
TRANSFORMATION OF OBJECT-ORIENTED CODE INTO
SEMANTIC WEB USING JAVA ANNOTATIONS

Petr Ježek and Roman Mouček
Department of Computer Science and Engineering, University of West Bohemia, Pilsen, Czech Republic

Keywords: OWL, RDF, Semantic web, Object-oriented code, Java annotations, Semantic representation, Data source,
Transformation, Restriction mapping, Properties mapping, Relations mapping, Semantic description.

Abstract: This paper deals with difficulties occurring during transformation of schema and data from an object-
oriented code to a semantic web representation (RDF, OWL). The authors describe differences in semantic
expressivity between the object-oriented approach and the semantic web approach and look for the ways to
fill this semantic gap. Then some existing approaches with their difficulties are introduced and a preliminary
idea using Java annotations is proposed. Java annotations add missing semantic information into Java code,
which is consequently processed by the proposed framework and serialized into output semantic web
structure (OWL).

1 INTRODUCTION

At present World Wide Web (WWW) is gradually
reaching its limits because description of data
semantics is missing. An evolving extension of
WWW, the Semantic Web (Berners-Lee, 2001), uses
a triple oriented representation described by
Resource Description Framework (RDF). RDF
triples consist of a subject, a predicate and an object
with an assertion that a subject has a property with
a value. This data representation is suitable for
processing using software machines.

Since expressivity of RDF schema is insufficient
in many application domains, there exists an
extension called Ontology Web Language (OWL).
OWL uses the same RDF syntax and adds the ability
to express more information about the characteristics
of properties and classes.

Although the idea of the semantic web is
promising in the software development, new
technologies and object oriented programming
(OOP) itself are based on different approaches.
Since object-oriented programming is the main
stream in the software development and data in
current systems are usualy stored in relational
databases, a transformation from common structures
into the Semantic web is required.

Several aproaches to transform an object oriented
code to the semantic web exist. These aproaches

with their difficulties are introduced in the second
and third sections. The fourth section describes
a proposed extension of Java language providing
a richer semantic expresivity. The proposed
framework ensuring data transformation is also
presented.

2 OWL AND OOP DIFFERENCES

2.1 Close/Open World Assumptions

Semantics of classes and instances in RDF is based
on description logic and an open-world assumption
while object oriented type system is defined as the
closed world. In the open-world assumption any web
based ontology can add subclasses or additional
characteristics to concepts defined in other
ontologies. It is not possible in closed systems as
Java language is (program code is defined on a close
finite domain). These assumptions bring different
views on classes, instances and properties in both
representations.

2.2 Classes and Instances - Differences

Classes in OOP are regarded as types for instances
where each instance has one class as its type.
Instances cannot change their type at runtime.

207Ježek P. and Mouček R..
TRANSFORMATION OF OBJECT-ORIENTED CODE INTO SEMANTIC WEB USING JAVA ANNOTATIONS.
DOI: 10.5220/0003468602070210
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 207-210
ISBN: 978-989-8425-56-0
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Compilers are used at build-time. OWL classes are
regarded as a set of individuals where each
individual can belong to multiple classes. The class
membership can be created and changed in runtime.
The class consistency is checked using reasoners.

2.3 Properties - Differences

OOP properties (class fields) are defined locally to
class where instances can have values only for the
attached properties. Classes encode much of their
meaning through methods; class fields are accessible
by get/set methods.

OWL properties are stand-alone entities; they
can exist without classes. Instances can have
arbitrary values. Classes make their meanings
explicit in term of statements. All OWL classes and
properties are public (OWL Primer, 2006).

3 OOP TO OWL MAPPING

We tested several tools that transform data from an
object-oriented code to an OWL representation.
These tools were described in (Mouček and Ježek,
2010). From the set of tested tools we selected
JenaBean (JenaBean, n. d.) integrated with OWL
API (OwlApi, n. d.). By using selected tools we are
able to transform an object-oriented model into the
semantic web representation. This selection and
integration with preliminary results was described
more in depth in (Ježek and Mouček, 2010).

Concerning one side transformations the selected
tools work quite satisfactorily because object-
oriented code has poorer semantics than OWL.
However, if we want to use more capabilities of
OWL, we have to enrich object-oriented code by
missing semantics.

There are several frameworks and tools which
try to enrich object-oriented code with additional
semantic information which appears in OWL output
structure. Some tools exist only as initial proposals
while some of them are really implemented.

3.1 ActiveRDF

ActiceRDF is a library for accessing RDF data from
Ruby programs. ActiveRDF provides a domain
specific language for RDF models; it can address
RDF resources, classes and properties
programmatically without using e.g. Sparql queries.
(Oren, Delbru, Gerke, Haller and Decker, 2007).

This tool solves only a part of OWL and OOP
mismatches due to the usage of Ruby that is

a dynamic interpreted language. Namely developed
framework doesn’t need strictly typed classes and
properties. Types are evaluated in runtime and can
be changed dynamically. An availability to add
additional semantics into source codes is missing.

3.2 Semantic Object Framework

Semantic object framework (SOF) utilizes
embedded comments in source codes to describe
semantic relationships between classes and
attributes. Heterogeneous data sources could be
processed using implemented parsers (Po-Huan,
Chi-Chuan, Kuo-Ming, 2009).

This approach seems to be promising but
programmer has to insert RDF/OWL keywords into
source code comments directly. It can be an obstacle
for object-oriented developers. Moreover, source
comments should be used for description of the class
meaning, not for insertion of different language
syntax.

3.3 eClass

EClass is a solution that changes Java syntax to
embed semantic descriptions into the source code.
The eClass contains data attributes, methods,
inference rules and presentations. It can be
implemented as an extension of an existing object-
oriented programming language (Liu, Wang, Dillon,
2007).

However, when a commonly used programming
syntax is changed, it affects compilers and virtual
machines. It is an obstacle to use it in common
systems.

4 ANNOTATION FRAMEWORK

4.1 Prerequisites

According to difficulties mentioned above we
decided to propose a custom annotation framework
which allows us to annotate a common object-
oriented language (Java) and provide
a transformational mechanism translating
annotations into OWL output.

We suppose that the proposed framework will be
also used by software engineers and not only by
experts in the semantic web field. Thus a framework
based on common programming technologies is
preferred.

Java annotations (JavaAnnotations, n.d.) are very
popular in current software developments. Since

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

208

they are also used by many frameworks (Spring,
Hibernate, etc.) we decided to implement their
language extension as well.

4.2 Annotations Design

4.2.1 Restrictions Mapping

OWL restrictions are difficult to express in Java,
hence we defined a set of annotations describing
these restrictions. OWL property restrictions have
the following general syntax:

<owl:Restriction>
<owl:onProperty rdf:resource="some
property" />

 (Constraints)
</owl:Restriction>

We can define the annotation “Restrictions”
analogically:

public class SomeClass {

@Restrictions({“Array of
Constraints”})

private Object someProperty;
}

Let suppose we want to get a serialization of
ontology below:

<owl:Restriction>
<owl:onProperty
rdf:resource="#hasChild" />
<owl:someValuesFrom
rdf:resource="#Student" />

</owl:Restriction>

<owl:Restriction>
<owl:onProperty
rdf:resource="#hasChild" />
<owl:allValuesFrom
rdf:resource="#Child" />

</owl:Restriction>

If we suppose the existence of Java classes Person,
Child and Student, where Person is a superclass for
Child and Student classes, we can define restrictions
using Java annotations analogically:

public class Person {
@Restrictions({

@Restriction(allValuesFrom=
Child.class),
@Restriction(someValuesFrom
=Student.class)

})
private Person hasChild;

}

4.2.2 Intersection, Union and Complement
Mapping

The three types of set-operators can be viewed as
representation the AND, OR and NOT operators on
classes. OWL intersection and union could be
represented using java collections. For OWL
complement we defined the corresponding Java
annotation. The example below represents the
complement of Student class.

<owl:Class>
 <owl:complementOf>
 <owl:Class rdf:about="#Student"/>
 </owl:complementOf>
</owl:Class>

In Java code we defined the annotation
“Complement”. Let suppose that the class Employee
is inherited from the class Person.

@Complement(Student.class)
public class Employee extends Person {
}

4.2.3 Relations to Other Properties Mapping

OWL provides the constructs equivalentProperty
and inverseOf. We defined a set of Java annotations
for these constructs as well. Let consider the
following ontology:

<owl:ObjectProperty rdf:ID="hasChild">
<owl:inverseOf
rdf:resource="#hasParent"/>

</owl:ObjectProperty>

Let suppose that the class Parent is inherited from
the class Person. We express the inverse property of
OWL example above using Java code below.

@InverseOf(Parent.class)
public class Child extends Person {
}

4.3 Properties Mapping

Because properties are standalone entities in RDF
and OWL we utilized interfaces in Java for
expressing these properties. We defined an interface
with a method obtaining a property value (classes
have to implement this method). This approach
ensures that more OWL classes can share one OWL
property because more Java classes can implement
one Java interface. Interface and implemented class
look as follows:

TRANSFORMATION OF OBJECT-ORIENTED CODE INTO SEMANTIC WEB USING JAVA ANNOTATIONS

209

public interface HasAge {
 public int getAge();
}
public class Person implements HasAge {
private int age;

@Override
public int getAge() { return age; }
}

The code above is serialized into the following form:
<owl:ObjectProperty

rdf:about="#HasAge">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range

rdf:resource="http://www.w3.org/20
01/XMLSchema#integer"/>

</owl:ObjectProperty>

5 CONCLUSIONS

Many scientific papers deal with a domain
description using a specific ontology. These
ontologies serve as recognizable data sources
accessible by automatic software readers. However,
current software systems are usually object-oriented
and they operate over large data collections usually
stored in relational databases.

Since fundamental differences between
semantics of object-oriented code and OWL exist,
there is necessary to ensure a suitable mapping.

Because expressive capabilities of OWL are
richer than in the case of object-oriented we are
looking for the ways to fill this semantic gap.

We investigated several approaches described in
this paper. The most of tested frameworks are
difficult to use either because added semantic
information is insufficient or confused, or the usage
of modified compiler or interpreter is required.

As the result we presented an idea based on the
concept of Java annotations that can be deployed
without substantial difficulties. Our solution is an
initial proposal using current Java technologies. It
covers essential semantic gaps between mentioned
representations. In the near future, we plan to
capture more semantic differences to provide
a richer semantic description of object-oriented code
using annotations. At the same time we plan to
develop a framework ensuring fully automated
transformation. This approach is going to be realized
within development of EEG/ERP database (Ježek
and Mouček, 2010) and its registration as
a recognized data source within Neuroscience
Information Framework (Gupta, 2008).

ACKNOWLEDGEMENTS

This work was supported by grants Ministry of
Education, Youth and Sport of the Czech Republic
under the grant ME 949 and UWB grant SGS-2010-
038 Methods and Applications of Biomedical
Informatics.

REFERENCES

Berners-Lee, T., 2001. The Semantic Web. In Scientific
American (pp. 34-43).

RDF Resource Description Framework (RDF). 2004.
Retrieved January, 2011, from
http://www.w3.org/RDF/

OWL Ontology Web Language (OWL). 2000. Retrieved
January, 2011, from http://www.w3.org/TR/owl2-
overview/

Semantic Web for Object-Oriented Software Developers
(OWL Primer), 2006, Retrieved January, 2011, from
http://www.w3.org/TR/sw-oosd-primer/

Mouček, R., Ježek, P., 2010. System for Storage and
Management of EEG/ERP Experiments – Generation
of Ontology. In 12th International Conference on
Enterprise Information System, Volume 1 (pp. 415-
420)

Ježek, P., Mouček, R., 2010. EEG/ERP Portal – Semantic
Web Extension. In Second Global Congress on
Intelligent Systems (pp. 392-395)

JenaBean, n.d. Retrieved January, 2011, from
http://www.ibm.com/developerworks/java/library/j-
jenabean.html

OwlApi, n.d. Retrieved January, 2011, from
http://owlapi.sourceforge.net/

Oren, E., Delbru, R., Gerke, S., Haller, A. and Decker S.,
2007. ActiveRDF: object-oriented semantic web
protramming, In Proceedings of the 16th international
conference on World Wide Web (pp. 817-824)

Po-Huan, Ch., Chi-Chuan, L., Kuo-Ming, Ch., 2009.
Integrationg Semanic Web and Object-Oriented
Programming for Cooperative Desig, In Journal of
University Computer Science, vol. 15, no. 9

Liu, F., Wang, J., Dillon, S. T., 2007. Web Information
Representation, Extraction and Reasoning based on
Existing Programming Technology, In Computational
Inteligence 37 (pp. 147-168)

JavaAnnotations, n.d. Retrieved January, 2011, from
http://download.oracle.com/javase/1.5.0/docs/guide/la
nguage/annotations.html

Ježek, P., Mouček, R., 2010. Database of EEG/ERP
experiments, In Healthinf 2010 – Proceeding Third
International Conference on Health Informatics.
Valencia Spain.

Gupta, A., Bug,W., Marenco, L., Qian, X., Condit, C.,
Rangarajan, A., et al., 2008. Federated access to
heterogeneous information resources in the
Neuroscience Information Framework (NIF), In
Neuroinformatics, Volume 6, Number 3, (pp. 175-
194)

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

210

