
INTERACTION CENTRIC REQUIREMENTS TRACEABILITY

Nitesh Narayan, Yang Li, Jonas Helming and Maximilian Koegel
Institut für Informatik, Technische Universität München, Boltzmannstrasse 3, 87548 Garching, Germany

Keywords: Requirements traceability, Interaction, Artifacts, UNICASE, Model.

Abstract: Requirement Traceability provides the ability to follow the life-cycle of a requirement from its evolution till
subsequent refinement and use. A key issue that restricts the adaptation of approaches to create and maintain
these relationships is the lack of tool support that employs a centralized repository for heterogeneous artifacts.
Different artifacts are stored in different repositories and thus traceability links are expensive to maintain.
Centralized repository can facilitate capturing the stakeholders interaction, which result in creation and mod-
ification of the artifacts and their relationship. These interactions hold the rationale behind changes. In this
paper we propose a novel model-based CASE tool UNICASE, which aids in maintaining requirements trace-
ability by incorporating disparate artifacts. Further, the tool facilitates capturing the evolution of requirements
invoked by the informal communication in the form of discussion and comments.

1 INTRODUCTION

There had been several definitions of requirements
traceability in literature. The most prominent one is
“Requirements traceability is the ability to describe
and follow the life of a requirement, in both a for-
ward and backward direction. That is from its ori-
gin, through its development and specification, to its
subsequent deployment and use, and through periods
of ongoing refinement and iteration in any of these
phases” (Gotel and Finkelstein, 1994).

Requirements traceability benefits the facilita-
tion in program comprehension, maintenance, impact
analysis, software reuse and prevention of misunder-
standings (Egyed and Grunbacher, 2005) by utilizing
the relationship information available in software de-
velopment artifacts (De Lucia et al., 2004). Artifacts
are created and evolve through out the software devel-
opment process. Various repositories are maintained
in software projects to handle different kinds of ar-
tifacts (Čubranić and Murphy, 2003). These reposi-
tories include bug tracking systems, task repositories
and source code management repositories.

An issue that restricts achieving fine-grained re-
quirements traceability is the low interoperability be-
tween different repositories, where development ar-
tifacts are spread across several repositories with
their own underlying traceability management mech-
anisms. This is especially true in frequently evolving
projects where changes in artifacts stored in various

repositories are not propagated to static requirements
document (Raymond, 1999), which is stored at a dif-
ferent location.

Further in software projects, various stakeholders
interact with each other along with the artifacts, which
results in frequent change of artifacts and their rela-
tionships. These interactions can either invoke cre-
ation/modification of an artifact representing certain
aspect of the system under development or a read-
only interaction to gain insight of the development
process. Therefore, we consider the need to capture
the dynamic state of artifacts along with the interac-
tions initiating the changes, to capture the rationale
behind changes in requirements.

In this paper we present UNICASE (UNICASE,
2011), a model-based case tool which provides a cen-
tralized place for heterogeneous artifacts. A common
platform to capture and modify different artifacts cre-
ated through out the software development process at
various life-cycle stages. The interaction between the
stakeholders and the artifacts is also recorded. Com-
bined together which provides fine-grained traceabil-
ity between the artifacts at the same level of abstrac-
tion along with the artifacts at different level of ab-
straction (Antoniol et al., 2001). Further, the tool fa-
cilitates capturing the evolution of requirements in-
voked from the interaction of stakeholders over in-
formal artifacts. Informal artifacts include comments
and discussions.

In section 2 we give an overview of relevant exist-

232 Narayan N., Li Y., Helming J. and Koegel M..
INTERACTION CENTRIC REQUIREMENTS TRACEABILITY.
DOI: 10.5220/0003463502320238
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 232-238
ISBN: 978-989-8425-57-7
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ing work in requirements traceability mainly with the
tool support focus. Section 3 describes the core vari-
ables that provide the feasibility to capture and main-
tain traceability in UNICASE. Further in section 4 we
briefly introduce various features of the tool, which
combined together, provide the stakeholders means
to interact among each other, and with the artifacts.
Section 5 in detail explains the process of require-
ments traceability, as and how it is captured and main-
tained in UNICASE. Subsequent section presents fu-
ture work and sums up with the conclusion.

2 RELATED WORK

Several research and commercial tools provides
means to achieve traceability between artifacts, in-
cluding some with specific focus on requirements
traceability (IBM, 2011a) (IBM, 2011b) (Pinheiro
and Goguen, 1996) (Boldyreff et al., 2002). In spite
of having a major research focus, there is no tool sup-
port addressing every aspect of attaining requirements
traceability. Artifact type being supported in each of
them is based on the underlying design decision and
extensibility to support new artifact type is limited.

Hipikat (Čubranić and Murphy, 2003) for exam-
ple proposed a mechanism to integrate various inde-
pendent artifact management repositories and on the
top means to identify relationship between them for
recommending related artifacts. As Hipikat work on
the top of existing repositories, thus it completely de-
pends upon the knowledge being stored in various
repository and the methodologies to mine them.

Jazz (Frost, 2007) is an integrated development
environment providing a centralized repository for
tools supporting the development process such as
planning, work item tracking, report and build sys-
tem. Although Jazz provide means to capture various
artifacts originating during the development process,
its ability to maintain requirement traceability is lim-
ited and restricted by the commercial goals. Thus the
underlying model itself cannot be extended or modi-
fied to suit project and domain-specific needs.

Lee et. al. (Lee et al., 2003) in their work pre-
sented an agile approach to capturing requirements
and traceability. The proposed approach provides
means to capture requirements in an informal man-
ner and then transform it to formal requirements, to
suit formal requirements-specification. This work is
promising and can be very effective in capturing and
transforming informal knowledge into formal one.
Though the extensibility of this approach to consider
formal artifacts remains a matter of investigation.

Hong et al. (Hong et al., 2010) presents the need

for a tool to support requirements management with
evolving traceability for heterogeneous artifacts in the
entire life-cycle. They put forward the deficiency
of existing change management system in handling
traceability link evolution. Finally they conclude with
their vision of providing a tool support to fulfill the
need of requirement traceability management.

3 TWO DIMENSIONS OF
TRACEABILITY

Traceability relationships reference artifacts of the
same or a different level of abstraction, in both for-
ward and backward direction (Winkler and von Pil-
grim, 2010). Stakeholders interact with artifacts and
their links through operations like creation, modifica-
tion or deletion. Thus, in an incremental software de-
velopment process, these interactions lead to the evo-
lution of artifacts and the relationship between them.

We identify two dimensions necessary for creat-
ing and maintaining traceability, namely artifact and
time. The artifact dimension is concerned with what
is linked by traceability, in other words, the entities
of concern. The time dimension represents the evo-
lution of artifacts and their traceability information.
Over the artifacts and throughout the time dimension
stakeholders interact, which represents the rationale
behind the changes. The interaction of stakeholders
over artifacts comprise of informations as who per-
formed the changes and how. How is represented in
the terms of interaction sequence leading to the final
state of artifacts. Who (role of the stakeholder) and
how (see Figure 1) along with the initial and final state
of artifacts can represent the rationale behind why the
changes occurred.

in
te
ra
ct
s

in
te
ra
ct
s

t t+dt

changes

time

artifact

higher level
of abstraction

lower level
of abstraction

Figure 1: Two Dimensions of Traceability.

In the proposed approach of maintaining require-
ments traceability, artifact types and the relationship
is defined in a unified extensible model, which depicts
the artifact dimension. The time axis is realized in

INTERACTION CENTRIC REQUIREMENTS TRACEABILITY

233

an operation-based version control system to record
every interaction invoking changes over the artifacts
and version the changes. In the next subsections we
describe each of these two dimensions in detail.

3.1 Artifact Dimension: Unified
Extensible Model

To address the low interoperability between geo-
graphically separated artifacts, we propose and em-
ploy a unified extensible model, which contains het-
erogeneous artifacts produced in software develop-
ment process. The model comprises of four sub-
models (see Figure 2) from different level of abstrac-
tion (Bruegge et al., 2008): (1) The requirements
model contains model elements like Scenarios or Use
Cases and describes the system under construction in
the application domain. (2) The system model de-
scribes the design using artifacts like UML class dia-
gram. (3) The collaboration model contains artifacts
like work items, sprints and meetings, while the (4)
organization model defines an organization in terms
of groups and members.

 Requirements
 Specification

Requirements Use Case A

 B

`compo.

Groups UserIssue Task

Sprint

Bug

System ModelRequirements Model

Collaboration Model Organization Model

Unified Extensible Model

Figure 2: Unified Extensible Model.

Every artifact is modeled as ModelElements
with its own unique identifier in the proposed
model. Types of artifact is defined by extending
ModelElement. In the unified model, links are de-
fined to reference related model elements. Alterna-
tively links can also be modeled as model element.
Explicit links can exist between different types of ar-
tifacts. The model is easily extensible by adding new
elements. Research approaches often require new
model elements or attributes to be added, which is
even possible during project run-time.

3.2 Time Dimension: Operation-based
Versioning

Artifacts and the traceability links among them are
constantly in evolution (Jiang et al., 2007) in an itera-
tive and incremental software development paradigm.
All the information of the artifacts and the links,
as well as the interactions with stakeholders should
be stored and versioned to provide the possibility of
“time travel”. We capture the interaction informa-
tion in terms of operations and than persist it in an
operation-based version control system called EMF-
Store. EMFStore facilitate versioning and collabo-
ration. It provides change tracking, conflict detec-
tion, merging and versioning of models. Also it in-
cludes repository-mining facilities for data extraction.
It employs the well-known checkout-update-commit
workspace interaction schema.

ChangePackage

OperationModelState

Version
createdBy

0..1

revises

1 1

1

*
{ordered}

1

1

Figure 3: Version Model.

Figure 3 shows the version model of EMFStore.
It is a tree of versions with revision and variant
links. Every version contains a change package and
can contain a full version state representation. A
change package contains all the operations that trans-
formed the previous version into this version along
with the administrative information such as the user,
a time stamp and the log message. An Operation is
performed while stakeholders interact with involved
model elements (artifacts) and their links. Such an
operation can be applied to a project state, thereby ex-
ecuting the change that was recorded in the operation.
In contrast to other versioning and change tracking
approaches, the operation-based versioning preserves
the original time-order in which the changes occurred.
Therefore it can help reason the evolution of the arti-
facts and their traceability links.

Figure 4 shows the simplified taxonomy of opera-
tions (Herrmannsdoerfer and Koegel, 2010) consid-
ered in our approach to capture interactions result-
ing in change of model element. All operations re-
fer to one ModelElement that is being changed by the
operation. A ModelElement has values for a num-
ber of attributes. An AttributeOperation changes
the value of an attribute of a model element. A
ReferenceOperation creates or removes one or sev-

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

234

eral traceability links between model elements. A
CreateDeleteOperation creates or deletes a model
element. A CompositeOperation allows to group
several related operations to represent a refactoring,
for example.

Operation

Attribute
Operation

Reference
Operation

CreateDelete
Operation

ModelElement

creates/deletes

isChangedBy

Composite
Operation

*

Figure 4: Operation Meta Model.

4 UNICASE

The two aspects central to achieving requirements
traceability (see Section 3) is realized in a CASE tool,
UNICASE. This tool is based on the Eclipse platform
including Eclipse Modeling Framework (EMF) and
Graphical Modeling Framework (GMF).

UNICASE consists of generic views and editors:
(1) A tabular view, showing a filtered and sortable list
of model elements, (2) A tree-based view, showing
the containment structure of the model (3) A form-
based editor to visualize and modify the content of
model element (artifact) and its references (4) A dia-
gram view, showing graphical representations such as
Unified Modeling Language (UML) diagrams.

5 REQUIREMENTS
TRACEABILITY WITH
UNICASE

Existing software repositories including the one sup-
porting heterogeneous artifacts versions and stores
them. This does not sufficiently imply that they cap-
ture the interaction information underlying the re-
quirements evolution. This interaction information
along with the state of artifacts can derive the ratio-
nal behind changes in the requirements or any related
artifact, in an iterative and incremental development
paradigm. Further having a centralized artifact repos-
itory facilitates identifying and propagating changes,
which triggers major changes in the project such as
creation of a new requirement or a discontinued func-
tionality.

In the next subsection we describe how the trace-
ability relationship between artifacts at different level
of abstraction aids in maintaining requirements trace-
ability in both forward and backward direction. Sub-
section 5.2 explains how the interactions in collabora-

tive environment leads to evolution of traceability link
between requirements and associated artifacts. From
the technical perspective this feasibility is provided by
underlying operation-based versioning 3.2. Follow-
ing subsection 5.3 describes how the inception of new
requirements or modification of existing one invoked
from an informal artifact is captured in UNICASE.

5.1 Forward and Backward
Traceability

It is evident that any of the artifacts are subject to
change during the development process. Traceabil-
ity gives assistance to traverse from a requirement to
its implementation and vice-versa (Ramesh and Jarke,
2001), also termed as forward and backward trace-
ability in literature.

Requirements
Specification

Requirement Use Case System
Model

0..*
1

isDetailedInisSatisfiedIn

Figure 5: Excerpt from unified model with transition from
requirements model to system model.

Software projects tend to start with loosely de-
fined requirements especially projects with longer life
span, representing stakeholders view. In subsequent
process these requirements are analyzed and refined.
Further these requirements provide a basis for the
future refinement as system, subsystem and compo-
nent requirements. Requirements in UNICASE can
be linked to the artifact resulting from the interaction
of stakeholders in the process of requirements engi-
neering (see Figure 5). Some of the artifacts resulting
at this level of abstractions are requirements specifi-
cation and use case. Due to the complexities involved
in requirements analysis, it is performed in close co-
operation and collaboration with various stakeholders
like users and customers. This interaction of various
stakeholders plays a crucial role in requirements iden-
tification and refinement, and is considered part of the
requirement traceability. An example of artifact pro-
duced within this interaction cycle is mail exchange
between customer and analysts, negotiating require-
ments.

System model consists of the artifacts produced in
an effort to map problem to the solution domain, dur-
ing design phase. Artifacts resulting at this level of
abstraction include various UML diagram types, rep-
resenting static and dynamic states of the system un-
der development. UNICASE provides inbuilt support
for UML diagrams. Unified model can be extended

INTERACTION CENTRIC REQUIREMENTS TRACEABILITY

235

to incorporate new diagram types. Eventually these
diagrams can be linked to the requirements they rep-
resent at higher level of abstraction (see Figure 5).

isObjectOf

refines
isAssignedTo

WorkItem

Developer

Issue

BugReport

Task

Functional
Requirement

1

Figure 6: Requirements to realization.

Requirement traceability can play an important
role in project management and planning. This can
substantially enhance the efficiency of project man-
agers by providing information on sprint status, due
date and open high priority tasks in scheduling and
resource allocation decisions. Collaboration model
in UNICASE provides all the necessary artifacts type
to achieve this. Model elements such as sprint pro-
vide possibility to manage tasks and bug reports.
WorkItems are linked to requirement model by the as-
sociation isObjectOf (see Figure 6). This expresses
that the activities conducted during the execution of
work item is related to the requirement or to its repre-
sentation in the implementation. The type of relation-
ship is derived based on the activity of work item. For
example an implementation task linked to a require-
ment, means that this work item needs to be done in
order to realize the requirement.

User

Developer Group

0..*

1

Figure 7: Developer organization.

Organization model in UNICASE consists of ele-
ments to represent various human entities. User is an
abstract super class for every stakeholder, while the
concrete implementation encapsulates the role centric
properties. Every stakeholder is modeled as a model
element in the project. For example a new developer
can be added in the repository and then assigned a task
by the association isAssignedTo (see Figure 6). De-
veloper can belong to a group (see Figure 7), which in
turn can compose several sub-groups. Further the or-
ganization model defines the different level of access
rights based on the role of stakeholder.

As every artifact in UNICASE is derived from
Model Element class, they inherit the property of hav-
ing Annotations (see Figure 8).Thus every artifact can
be linked to a source code attachment based on the

annotates

Model
Element

WorkItem UML
Diagram

Source
Code Model

Figure 8: Traceability to source code model.

relationship type. For example a bug report can be
linked to an attachment consisting of a source code
patch to fix it. Similarly a development task can be
linked to the source code produced during the execu-
tion of the task. Hyper-graph (see Figure 9) shows the
traceability relationship between different artifacts.
At the center of the graph is the project itself as the
root element. Sequence of interactions, recorded as
operation combinedly represents the state of artifacts
in certain project state.

5.2 Evolution of Traceability

Collaborative software development process is cen-
tral to the evolution of traceability links between arti-
facts in UNICASE. Sequence of interactions over arti-
facts is recorded as change package on the client side.
This change package contains the interaction infor-
mation and changes per interaction. After performing
the necessary changes on the artifacts a stakeholder
can propagate his changes to EMFStore, the underly-
ing operation-based version control system for EMF
models (see 3.2). Stakeholders can also update the
state of their artifacts to reflect the changes made by
other stakeholders. Further, a stakeholder can walk
through every interaction over an artifact or the whole
project itself, to follow its evolution process.

5.3 From Informal Artifacts to Formal
Requirements

A centralized artifact repository like UNICASE eases
capturing the interaction between stakeholders over
artifacts created by informal communication. Infor-
mal communications stored in mailing list and forums
as artifacts capture various aspects of the system un-
der development. It can be identified in these discus-
sions, various issues occurring at different stage of
software project life cycle along with the collabora-
tive approach to resolve them. These informal com-
munications are also used to propose new feature re-
quest or changes in requirement. For example when

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

236

Figure 9: Hyper-graph showing traceability between requirements and other artifacts.

a new bug report or recently created issue, raises the
need of having a new requirement.

In a previous study we showed how the system
model elements and requirements evolve after a se-
quence of discussions and posts in informal commu-
nication (Helming et al., 2010). Externalizing this
informal knowledge as formal requirements become
even more important in case of frequently evolving
projects where throughout the development original
set of requirements gets blurred, outdated or lost (El-
Ramly et al., 2002). Which eventually raises critical
issues when the need arises for having a precise and
up-to-date oracle for testing and other purposes. This
is also true for maintenance of software where the
need might arise to migrate a legacy project to sup-
port newer platform and execution environment (Lo
and Khoo, 2008) (Jalote, 1997).

6 CONCLUSIONS

In this paper we presented a novel model-based
case tool for capturing and maintaining requirements
traceability. The tool considers interaction between
stakeholders and with the artifacts of major impor-
tance to derive the rational behind change.

In the first part (see Section 3) we described two
main variables central to the requirements traceability
in our tool. Underlying unified extensible model pro-
vides a centralized place for heterogeneous artifacts.
Through the interaction of various stakeholders new
artifacts are created and evolved. This interaction is
captured and versioned in a repository for model el-
ements, thus providing the possibility to iterate over
time. Change delta containing sequence of interac-

tions, along with the initial and final state of artifact
can be used to investigate the possibility of extract-
ing rationale for change. Though an in-depth study is
matter of future investigation.

In the second part (see Section 4) we gave a brief
introduction to various views and editor provided by
UNICASE to ease the interaction of stakeholders with
artifacts. We also discussed the importance of change
notification in requirements traceability along with
the feasibility provided by the tool. Finally in the
last part (see Section 5) we discussed how require-
ments traceability is captured and maintained with
in UNICASE, in both forward and backward direc-
tion. Interoperability between artifacts at different
and same level of abstraction eases capturing trace-
ability links. Furthermore, the tool incorporates infor-
mal communication in a development project as arti-
facts. Thus providing the feasibility to capture trace-
ability between requirements and the informal com-
munications, which invoked the evolution of this par-
ticular requirement.

7 FUTURE WORK

This paper is a part of a research work with focus
to identify, evaluate and present novel approaches for
traceability between development artifacts. In several
previous studies we have presented heuristic, which
support the benefits of having a unified model to
achieve better traceability between development arti-
facts.

Currently the proposed tool rely on API’s pro-
vided by subversion, which is a widely used source
code management system, to provide traceability

INTERACTION CENTRIC REQUIREMENTS TRACEABILITY

237

from higher level model elements to source code. In
the future we will focus on investigating approaches
to capture and maintain fine-grained traceability be-
tween higher-level artifacts to source code artifact.
We are further planning to investigate methodologies,
which can help in identifying missing/broken trace-
ability links between artifacts automatically or semi-
automatically.

REFERENCES

Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.
(2001). Maintaining traceability links during object-
oriented software evolution. Software: Practice and
Experience, 31(4):331–355.

Boldyreff, C., Nutter, D., and Rank, S. (2002). Active arte-
fact management for distributed software engineering.
In Computer Software and Applications Conference,
2002. COMPSAC 2002. Proceedings. 26th Annual In-
ternational, pages 1081–1086. IEEE.

Bruegge, B., Creighton, O., Helming, J., and Kogel, M.
(2008). Unicase-an ecosystem for unified software en-
gineering research tools. In Third IEEE International
Conference on Global Software Engineering.

De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.
(2004). Enhancing an artefact management system
with traceability recovery features. In Software Main-
tenance, 2004. Proceedings. 20th IEEE International
Conference on, pages 306 – 315.

Egyed, A. and Grunbacher, P. (2005). Supporting software
understanding with automated requirements traceabil-
ity. International Journal of Software Engineering
and Knowledge Engineering, 0(0).

El-Ramly, M., Stroulia, E., and Sorenson, P. (2002). Re-
covering software requirements from system-user in-
teraction traces. In Proceedings of the 14th interna-
tional conference on Software engineering and knowl-
edge engineering, page 454. ACM.

Frost, R. (2007). Jazz and the eclipse way of collaboration.
IEEE Software, 24:114–117.

Gotel, O. and Finkelstein, C. (1994). An analysis of the
requirements traceability problem. In Requirements
Engineering, 1994., Proceedings of the First Interna-
tional Conference on, pages 94 –101.

Helming, J., Narayan, N., Arndt, H., Koegel, M., and
Maalej, W. (2010). From Informal Project Manage-
ment Artifacts to Formal System Models. System.

Herrmannsdoerfer, M. and Koegel, M. (2010). Towards a
generic operation recorder for model evolution. Pro-
ceedings of the 1st International Workshop on Model
Comparison in Practice - IWMCP ’10, page 76.

Hong, Y., Kim, M., and Lee, S.-W. (2010). Requirements
management tool with evolving traceability for het-
erogeneous artifacts in the entire life cycle. In Soft-
ware Engineering Research, Management and Appli-
cations (SERA), 2010 Eighth ACIS International Con-
ference on, pages 248 –255.

IBM (2011a). IBM - rational DOORS - software.
http://www-01.ibm.com/software/awdtools/doors/.

IBM (2011b). IBM - rational RequisitePro - software.
http://www-01.ibm.com/software/awdtools/reqpro/.

Jalote, P. (1997). An integrated approach to software engi-
neering. Springer Verlag.

Jiang, H.-y., Nguyen, T. N., Chang, C. K., and Dong,
F. (2007). Traceability Link Evolution Management
with Incremental Latent Semantic Indexing. In Pro-
ceedings of the 31st Annual International Computer
Software and Applications Conference.

Lee, C., Guadagno, L., and Jia, X. (2003). An Agile Ap-
proach to Capturing Requirements and Traceability.
In Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineer-
ing (TEFSE 2003). Citeseer.

Lo, D. and Khoo, S. (2008). Mining patterns and rules for
software specification discovery. Proceedings of the
VLDB Endowment, 1(2):1609–1616.

Pinheiro, F. and Goguen, J. (1996). An object-oriented tool
for tracing requirements. IEEE SOFTWARE, pages
52–64.

Ramesh, B. and Jarke, M. (2001). Toward reference models
for requirements traceability. IEEE Transactions on
Software Engineering, 27(1):58–93.

Raymond, E. (1999). The cathedral and the bazaar.
Knowledge, Technology and Policy, 12:23–49.
10.1007/s12130-999-1026-0.

UNICASE (2011). Unicase. http://www.unicase.org.

Čubranić, D. and Murphy, G. C. (2003). Hipikat: rec-
ommending pertinent software development artifacts.
In Proceedings of the 25th International Conference
on Software Engineering, ICSE ’03, pages 408–418,
Washington, DC, USA. IEEE Computer Society.

Winkler, S. and von Pilgrim, J. (2010). A survey of trace-
ability in requirements engineering and model-driven
development. Software and Systems Modeling, 9:529–
565. 10.1007/s10270-009-0145-0.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

238

