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Abstract: Observations of sensors are modeled as mixed signals in multiple targets scenario. Each element of mixing 
matrix represents the power decay of a pair of target and sensor, and each column preserves the waveform 
formed by the corresponding target respectively. Making use of blind estimation algorithms, we get the 
estimation of mixing matrix. Target locations are then estimated using the least squares method. 

1 INTRODUCTION 

Research on single target localization and tracking 
approaches in wireless sensor network has been 
carried out for a decade, and effective algorithms 
have been proposed (Savarese et al., 2001; Taff, 
1997). Some existing approaches aiming at multiple 
targets apply sensor arrays (Nehorai et al., 1994), 
which are different from adhoc sensor networks as 
the latter are with unstable topological structure of 
sensors. Research corresponding to multiple targets 
scenario has just emerged in recent years and some 
methods have been proposed, most of which are 
under the framework of maximum likelihood and 
expectation-maximization like methods (Xiao et al., 
2005; Krasny et. al., 2001). 

In this paper, by taking into consideration of the 
statistical properties of targets, we use the 
independent component analysis to estimate the 
number of target, and make use of blind separation 
algorithms to solve the mixing matrix which 
describes the overlap of the multiple targets in each 
sensor’s measurement. A target localization 
algorithm based on the least squares methods is then 
obtained. 

In sectionⅡ, the system model, mixing model 
and assumption of sources are presented. In section 
Ⅲ, a source detection method is given to estimate 
the target number. In section Ⅳ , algorithms of 
sources separation and estimation of mixing matrix 
are introduced. Finally, the target locations are 
estimated in section V. 

2 SYSTEM MODEL 

2.1 Source Model 

Whatever signals are transmitted by certain form of 
wave, e.g. acoustic, radio, earth wave, etc, signals 
produced by sources are carried by waves from 
sources to receivers. Due to physical essences, 
signals are described as stochastic processes with 
statistical properties. Whether the waves are 
generated by sources or reflected by sources, some 
inherited properties of sources are loaded on carriers 
inevitably. 

Source signal can be modeled as 

( ) ( ) ( )∑
∞

−∞=

−=
k

sT nTtgksts   (1) 

where ( )ks  is the source signal. It can be modelled 
as a zero mean stationary process with a non-
singular covariance matrix. ( )tgT  is unit amplitude 
rectangular pulse of width sT . 

2.2 Fading Model 

For wireless radio, sonar, or earth waves, signals 
generally suffer from two major sorts of fading, one 
is caused by space condition, e.g. loss of distance, 
multi-path and the other caused by relative motion 
between transmitter and receiver. 

Signals suffers from different sorts of path 
fading, here we only take into consideration of 
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signal power decays related to path length in free 
space. Let ( )df denote the path fading coefficient, 
the received signal by a sensor can be expressed as 

( ) ( ) ( )tsdftr =     (2) 

where d is the distance between source and 
sensor.  One of the generally used models is  

( )
( )21

1
+

=
d

df  

After all, how to model the path fading does not 
affect the source detection and separation 
essentially. 

2.3 Mixing Model 

Suppose there are m sources and n sensors in the 
sensor field, generating signal ( )ks j , mj ,,1= and 

observation records ( )kxi , ni ,,1= , mn > , 
respectively. Let 
( ) ( ) ( )[ ]Τ= tstst m,,1s and ( ) ( ) ( )[ ]Τ= txtxt n,,1x  

denote the source and sensor observation vector, 
respectively. The observation vector ( )tx  can be 
expressed as the sum of linear combination of 
signals and noises as 

( ) ( ) ( )ttt nAsx +=                      (3) 

where ( ) mn
jia ×∈= C,A is the mixing matrix 

between sources and sensors. ( ) ( ) n
int C∈=n is an 

additive Gaussian noise with zero mean, covariance 
matrix I2

nσ , and I is the identity matrix. Note that 
power decays and Doppler shift are independent to 
each other, 

( ) ( )jiji dfta ,, =                          (4)   

where, jid ,  is the distance between the thj  source  
and the thi  sensor. 

Assumptions 
(A1) A has full column rank, i.e. ( ) m=Arank . 
(A2) ( ) ( ){ }tsts m,,1 are uncorrelated. 
(A3) There exists a 0>τ  such that 
( ) ( )( ) miτtstsE ii ,,1,0* =≠+ . 

(A4) Sampling  rate satisfies Dft >Δ1 . 
(A5) Source location is approximated to be 

unchanged in sT , and observation window 

sTtN <Δ ,  where N is the sample number in 
observation window. 

3 SOURCES DETECTION 

Under the above assumptions, the covariance matrix 
of ( )tx  can be given by 

( ) ( ) ( ){ }ttE HxxRx =0  

IAA s
2)0(R n

H σ+=  
(5)

where H denotes conjugate transpose,  
( ) ( ){ }ttE Hsss =)0(R   is the nonsingular covariance 

matrix of ( )ts . For assumption (A2), 
( ) ( ){ }tsts m,,1 are uncorrelated, )0(Rs  are 

diagonal. ( )0xR  is full rank, so it can be  
diagonalized. 

( ) ( ) H
ndiag UURx λλλ ,,0 21=           (6) 

where ],[ ,,21 nuuuU = is an nn× matrix. 
nii ,,1, =u are eigenvectors of ( )0xR . 
nii ,,1, =λ are eigenvalues of ( )0xR , 

2
121 , nnmm σλλλλλ ==>≥≥≥ + , and 

,α 2
nii σλ +=   mii ,,1,α = are eigenvalues of 

HAARs )0( . 
Source number m can be determined from the 

multiplicity of the smallest eigenvalue of ( )0xR . 
According to MDL information theoretic criteria 
(Wax et al., 1989), value of m is estimated as m̂ , 
where m̂ is chosen such that 

( ) ( ) ( ){ }1,,0minˆ −= nMDLMDLmMDL       (7) 

with 
( ) ( ) ( )nkvLkMDL Nkn

k ,log +−= −  
where 
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( ) ( ) Nknknkv log2, 2
1 −=  

The noise variance 2
nσ can be estimated as  

∑ +=−=
n

mi imnn 1
12ˆ λσ                     (8) 

 
and the eigenvalues of HAARs )0( can be estimated 
as 

2α nii σλ −=                             (9) 
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4 SOURCES SEPARATION AND 
ESTIMATION OF MIXING 
MATRIX 

From (5) 

( ) ( )IAARIAARR sxx
22

s )0()0(R)0()0( n
HH

n
HH σσ ++=

                  IAARAAR ss
2)0()0( n

HHH σ+=       
                  )0()0( H

xx RR=                      
(10) 

Hence, ( )0xR  is a normal matrix.  According to 
matrix theory, there must exist an unitary matrix, 
which can diagonalize ( )0xR , so U is also an 

unitary matrix that satisfies IUU =H . Denote 
HAARR sA )0()0( = . )0(AR can be diagonalized as 

( ) H
mdiag ssA UUR α,α,α)0( 21=          (11) 

where ],[ ,,21 muuuUs = . 

Define ( ) H
sUT 2

1
2

1
2

1

m21 α,α,α −−−≡ diag  . 
Multiply equation (5) by T from the left, then it can 
be expressed as 

( ) ( ) ( )ttt wBsy +=                     (12) 

where 
( ) ( )tt Txy =  

TAB =  
( ) ( )tTntw =  

For IBB =H , B is an unitary matrix. 
( ) ( ) ( )( )τ τHE t t= +yR y y  
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For Assumptions (A3), ( )τsR is diagonal. 
( )τyR can be obtained from the statistics of 

observation of ( )tx . 

For ( ) ( ) ( ) ( )ττττ yyyy RRRR
y

H
y

H = , ( )τyR  is a normal 

matrix and must have an eigen-decomposition of the 
following form 

( ) ( ) HVVRR sy ττ =                    (13) 

where V is an unitary matrix. Although 
waveform of each column is preserved by unitary 
transformation, the inherited indeterminacies of 
blind estimation associated with the magnitude of 

sources and the order in which sources are arranged 
are inevitable. B and V are related by 

VEJB =                             (14) 

where E  is a nonsingular diagonal matrix and J is a 
permutation matrix. Substitute TAB = , the maxing 
matrix can be estimated as 

VEJTA +=ˆ                           (15) 

where superscript + denotes the Moore-Penrose 
pseudoinverse. 

5 LOCALIZATION OF SOURCES 

In (15), each element of E multiplies na arbitrary 
coefficient to each column of Â , 
respectively. J exchanges the columns of Â . 
Without loss of generality, we assume 

IE = and IJ = , that will not affect the estimation 
result as shown in the following. Â can be rewritten 
as 

VTA +=ˆ                             (16) 

Assume that mjj ,,1,ˆ =a is the thi column 

of Â . As in (6) ]ˆˆ,ˆ[ˆ ,,,,2,1 jmjji aaa=a  represents the 
proportion between fading coefficients of the 
thi source to each sensor, where the magnitude of 

jâ  represents the proportion between path fading 

coefficients ( ) nidp ji ,,1,, = , and the angle of jâ  
represents the proportion between Doppler 
shifts ( ) nifg ji ,,1,, = . 

A. Location Estimation  

( ) ( ) ( )jnjjjmjj dpdpdpaaa ,,2,1,,1,1 :::ˆ::ˆ:ˆ =    (17) 

where ⋅ denotes magnitude of a complex 
number. Introduce a reference coefficient ρ ,(18) 
can be expressed as 

( ) niaρdp jiji ,,2,1ˆ ,, ==               (18) 

Then jid , can be expressed by the inverse 

function of jia ,ˆ  

( )( )jiji aρpd ,
1

, ˆ−=                       (19) 
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Substitute jid , by coordinate of source, we can get 

( ) ( ) ( )( )( )2,
122 ˆˆˆ jiijij aρpyyxx −=−+−        (20) 

where [ ] mjyx jj ,,2,1,ˆ,ˆ =  are the coordinates of 
the thj  source, and [ ] niyx ii ,,2,1,, =  are the 
coordinates of the thi  sensor. 

By substituting ni ,,2,1= into (21), and 
subtracting each other, we have  that 

( ) ( )
( ) ( )( ) ( ) ( )( )

1,,2,1

ˆˆ
2
1

ˆˆ

2
,

12
,1
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1

22
1
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−=

⎟
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⎝
⎛ −+−+−=

−+−

−
+

−
++

++

ni

aρpaρpyyxx

yyyxxx

jijiiiii

iijiij

  

The above equations can be expressed as 

[ ] mjyx jjjj ,,2,1ˆ,ˆ ==Τ eC  (21) 

where, 
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The least squares estimate of source position can be 
given as 

[ ] mjyx jjjj ,,2,1ˆ,ˆ == +Τ eC               (22) 

Introduce (22) to (20), ρ can be solved. Return ρ to 
(22), the source position is obtained. 

6 CONCLUSIONS 

Path fading is introduced to model the multiple 
target network. Based on blind estimation, a range 
free multiple target localization algorithm was 
presented. This development is especially applicable 
in fast, time-varying environments, where multiple 
targets maneuver quickly and randomly. 
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