending Automated Refactoring
Support across Java and XML.Workshop on Refac-
toring Tools.

Cleve, A. (2009).Program Analysis and Transformation for
Data-Intensive System Evolution. PhD thesis, Univer-
sity of Namur.

Cunha, A. and Visser, J. (2007). Strongly Typed Rewrit-
ing For Coupled Software Transformation.Electronic
Notes in Theoretical Computer Science, 174(1).

DeMichiel, L. (2009). JSR 317: JavaTM Persistence API,
Version 2.0. Sun Microsystems, Inc., Santa Clara,
USA, final edition.

Ducasse, S., Lanza, M., and Tichelaar, S. (2000). MOOSE:
An Extensible Language-Independent Environment
for Reengineering Object-Oriented Systems.CoSET.

Fjeldberg, H.-C. (2008).Polyglot Programming. Master
thesis, Norwegian University of Science and Technol-
ogy, Trondheim/Norway.

Ford, N. (2008).The Productive Programmer. O’Reilly.

Fowler, M. (1999). Refactoring: Improving the Design of
existing Code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Grogan, M. (2006).JSR-223 Scripting for the Java Plat-
form. Sun Microsystems, Inc., Santa Clara, USA, final
edition.

Hainaut, J.-L. (1996). Specification Preservation in Schema
Transformations – Application to Semantics and
Statistics.Data & Knowledge Engineering, 19.

Harold, E. R. and Means, W. S. (2002).XML in a nutshell.
O’Reilly & Associates, Inc., Sebastopol, CA, USA.

ISO/IEC (2008). International Standard ISO/IEC 9075-
1 Information technology Database languages SQL
Part 1: Framework (SQL/Framework). ISO/IEC, third
edition.

Keith, M. and Schincariol, M. (2009).Pro JPA 2: Master-
ing the Java Persistence API. Apress, Berkely, CA,
USA.

Kempf, M., Kleeb, R., Klenk, M., and Sommerlad, P.
(2008). Cross Language Refactoring for Eclipse plug-
ins. OOPSLA.

Lämmel, R. (2002). Towards Generic Refactoring.ACM
SIGPLAN Workshop on Rule-based Programming.

Lämmel, R. (2004). Coupled Software Transformations.
Workshop on Software Evolution Transformations.

Laski, J., Stanley, W., and Hurst, J. (1998). Dependency
analysis of Ada programs.ACM SIGAda Ada Letters,
XVIII(6).

Leyderman, R. (2005).OraclerC ++ Call Interface. Or-
acle Corporation.

Li, H. (2006). Refactoring Haskell Programs. PhD thesis,
University of Kent, Canterbury, Kent, UK.

Linos, P. K., Lucas, W., Myers, S., and Maier, E. (2007). A
Metrics Tool for Multi-Language Software.SEA.

Mens, T. and Tourwé, T. (2004). A survey of software refac-
toring. IEEE Transactions on software engineering,
30(2).

Michels, J.-E., Kulkarni, K., Farrar, M. C., Eisenberg, A.,
Mattos, N., and Darwen, H. (2003). The SQL Stan-
dard. it - Information Technology, 45(1).

Opdyke, W. (1992).Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois at Urbana-
Champaign.

Schink, H. (2010). Sprachübergreifende Refactor-
ing Feature Module. Master thesis, Otto-
von-Guericke-University, Magdeburg. Avail-
able online: http://wwwiti.cs.uni-magde
burg.de/itidb/publikationen/ps/auto/thesisSchink.pdf.

Schink, H. and Kuhlemann, M. (2010). Hurdles in refactor-
ing multi-language programs. Technical Report FIN-
007-2010, University of Magdeburg, Germany.

Schrijvers, T., Serebrenik, A., and Demoen, B. (2004).
Refactoring Prolog Code.Workshop on (Constraint)
Logic Programming.

Strein, D., Kratz, H., and Lowe, W. (2006). Cross-Language
Program Analysis and Refactoring.Workshop on
Source Code Analysis and Manipulation.

Sunyé, G., Pollet, D., Traon, Y. L., and Jézéquel, J. (2001).
Refactoring UML Models.UML.

Tichelaar, S. (2001).Modeling Object-Oriented Software
for Reverse Engineering and Refactoring. PhD thesis,
University of Berne, Switzerland.

Van Gorp, P., Stenten, H., Mens, T., and Demeyer, S.
(2003). Towards Automating Source-Consistent UML
Refactorings.UML.

Visser, J. (2008). Coupled Transformation of Schemas,
Documents, Queries, and Constraints.Electronic
Notes in Theoretical Computer Science, 200(3).

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

134


