
NDT-GLOSSARY
A MDE Approach for Glossary Generation

J. A. García-García, M. J. Escalona, C. R. Cutilla and M. Alba
Department of Computer Languages and Systems, University of Seville, Spain

Keywords: Model-Driven Engineering, Glossary Generation, NDT, Technical Validation of Requirements.

Abstract: This research paper is contextualized within the paradigm of Model-Driven Engineering (MDE) and it is
specifically related to NDT. NDT is a methodology included within the MDE paradigm. The aim of this
paper is to present a software tool to facilitate the work of requirements engineers during the requirements
validation in a software project. The requirements validation activity takes place within the requirements
phase of the life cycle in a software project. The developed tool is called NDT-Glossary and it implements
an automatic procedure to generate, from the requirements defined in a project developed with the NDT
methodology, the first example of the glossary of terms for this project.

1 MDE INTRODUCTION

The Model Driven Engineering paradigm (MDE)
came up in order to tackle the complexity of
platforms and the inability of third generation
languages to relief this complexity and effectively
express the domain concepts of the problem. This
new paradigm, apart from raising the level of
abstraction, intends to increase automation during
the life cycle of software development.

Web Engineering works in a field which allows
the successful implementation of this paradigm. The
application of MDE in this domain is called Model-
Driven Web Engineering, MDWE. In fact, the
Model-Driven Engineering paradigm is being
assumed by several research groups to improve the
methodological proposals oriented to the Web. UWE
(UML Web Engineering) (Koch, 2001), WebML
(Web Modelling Languages) (Ceri, 2000) and OOH
(Chubb, 2003) are some of the examples.

Model-Driven Engineering works, as the primary
form of expression, with definitions of models and
transformation rules among these models which
entail the production of other models. Every model
corresponds to a phase of the life cycle and is
generally specified by means of UML modelling
language.

Standardization was necessary in order to
implement this new paradigm in real projects. OMG
presented MDA, which stands for Model-Driven

Architecture (MDA, 2003), as a platform to support
the paradigm of Model-Driven Engineering.

MDA proposes to base the software development
on models which make transformations be
performed to generate code or another model with
characteristics of a particular technology (or lowest
level of abstraction). As transformations go on, it
may be noticed that the models become more
concrete and the abstract model changes into another
one compatible with a particular technology or
platform. MDA is based on four types of levels or
models:

 The CIM level (Computation-Independent
Model) is considered the highest level of
business model and the most abstract level. It
focuses on requirements specification and
intends that anyone who knows the business and
its processes can understand a CIM model, as
this avoids any contact with the specific system.

 The PIM level (Platform-Independent Model)
represents the business process model and
system structure, without any reference to the
platform on which the application will be
implemented. It is usually the entry point for all
the support tools for MDA.

 The PSM level (Platform-Specific Model)
specifically relates to the platform where the
system will be implemented, for example, with

170 A. García-García J., J. Escalona M., R. Cutilla C. and Alba M..
NDT-GLOSSARY - A MDE Approach for Glossary Generation.
DOI: 10.5220/0003462401700175
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 170-175
ISBN: 978-989-8425-55-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

operating systems, programming languages or
middleware platforms, among others.

 Finally, the Code level refers to the codification
and suitable implementation of the system.

MDWE offers important advantages in software

development. It specifically provides relevant results
in Web-oriented projects.

The systematic generation of models based on
previous models assures traceability of levels and
can potentially reduce development time. In
addition, if suitable tools were defined, this process
could even be automatic.

However, for a full development of MDWE in
real projects, it requires software tools that may
ensure the quality of the results when using this
paradigm.

2 NDT – NAVIGATIONAL
DEVELOMENT TECNIQUES

The proposed methodology NDT (Escalona &
Aragon, 2008), acronym for Navigational
Development Techniques, belongs to the paradigm
of Model-Driven Engineering, MDE.

Initially, NDT dealt with the definition of a set
of formal metamodels for the requirements and
analysis phases. In addition, NDT defined a set of
derivation rules, stated with the standard QVT
(Query-View-Transformation) (OMG, 2008), which
generates the analysis models from requirements
model. QVT standard defines a declarative and
imperative language proposed by the OMG for
model transformation in the context of Model-
Driven Engineering.

Nowadays, NDT defines a set of metamodels for
every phase of the life cycle of software
development: the feasibility study phase, the
requirements phase, the analysis phase, the design
phase, the implementation phase, the testing phase,
and finally, the maintenance phase. Besides, it states
new transformation rules to systematically generate
models.

Although the life cycle is represented
sequentially, the NDT process is not sequential, as
many of its parts can be reviewed to correct errors
previously detected.

The first phases are briefly described below.
The first main phase is the Requirements phase.

Its main goal deals with defining the requirements
phase in order to list the catalogue of requirements

which contains the needs of the system to be
developed. It is divided into a series of activities:
capture, definition and validation of requirements.
See Figure 1.

NDT classifies project requirements according to
their nature: information storage requirements
(storage requirements and new natures), functional
requirements, actor requirements, interaction
requirements, and non-functional requirements.

 In order to define them, NDT provides special
patterns and UML techniques (UML, 2005), such as
the use cases technique for functional requirements
specification. The use of patterns or templates to
define every condition offers a structured and in-
depth description. Moreover, the fact that some
fields of such patterns only admit particular values
makes results be obtained systematically in the
remaining life cycle process of NDT.

Once the requirements specification phase has
been completed and the catalogue of system
requirements has been drafted and validated, NDT
defines derivation rules to generate the system test
model and the analysis phase models. Figure 1
shows all these transformations through the
stereotype «QVTTransformation».

NDT conceives the next phase, the Testing
phase, as an early phase of software life cycle and
proposes to carry it out together with the remaining
phases.

The testing phase is divided into the following
activities: drawing up the test plan, a parallel activity
to the analysis phase; environment specification and
test plan design a parallel activity to the design
phase; and implementation of test plan, a parallel
activity to the system construction and
implementation phase.

NDT proposes three models in this phase (see
Figure 1): implementation tests model, system tests
model and acceptance tests model. Every model is
described by means of the use case diagrams of UML.

The system tests model is the only one that can
be generated systematically.

NDT proposes derivation rules to generate the
basic model of system tests from the functional
requirements defined in the requirements phase. The
team of analysts can perform transformations in
order to enrich and complete this basic model.

The following phase, the Analysis phase, will
include the resulting products from the analysis,
definition and organization of requirements in the
previous phase.

At Analysis phase, NDT proposes four models
(see Figure 1): the conceptual model, which
represents the static structure of the system; the

NDT-GLOSSARY - A MDE Approach for Glossary Generation

171

Figure 1: NDT Transformations from Requirements to Analysis and from Requirements to Testing model.

process model, which represents the functional
structure of the system; the navigation model, which
shows how users can navigate through the system
and the abstract interface model, a set of prototypes
of the system interface.

The transition between the requirements model
and the analysis model is standardized and
automated and it is based on QVT transformations,
which change the concepts of requirements
metamodels to design the first versions of the
analysis models. These models are known in NDT as
basic models of analysis. For example, the basic
conceptual model of analysis is obtained from the
storage requirements defined during the
requirements phase.

Thereafter, the team of analysts can transform
these basic models to enrich and complete the final
model of analysis. As this process is not automatic,
the expertise of an analyst is required.
Transformations are represented in Figure 1 through
the stereotype «NDTSupport». To ensure
consistency between requirements and analysis
models, NDT controls these transformations by
means of a set of defined rules and heuristics.

To sum up, NDT offers an environment
conducive to the development of Web systems,
completely covering life cycle of software
development. In fact, NDT has been applied in many
practical environments and has succeeded due to the
application of transformations among models, which
has reduced development time (Escalona, 2007).

3 NDT-GLOSSARY

The application of MDWE and, particularly, the
application of transformations among models may
become monotonous and very expensive if there are
no software tools that automate the process.

To meet this need, NDT has defined a set of
supporting tools called NDT-Suite. In this suite is
included NDT-Glossary. Currently, the suite of NDT
comprises the following free Java tools:

 NDT-Profile is a specific profile for NDT,
developed using Enterprise Architect
(Enterprise Architect, 2010). This tool offers
the chance of having all the artifacts that define
NDT easily and quickly as they are integrated
within the tool Enterprise Architect.

 NDT-Quality is a tool that automates most of
the methodological review of a project
developed with NDT-Profile. It checks both,
the quality of using NDT methodology in each
phase of software life cycle and the quality of
traceability of MDE rules of NDT.

 NDT-Driver implements a set of automated
procedures that enables to perform all
transformations MDE among the different
models of NDT that were described in the
previous section.

 NDT-Prototype generates a set of XHTML
prototypes from the navigation models,
described in the analysis phase, of a project
developed with NDT-Profile.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

172

NDT-Glossary implements an automated
procedure that generates the first instance of the
glossary of terms of a project developed by means of
NDT-Profile tool. The glossary of terms is generated
from the requirements defined in the project.
Among the different types of requirements that
define NDT, the only ones that are necessary to
include in the glossary are both, the storage and
actor requirements:

a. Storage requirements should be registered in
the glossary because they set the relevant and
inherent concepts for the domain of the system
being modelled.

b. Actor requirements must be registered in the
glossary because they indicate the roles that
each user can play within the business being
modelled. Thus, the project team would have a
clear definition of each of the possible roles
that a user can play.

3.1 The Necessity of NDT-Glossary

In Software Engineering and in Web Engineering
specifically, it is very important to carry out an
exhaustive work of elicitation of requirements that
meets the needs of end users and customers and
ensures the quality of the developed system.

In the information system development process,
led or not to the Web, the development team faces
up the arduous task of defining the system
requirements. It is a complex process since it must
identify the requirements the system must meet in
order to guarantee the fulfilment of the end users and
customers’ requests.

The requirements specification process is divided
into three main activities: requirements elicitation,
requirements definition and requirements validation.

The process begins with the completion of the
activity of capturing or elicitation of requirements.
In this activity, the analyst team extracts the needs,
both explicit and implicit, of customers and users
and their expectations for the system which will be
developed.

System requirements are taken out from the
information provided by users and customers. From
this information, the analyst team elaborate the
preliminary requirements catalogue. Subsequently,
the process enters an iterative validation sub-process
of the requirements catalogue. The validation
process ends with the final version of the
requirements catalogue.

During the project development, some
terminology problems may take place mainly due to

the different people participating in it: customers,
end users, project managers, designers or engineers,
among others. This problem is highlighted in Web
information systems projects since their
development teams are usually more
multidisciplinary.

This problem is becoming more present during
the validation of the requirements catalogue. One of
the most common techniques for this activity, and
also one of the easiest to apply, is the glossaries
technique, which allows registering the knowledge
acquired on the problem domain or universe of
discourse. In addition, glossaries allow this
knowledge is shared by all participants in the
project. Basically, the glossary is a dictionary which
defines and collects the most important and critical
concepts to be used during the software project
development. The objective pursued is to avoid
ambiguities when using concepts of problem domain
during the different phases of life cycle in the
software project.

Each term is represented in the glossary with a
couple of values: Name and Description. To
preserve the integrity, the glossary cannot contain
two terms with the same Name.

The technical glossary is not a full technical
validation of requirements in itself, but it is useful
for finding inconsistencies in vocabulary during the
requirements phase.

All glossaries of terms must verify
simultaneously two rules (Leite, 1993): the Principle
of Circularity and the Principle of Minimum
Vocabulary. The former establishes that a glossary
should be as AutoContent as possible. Therefore, it
ensures that all terms are related and does not
exclude knowledge of the universe problem from the
glossary. Nevertheless, the latter points out those
requirements should mainly be expressed by means
of concepts included in the proper glossary. Thus,
the glossary will be as understandable as possible.

In conclusion, it is necessary for engineers to
gather and define the more relevant and critical
concepts in the system. Furthermore, the use of a
common language reduces the risk of ambiguities
and facilitates communication between users and
analysts.

3.2 The Interface of NDT-Glossary

The interface of NDT-Glossary is quite simple and
intuitive. Figure 2 shows the main interface of the
tool. In the «EAP Project» Section, you must
indicate the path to a project developed using NDT-
Profile tool. Once the project is selected, the tool

NDT-GLOSSARY - A MDE Approach for Glossary Generation

173

automatically suggested both the name of the project
(Section «Name Project») and the path where the
reports generated later are saved by the tool (Section
«Report Output Directory»). If appropriate, the user
may change the data manually before carrying out
the expected operation.

Then, after entering the above data, the user can
generate both, the glossary of terms and a report
with the terms already stored in an NDT-Profile
project, by only clicking either on «Build Glossary»
or «Build Report».

Figure 2: NDT-Glossary main interface.

3.3 The Architecture of NDT-Glossary

Enterprise Architect is based on the database model
entity relationship. This model is implemented on
different management systems databases: Microsoft
Access, Oracle or MySQL. Thus, every element
defined in a project developed with the NDT-Profile
tool is stored in the database project.

NDT-Glossary tool was designed according to
the MVC design pattern. MVC is an acronym for
Model-View-Controller. This design pattern
suggests that development should be divided into
three layers: the presentation layer, corresponding to
the graphical user interface; the business layer,
which implements all the business logic of the tool,
for instance, all transformations between NDT
models, and data access layer. Additionally, some
other patterns are used; the strategy pattern, the
Template Method Pattern, and the combination of
Data Access Object Pattern (DAO) with the
Singleton Pattern.

Finally, the data access layer was implemented
by means of the API provided by the company that
developed Enterprise Architect, SparxSystems.

3.4 Enterprise Experiences

In the last ten years, NDT and NDT-Suite acted in a
high number of real projects. In fact, they are
currently used in several projects carried out by

different companies either public or private and big
or small.

Particularly, NDT was also widely applied in the
e-health environment. In 2006, Alcer Foundation
(Alcer) used it within the system to manage the
degree of handicap. In this project, NDT-Suite was
not fully developed and we used a previous tool,
named NDT-Tool (Escalona, 2007).

However, this project is mentioned because it
was the seed for detecting the necessity of NDT-
Glossary. The medical systems environment works
with a very specific terminology and the project
caused a high number of inconsistence that could
only be solved by elaborating a glossary manually.

Some years later, NDT-Suite was used in other
e-health system, named Diraya (Escalona, 2008)
which is a very complex system. The requirements
phase was developed by a group of six companies
with a high number of analysts. Each company was
expert in a concrete aspect of Diraya.

The use of NDT-Profile and NDT-Glossary was
essential to guarantee the unification of criteria in
this multidisciplinary development team.

4 RELATED WORK

There are many papers related to technical validation
of requirement on the Web or in the Literature.
However, the validation techniques presented in
these publications are applied manually. In fact,
although MDWE is being assumed by several
methodologies focused on Web Engineering, the use
of tools to facilitate validation of requirements
captured during the different interviews with clients
and users in the first phase of a software life cycle is
very low.

From a practical standpoint, the glossary of
terms technique is an effective and efficient
technique to complete the vocabulary of a project,
although sometimes it requires a more complex
glossary and even ontologies or thesaurus must be
defined. Both, the glossaries technique and the
ontologies or thesaurus technique not only allow
defining concepts of the problem domain, but also
relationships among concepts.

In the research (Escalona, 2005) technique called
fuzzy thesaurus (Mirbel, 1995) (Mirbel, 1997) has
been adapted to get the benefits of the definition of a
thesaurus in NDT.

The use of this technique offers the possibility of
finding similarities and semantic conflicts in
different class diagrams with the aim to integrate
them into a unique class diagram.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

174

5 CONCLUSIONS

In Web Engineering in particular, it is very
important to carry out an exhaustive work of
elicitation of requirements that meet the needs of
end users and customers in order to ensure the
quality of the developed system.

With this aim, the technical team should be able
to identify the customers and clients’ needs, both
explicit and implicit, and their expectations about
the system under development. System requirements
are taken out from the information provided by users
and customers.

The nature of the problems associated with this
activity is primarily social and psychological rather
than technological. For example, among others,
there are communicative problems caused by using
different vocabularies, or even motivated by a
different culture, or problems due to cognitive
limitations for not knowing the problem domain.

There are several specific techniques to mitigate
these problems substantially during the different
activities related to the specification of the project
requirements. For the activity of requirements
capture, there are techniques such as interviews. For
example, Joint Application Development is a
popular exploratory technique that includes users as
active participants in the development process. Some
others are brainstorming or questionnaires.

The most common techniques for requirements
validation activity in Web Engineering are
interviews or walk-through, audits and glossaries.

The research work presented in this document is
framed in this context. Particularly, this paper
focuses on the glossary of terms technique as a
suitable technique to carry out the validation
requirements of a project developed by means of
NDT methodology.

This paper presents NDT-Glossary: A tool that
implements a set of QVT transformations to
systematically generate the glossary of terms of a
project which deals with Web information system
developed using the NDT methodology. All of it is
focused on the perspective of the paradigm of
Model- Driven Engineering.

ACKNOWLEDGEMENTS

This research has been supported by the project
QSimTest (TIN2007-67843-C06_03) and by the
Tempros project (TIN2010-20057-C03-02) of the
Ministry of Education and Science, Spain.

REFERENCES

Alcer. Federación Nacional de Asociaciones para la lucha
contra las enfermedades renales. www.alcer.org.
Accessed February 2011.

Cachero, C., 2003. Una extensión a los métodos OO para
el modelado y generación automática de interfaces
hipermediales. Thesis.

Ceri, S., Fraternali, P., Bongio, P., 2000. Web Modelling
Language (WebML): A Modelling Language for
Designing Web Sites.

Enterprise Architect, 2010. www.sparxsystems.com
Escalona, M. J., Torres, J., Mejías, M., Jurado, M. C.,

Fillerat, L. L., 2003. NDT: Navigational Development
Techniques.

Escalona, M .J., 2004. Modelos y Técnicas para la
Especificación y el Análisis de la Navegación en
Sistemas Software.

Escalona, M. J., Koch, N., 2004. Requirements
Engineering for Web Applications: a Comparative
Study. Journal of Web Engineering.

Escalona, M. J., Cavarero J. L., 2005. Techniques to
Validate Requirements in NDT.

Escalona, M. J., Aragón, G., 2008. NDT: A Model-
Driven Approach for Web Requirements.

Escalona, M. J., Gutierrez, J. J., Villadiego, D., León, A.,
Torres, A. H., 2007. Practical Experience in Web
Engineering. Advances in Information System
Development. New Methods and Practice for the
Networked Society.

Escalona, M. J., Aragón, G, 2007. NDT-Tool. A Model-
Driven tool to deal with Web Requirements.
ACM/IEE International Conference on Model Driven
Engineering Languages and Systems. USA.

Escalona, M. J., Parra, C. L., Martín, F. M., Nieto, J.,
Llergó, A., Pérez P, 2008. A practical example for
Model-Driven Web Engineering. Information System
Development. Challenges in Practice, Theory and
Education Springer Science + Business Media LCC.
Vol. 1. pp. 157-168.

Leite, J. C. S. P., 1993. Eliciting Requirements Using a
Natural Language Based Approach: The Case of the
Meeting Scheduler Problem.

Mirbel, I., 1995. A Fuzzy Thesaurus for Semantic
Integration of Schemes

Mirbel, I., 1997. Semantic Integration of Conceptual
Schemas.

OMG, 2003. MDA Guide of OMG. Version 1.0.1,
http://www.omg.org/docs/omg/03-06-01.pdf

OMG, 2008. Documents Associated with Meta Object
Facility (MOF) 2.0 Query/View/Transformation,
http://www.omg.org/spec/QVT/1.0/

Schmidt, D. C., 2006. Model-Driven Engineering.
Published by the IEEE Computer Society vol 39 nº 2.

UML, 2005. Unified Modeling Language: Superstructure.
Specification, OMG, 2005. http://www.omg.org/cgi-
bin/doc?formal/05-07

NDT-GLOSSARY - A MDE Approach for Glossary Generation

175

