
PRIVATE SEARCHING FOR SENSITIVE FILE SIGNATURES

John Solis
Scalable and Secure Systems Research, Sandia National Labs, Livermore, CA, U.S.A.

Keywords: Private searching, Private matching, Homomorphic encryption applications.

Abstract: We consider the problem of privately searching for sensitive or classified file signatures on an untrusted server.
Inspired by the private stream searching system of Ostrovsky and Skeith, we propose a new scheme optimized
for matching individual file signatures (versus keyword matching in documents). Our optimization stems
from the simple observation that a complete list of matching file signatures can be replaced by a much smaller
encrypted bitmask. This approach reduces a server’s response overhead from being linear in the number of
matched documents to linear with respect to a system robustness parameter.

1 INTRODUCTION AND
MOTIVATION

Government organizations are responsible for protect-
ing sensitive and classified information from unautho-
rized disclosure. A potential solution to this problem
is to augment existing virus/malware scanners with
classified file signatures. During a routine scan, any
computer discovered to contain classified files can
be immediately confiscated. Unfortunately, this ap-
proach leaves the augmented databases vulnerable to
local exploits: databases may be leaked by new mal-
ware that compromise the computer. This is problem-
atic since an adversary can use the database to verify
classification status of arbitrary files.

The ideal solution would be a scanner, capable of
executing on untrusted computers, that searches for
classified signatures without revealing any informa-
tion. In particular, the host itself should not learn
about the signatures being searched or when they have
been located.

We propose a new method for privately detecting
classified file signatures on untrusted systems. In-
spired by existing private stream searching systems,
we use Paillier encryption to construct a simple bit-
mask identifying all classified signatures present on a
particular host. No information can be leaked since
all operations are over encrypted ciphertexts – even in
compromised or untrusted contexts.

2 RELATED WORK

The closest related work is the Ostrovsky-Skeith pri-
vate stream searching system (Ostrovsky and Skeith,
2007). It allows a client to privately search through a
stream of documents, located on separate server, and
retain copies of any document containing any combi-
nation of secret keywords. The server to client com-
munication complexity is bounded byO(m ∗ log m),
wherem is the maximum number of documents that
can be retrieved. Subsequent work (Bethencourt
et al., 2009), improves communication and storage
complexity toO(m).

In our scenario, we are primarily interested in
the existence of a file, not necessarily its content.
Although testing for existence can be performed by
matching file contents, this requires a high communi-
cation overhead (especially for large files).

Private Set Intersection (PSI) (Freedman et al.,
2004) allows two parties, each containing a private set
of inputs, to jointly calculate their intersection with-
out leaking extra information about either set. In our
scenario, the sets would be (1) sensitive/classified file
signatures and (2) public file signatures. The intersec-
tion, i.e., all identified classified files, can be sent to a
central server for processing. Our goal is to develop
a scheme with lower communication complexity than
the approaches discussed here.

341Solis J..
PRIVATE SEARCHING FOR SENSITIVE FILE SIGNATURES.
DOI: 10.5220/0003466703410344
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 341-344
ISBN: 978-989-8425-71-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

3 PRIVATE SIGNATURE
SEARCHING SCHEME

Problem Statement. The administrator of a large
organization wants to scan its computers, referred to
hereafter asservers, in search of sensitive files. An ef-
ficient private signature searching scheme should not
reveal any information to the server about the signa-
tures being searched or when they have been located.

Solution Overview. Building such a scheme re-
quires a solution with (1) minimal communication
complexity, and (2) a privacy-preserving method for
identifying matching file signatures.

We accomplish the first requirement by observing
that, for each file signature in the administrator’s clas-
sified database, we are only interested in communi-
cating a single bit of information:does this signature
exist on the server? To query for the entire database,
we construct a simple bitmask where individual bits
correspond to specific signatures. The exact one-to-
one mapping from sensitive file signatures to specific
bitmask indices is known only to the administrator.

For the second requirement, we apply the homo-
morphic properties of the semantically secure Pail-
lier encryption system (Paillier, 1999) to our bitmask.
The server can manipulate the bitmask because, in
the Paillier system, multiplying two ciphertexts to-
gether results in an encryption of the sum of the plain-
texts:E (α)∗E (β) = E (α+β). Plaintexts are repre-
sented as elements ofZn and ciphertexts inZn2, where
n = pq is an RSA number withp < q andp ∤ (q−1).

Now assume the administrator provides the server
with a set of ciphertexts of the formE (2i), and for a
given set of ciphertexts, each value ofi is used only
once. To discover sensitive files the server computes
the signature of all files it contains and multiplies
(in an oblivious manner) into our encrypted bitmask:
E (2i) when the signature is in the classified set, or
E (0) when it is not.

Since each ciphertext is of the formE (2i), the
product of all ciphertexts is essentially computing the
binary XOR over the original plaintexts. Giving a
simple example:E (8) ∗ E (4) = E (12). In binary:
E (1000) ∗ E (0100) = E (1100), i.e., binary XOR.
The administrator decrypts the final encrypted bit-
mask and uses the private one-to-one mapping to de-
termine matching signatures.

3.1 Formal Construction

LetE (·) denote the Paillier encryption function,C de-
note an ordered set of classified signatures,F denote
the set of file signatures on a server,Q denote a set

of encrypted bitmasks, andH i : {0,1}∗ →{0,1}h de-
note a one-way cryptographic hash function that maps
arbitrary length input strings to strings of bit-lengthh.

A private signature searching scheme is a tuple of
algorithms:

Administrator:KeyGen(τ). The administrator ex-
ecutes the key generation algorithm of the Paillier
cryptosystem with security parameterτ to find an ap-
propriate RSA number,n = pq. To guarantee that ele-
ments ofQ are correctly represented (i.e., a unit mod
n), select anm such that 2m < min{p,q}. Output the
Paillier public keyPK = n, corresponding secret key
SK = {p,q}, and maximum supported classified sig-
nature set sizem.

Administator:Setup(SK,C ,F ,k). On input of a
classified signatures set and file signatures set, the ad-
ministrator verifies|C | ≤m andm <

√

|F | and aborts
if either test fails. Otherwise, construct a set ofk one-
to-one mappings from elements inC to specific bit
positions in our bitmask as follows:

SinceC is an ordered set, we take the existing
position of ci ∈ C and use it as as the correspond-
ing bit position in our bitmask, e.g., the third element
c3 maps to 23. Now let K be a set ofk values se-
lected uniformly at random fromZn. Each key, along
with a (keyed) pseudo-random permutation function
PRPk(C), generates a unique permutation ofC and
unique mappings from elements to bit positions. Up-
date the secret key to include the set of permutation
keys, i.e.,SK = {{p,q},K }.

Next, compute a set of tables with encrypted val-
ues representing the individual bitmask bits. For each
t ∈ {1, ...,k} and eachk′ ∈ K , initialize each table,
D t , with s = 2|F | entries ofE (0). Select an in-
dex i uniformly at random and for thej-th element
c j ∈ PRPk′(C), setD t [H i(c j) mod s] := E (2j). If a
collision occurs between any two elements ofC , the
entire array is discarded and a new index chosen for
H . Repeat the process until no collisions have oc-
curred and store the index in setI . Note that the
m ≤

√

|F | requirement guarantees the probability of
a collision will always be less than12 (see Choice of
m discussion in Section 4 below).

The final step is to computek tables,W , with s
entries ofE (0) in each table. These tables are used
by the Scan algorithm as “working” tables to store
intermediary results.

Server:Scan(PK,{D ,W , I },F). This algorithm
outputs a single encryption element representing all
classified signatures present on a server.

For eachf ∈ F and eachi ∈ I , let t be the index of
i in I and setW t [H i(f)] :=D t [H i(f)]. After all signa-

SECRYPT 2011 - International Conference on Security and Cryptography

342

tures in the system have been processed, the working
array is compressed into a single encryption element:

st =
|Wt |
∏
j=1

wt, j

wherewt, j denotes thej-th element in working ta-
ble t. The result for each table represents the bitmask
corresponding to all classified signatures found inF .

Administrator:Verify(SK,c,C ,S). On input of a
secret key, each element inS is decrypted and stored
it in the set of plaintexts,P .

For the input classified signaturec, we check if
the correct bits (based on permutations ofC) are set
in the bitmask plaintexts. For eacht = {1, ...,k}, let
jt be the index ofc ∈ PRPt(C). Check if bit jt is set
in each plaintextpt ∈ P . Return 1 if all the bits are set
correctly, otherwise return 0.

3.2 System Properties

A private signature searching scheme must have the
following properties:

• Correctness. Verify is a probabilistic function
such that for robustness parameterk:
∀c ∈ C ,Pr[Veri f y(c,P) = 1|c ∈ F]≥ 1− neg(k)

• Privacy. Informally, an adversary should not
learn the signatures being searched or even when
they have been located.

4 ANALYSIS AND DISCUSSION

Choice of m. In this section, we quickly discuss our
motivation for the two initial tests in theSetup(·, ·) al-
gorithm: |C | ≤m andm<

√

|F |. The first test simply
to ensure that we have complete coverage in the map-
ping from signatures inC to bits inQ . Without this
one-to-one mapping, we cannot make any statements
about the correctness of the server.

The second test, is to ensure that we can quickly
find a valid hash index (one that produces no colli-
sions) forH (·). A well known probability result,
known as the birthday paradox, tells us that givenn
bins and

√
n balls the probability of having a single

collision is 1
2. By requiringm <

√

|F |, the probabil-
ity of collision will always be less than12. Thus, the
probability of finding a valid hash index ink separate
trials is greater than 1− (1

2)
k.

Communication Complexity. The communication
complexity of our scheme is asymptotically identical
to the PIR schemes discussed earlier. However, we

argue that administrator initialization is a one-time
setup cost that can be amortized over several execu-
tions. This makes our approach preferable in situa-
tions where frequent scanning is expected.

4.1 Security Analysis

Adversarial Model. We assume thehonest-but-
curious adversarial model. In this model, servers
execute theScan(·, ·) algorithm honestly and do not
intentionally or maliciously tamper with any output.
They may, however, observe or record any intermedi-
ary algorithm state in an attempt to learn any final out-
put behavior. We argue that this is reasonable since,
within our context, the administrator is likely to have
some form of authority over the servers it queries.

We argue that a stronger adversarial model does
not make sense in our context. A malicious adver-
sary, for instance, would either refuse to execute the
Scan(·, ·) algorithm or skip over files during the scan-
ning operation. It could also simply replace the final
output with encryptions of random elements (which
is possible given the Paillier public key).

Correctness and Privacy Proofs. Proof details
have been omitted due to space constraints. However,
we comment that the correctness proof follows from
the Ostrovsky-Skeith proof and correctly verifies clas-
sified signatures with high probability. The privacy
proof is simply a reduction to the semantic security
property of the Paillier cryptosystem.

5 IMPLEMENTATION

We implemented our scheme in C++ and used multi-
ple open source libraries. The Paillier cryptosystem
implementation was based on the GNU Multiple Pre-
cision Arithmetic Library and used the OpenSSL li-
brary SHA-1 implementation for cryptographic hash-
ing. SHA-1 was “keyed” by pre-pending the key to
any data being hashed.

One optimization technique used was to perform
multi-threaded table initialization for the data and
working tables. Since both tables are initialized with
E(0)′s, each thread perform a separate encryption op-
eration. All encryptions were done using a 1024-bit
Paillier public key (resulting in 2048-bit ciphertexts).

All tests were performed on a 64-bit Intel Core i7
960 / 3.2 Ghz CPU (4 CPU cores) running the Ubuntu
10.10 Linux distribution. We fixed the system robust-
ness parameter (somewhat arbitrarily) atk = 5 and
varied the number of files stored on the server,|F |,
to be scanned. Both the administrator and server al-

PRIVATE SEARCHING FOR SENSITIVE FILE SIGNATURES

343

gorithms were benchmarked to gain an understanding
of practical performance issues.

5.1 Administrator Benchmarks

Table 1: Administrator Benchmarks.

Setup(·, ·) [k = 5]

Experimental Extrapolated

Init Storage Init Storage

|F | (min) (MB) |F | (min) (MB)

10K 2.22 51 100K 22.34 512

20K 4.47 102 150K 33.51 768

30K 6.70 153 200K 44.68 1024

40K 8.97 204 250K 55.85 1280

50K 11.20 256 300K 67.02 1536

The initial results of the administrator bench-
marks, reported in Table 1, indicate that the proposed
scheme is a reasonable and practical approach for
querying servers with both small and large datasets,
|F |. However, as the number of files increases, the
administrator must decide when the data tables are too
large to distribute. This will likely depend on whether
the tables are transferred via the network or storage
devices, e.g., USB memory stick.

The most expensive administrator operation is the
data and working table initialization. However, be-
cause Paillier is a public key system, it is possible to
shift some of this burden to the server. In particular,
servers can compute their own working tables inde-
pendently for each scan operation and reduce the re-
quired communication overhead by half.

Extrapolating to Large File Sets. Regardless of
server file count, we average 1492 Paillier encryp-
tions per second or 6.7x10−4 seconds per encryp-
tion. We extrapolate the expected initialization pro-
cessing times and storage costs for larger file counts
(right column of Table 1).

5.2 Server Benchmarks

For sever benchmarks, we scanned two large local
system directories whose size closely approximated
the table size generated by the administrator. The re-
sults, recorded in Table 2, records the time it took to
(1) perform hashes of all files in the directory, and (2)
perform all multiplications required to compress each
working table into a single encryption element.

Table 2: Server Benchmarks.

Scan(·, ·) [k = 5]

Table Local Running

Size |F | Directory Time (sec)

20K 18279 /usr/lib/ 59.31

40K 39197 /usr/src/ 539.33

Our results indicate that both operations can be
performed efficiently. In general, the time taken to
performing all hashing operations drastically exceeds
the time taken to perform all multiplications. This is
especially true when the files being hashed are large
and require several hard disk fetches.

Note that because file size variability, extrapolat-
ing these results to larger data sets is not insightful.
Total execution time is more accurately measured as
a function of file size than as number of scanned files.

6 FUTURE WORK AND
CONCLUSIONS

The scheme proposed represents the first steps to-
wards an efficient and scalable solution for private
searching of sensitive file signatures on untrusted
servers. However, there are many potential areas for
improvements and future work:

One possible direction is to consider reducing
communication overhead in large networked envi-
ronments. In our scheme, communication overhead
grows linearly with the robustness parameterk. How-
ever, scanning all servers in a network simultaneously
may overwhelm the administrator. It would be prefer-
able to reduce overhead by supporting an in-network
aggregation of all responses.

Another potential direction is to investigate tech-
niques supporting alternate query forms, e.g., OR,
AND, CNF. This would allow administrators to per-
form finer granularity queries for a specific situation.

In conclusion, we proposed a novel construction
for private searching of sensitive file signatures, dis-
cussed implementation results, and show that our ap-
proach is efficient for administrators and servers.

REFERENCES

Bethencourt, J., Song, D., and Waters, B. (2009). New tech-
niques for private stream searching.ACM Trans. Inf.
Syst. Secur., 12:16:1–16:32.

Freedman, M. J., Nissim, K., and Pinkas, B. (2004). Ef-
ficient private matching and set intersection. pages
1–19. Springer-Verlag.

Ostrovsky, R. and Skeith, III, W. E. (2007). Private search-
ing on streaming data.J. Cryptol., 20:397–430.

Paillier, P. (1999). Public-key cryptosystems based on
composite degree residuosity classes. InProceed-
ings of the 17th international conference on The-
ory and application of cryptographic techniques, EU-
ROCRYPT’99, pages 223–238, Berlin, Heidelberg.
Springer-Verlag.

SECRYPT 2011 - International Conference on Security and Cryptography

344

