
ALIGNMENT OF OPEN SOURCE TOOLS WITH THE
NEW ISO 25010 STANDARD

Focus on Maintainability

Emanuel Irrazábal, Javier Garzás
University Rey Juan Carlos, Madrid, Spain

Kybele Consulting S. L., Madrid, Spain

Esperanza Marcos
University Rey Juan Carlos, Madrid, Spain

Keywords: ISO 25010, Maintainability, Tools, Product metrics.

Abstract: Nowadays, quality and especially software product quality is becoming a hot topic in the context of
Software Engineering. In this context, measures provide the basis for the improvement and, in particular,
code measures provide direct visibility of product quality. Nevertheless, some organizations cannot afford
these tools. Several studies have revealed that applying quality models in Small and Medium-Sized
enterprises (SMEs) is a very challenging task. Related to this, open-source tools emerge as the answer to
provide with the technical support to collect the information needed to assess the quality of software assets.
In this work, we review how existing open-source tools fulfill the needs for quality measures raised when
you want to assess product quality according to the new ISO/IEC 25010 standard, which has introduced
changes in the characteristics of model quality over the previous model. We have focused on the
characteristic of maintainability because of its historical significance and its direct impact on total costs.

1 INTRODUCTION

Quality is currently recognized by companies as a
major asset to improve their competitiveness. At the
same time it has become an essential requirement to
ensure that the processes and products developed
meet the needs of the customer. Although software
quality can be described according to several points
of view, when it comes to software development,
quality is traditionally related to product quality and
process quality (Ebert 2009).

As a response, different reference models for
product quality assessment have appeared. In
particular, the International Organization for
Standardization (ISO) works in a new quality model,
the ISO/IEC 25010 (ISO/IEC JTC 1 2011) that
revises the standard ISO/IE 9126:2001, Software
engineering – Product quality (ISO 2001).

This new standard is currently published (since
March 2011) and defines two quality models: a
quality in use model and a product quality model.

Basically, the product quality model identifies
quality characteristics and how they are decomposed
into subcharacteristics. In this work we focus on one
of them: maintainability, since it has been
historically recognised as one of the most relevant
issues given its direct impact over the cost of
software development and maintenance. Previous
studies point out at maintenance as the most
expensive phase along the product lifecycle,
involving twice the development costs (Pressman,
2002); (Saiedian and Carr 1997).

Measures provide the basis for the improvement
and, in particular, code measures provide direct
visibility of product quality. Taking these
assumptions into consideration, the most suitable
approach seems to be the use of commercial tools
for the automatic acquisition of such measures
(Pagano, 2006). Nevertheless, some organizations
cannot afford these tools. Several studies have
revealed that applying quality models in Small and
Medium-Sized enterprises (SMEs) is a very
challenging task (Saiedian and Carr 1997); (Staples

111Irrazábal E., Garzás J. and Marcos E..
ALIGNMENT OF OPEN SOURCE TOOLS WITH THE NEW ISO 25010 STANDARD - Focus on Maintainability.
DOI: 10.5220/0003449201110116
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 111-116
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

et al. 2007) since it implies huge investments in
terms of money, time and human resources. This
type of organizations needs from adapted Software
Engineering practices to fit their size and the nature
of their business (Dyba, 2005).

All this given, this work reviews the technical
support that existing open-source tools for code
analysis offer to the metrics that need to be collected
to measure the maintainability subcharacteristics
specified by the ISO 25010 standard. This work is
partially carried out based on another work
(Irrazábal, 2010) made on the basis of ISO 9126
standard and taking into account only a selection of
tools found in an open source software repository.

The remainder of the paper is organized as
follows. Section 2 presents a summary of the ISO
25010 standard, section 3 presents a summary of the
basic metrics proposed by the main measurement
models that can be found currently. Section 4 details
the tools chosen to measure the basic metrics and
explains the selection criteria. In Section 5, it has
been performed a qualitative analysis of the found
tools. Finally, Section 6 summarizes the main
findings of the study.

2 THE MAINTAINABILITY
CHARACTERISTIC IN
ISO 25010

Before going deeply into this work, we first provide
with a brief overview of the maintainability
characteristic in ISO 25010 product quality model,
the importance of this characteristic on the quality in
use model and the amendments respect of the ISO
9126 maintainability characteristic.

The main objective of ISO 25010 is to provide a
framework for defining and evaluating the quality of
software. To accomplish this, the standard defines
two models.

The first is the product quality model that
provides a set of quality characteristics relevant and
related to static properties of software and dynamic
properties of the computer system. To that end, it
identifies eight characteristics that compose models
to assess product quality (listed above).

One of these is the maintainability, the most
interesting for this paper. Here we want to know
how easy it would be to modify the software
product. In some sense, it is a measure of the effort
required to correct a defect or make a change that
preserves software functionality. Obviously,
software is maintainable if it is easy to understand

and test (Heitlager, Kuipers & Visser 2007). Each
characteristic in the ISO 25010 product quality
model is composed of a set of related
subcharacteristic. In this case, the maintainability is
composed of the following four subcharacteristics:
analyzability, modifiability, testability and
reusability.

To summarize, the value for the maintainability
subcharacteristics (affecting both models described
above) should be obtained by computing a set of
measurement functions over the capability of the
software. And this capability is determined by a set
of static internal properties that can be measured.
Nevertheless, nothing it is said about how these
functions should be defined, which ones should be
the elements to compute and how the values of them
have to be gathered.

3 CHOICE OF BASIC
MAINTAINABILITY METRICS

This section summarizes the most important
measurement models because of the impossibility of
finding a single measurement model sufficiently
recognized and that details the basic recommended
set of metrics to measure maintainability.

Various measurement models have been
collected. We have added an acronym after each
reference so that it can easily be named in Table 1.
One of the studies that can be considered more
interesting in this regard is (Riaz 2009)[M1]. This is
a systematic review that collects evidence on
software maintainability prediction and metrics. The
search has been made again. Regarding the search,
string has made customizations, adding two new
words: reusability and modifiability. This has been
one of the sources that will yield maintainability
measurement models. Another source has been the
direct search in online databases like ACM Digital
Library, Springer Link, IEEE Xplore, Science
Direct, etc.

The encountered models relate a set of quality
metrics obtained from source code with the
maintainability subcharacteristics. We are not taken
into account those models directly related to the
characteristic of maintainability. This made
impossible to relate the metrics to the different
subcharacteristic. Yet, many of these metrics can be
found in Table 1, named by other models.

Main models found were as follows: Rüdiger
Lincke suggests a software quality model for the
maintainability characteristic and indicate some

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

112

basic metrics associated. (Luijten, Visser & Zaidman
2010) [M2]. In (Alshayeb 2009) [M3] reusability is
associated with a subset of metrics. Another
complete maintainability measurement model is
described in (Heitlager, Kuipers & Visser 2007)
[M4]. In this paper, authors mapped maintainability
subcharacteristics (based on ISO 9126) onto source
code properties, such as volume, complexity,
duplication, unit length and number of modules.

In (Mouchawrab, Briand & Labiche 2005) [M5]
a generic measurement framework for object-
oriented software testability has been presented.
Ioannis Samoladas presents a hierarchical quality
model that evaluates source code and community
processes (Samoladas et al. 2008) [M6].

Results are summarized in Table 1, which
presents the basic set of internal metrics that are
related to the subcharacteristics: analyzability,
modifiability, testability and reusability. It is
noteworthy to see how many of the measurement
models associated with maintainability do not
directly consider the reusability. That is why we
have opted to seek metric articles (Barnard
1998)[M7](Washizaki, Yamamoto & Fukazawa
2003)[M8] dealing directly with basic reusability
metrics.

Metrics acronyms have been added to facilitate
the construction of the subsequent tables.

4 CHOICE OF TOOLS

Given the summary of the basic metrics obtained in
the previous section, we have chosen the open-
source tools that can analyze the software product
code. Once found the open source tools related to
the static analysis of source code and related to the
maintainability we analyze the degree of
contribution of the metrics that are obtained.

It has followed the approach used in
(Wangenheim 2009), reviewing the repositories of
existing open source projects and selecting the main
repository to be examined. The search was
supplemented by two other sources. The former is
the selection of tools shown in similar studies and
recommendations derived from quality managers.
The latter source has been obtained from interviews
with a group of companies involved in a project to
improve its development process, including
measurement of indicators of the software product.

4.1 Primary Tool Selection

According to previous studies (Wangenheim 2009)
the SourceForge repository currently hosts more
open source project compared to Codeplex, Google
Code or Kenai. Then, we have identified the typical

Table 1: Summary of internal metrics related with the maintainability characteristic according to ISO 25010.

Internal metric Analyzability Modifiability Reusability Testability
Cyclomatic complexity (CC) M6 M2,M4 M3 M2,M4,M5,

M6
Lines of code (LOC) M2,M4 M3,M7 M2,M4,M5

Average size of statements (SS) M6 M2,M6 M2,M5
Comments frecuency(CF) M6 M7

Weighted methods per class (WMC) M6 M8
Number of base classes (NBC) M6

Number of unconditionals jumps (NUJ) M6 M6
Number of nested level (NNL) M6 M6

Coupling between objects (CBO) M1 M1,M6 M7, M8 M1,M5
Lack of cohesion of methods (LCOM) M1 M1,M6 M7,M8 M1,M5

Depth of inheritance tree (DIT) M1 M1,M6 M7,M8 M1,M5,M6
Directly called components (DCC) M6

Number of children (NOC) M1 M1,M6 M1,M5,
Number of exits of conditional structs (ECS) M6

Response for a class (RFC) M5,M6
Number of methods (NOM) M1 M1 M7 M1,M5
Number of attributes (NOA) M7

Unit test coverage (UTC) M4,M5
Unit test errors (UTE) M4,M5

Cyclic dependencies (CDC) M6 M2
Efferent coupling (Ce) M2
Afferent coupling, (Ca) M2
Duplicated blocks (DB) M2,M4 M2,M4

ALIGNMENT OF OPEN SOURCE TOOLS WITH THE NEW ISO 25010 STANDARD - Focus on Maintainability

113

words which conduct the search in the repository
and obtain the measurement tools most valued by
users. According to the reading of the ISO 25010
standard, a set of keywords used for searching the
Web site www.sourceforge.net has been adopted.
Tools have been identified associated with the
languages. NET (VB.NET and C # adding), Java and
C / C + +, since these are the most popular
development frameworks according to the TIOBE
Programming Community Index, updated in January
2011. To complete the previous selection, we
include additional groups of tools. First, we consider
also those freeware tools for .NET static code
analysis boosted by Microsoft (FxCop and
StyleCop). Even so, it is clear that they are not
currently used separately and that they are already
included in the .Net IDE.

Coupling and cyclomatic complexity have been
widely acknowledged as the most valuable metrics
to assess maintainability of object-oriented systems
(Li, S. 1993). Thus, we were also interested in
reviewing open-source projects that support the
extraction of such metrics. Although some of the
previous tools are able of returning the values for
such metrics, they are not focused on analyzing
coupling and cyclomatic complexity. In particular,
we looked at JavaNCSS y JDepend as the most
representative. However, we could have included
any other similar tools instead of these ones.

Finally, we include other free tools analyzed in
other studies (Lincke, Lundberg & Löwe
2008)(Plösch et al. 2009). Table 3 lists all tools
selected and it specifies the basic metrics that can be
obtained on this basis. In this way, with these open
source tools, companies (especially SMEs) can
measure aspects of maintainability according to ISO
25010.

4.2 Assessments by Experts

Between the second half of 2009 and during 2010,
we have conducted initial assessments in the
development process in more than 20 software
companies. The aim of these reviews has been
providing companies with a snapshot of the current
status of their processes, practices and tools used in
the development process. At the end of the
evaluations we have informed the companies about
the missing features and activities needed to improve
its development process.

Quality managers and software developers, as
part of the company evaluation, have been
interviewed to collect information about code static
analysis and testing tools used on its projects.

Results show that there is no extensive use of this
kind of tools. The data collection has taken into
account the tool list presented in Table 3.

According to the obtained results, there are two
main types of tools that companies implement.

First, those associated to the analysis of the
source code and the search for potential problems
(PMD, FxCop). However, the style analysis tools
closely related to the ones mentioned above are not
used widespread. This is due to the big amount of
default rules of this type of tools. That forces
companies to invest a great amount of time and
resources tailoring their own rule set. Likewise, did
not have a standard code convention manual, what
made the successful implementation of this practice
very complex (even in an automated way).

The second type of more used tools has been
those associated to unit tests. However, unit test
practice was not completely widely used. Only some
specific tests were executed, according to some
client needs. Although coverage was taken into
account, neither a deep analysis was applied nor any
decisions were taken.

5 QUALITATIVE ALIGNMENT
OF THE TOOLS

This section aims at putting forward clarifications
and contributions from some of the tools mentioned
in the previous section. To this end it is concluded
that some of the tools and metrics could measure
additional subcharacteristics already discussed.

5.1 Java NCSS

JavaNCSS supports tree different measures gathered
over JAVA source code, namely the Non-
Commenting Source Statements (NCSS), the Lines
Of Code (LOC) and the Cyclomatic Complexity
(CC). We can look at these measures as primary
support for all subcharacteristics. So this is an
indispensable tool for measurement of
maintainability. NCSS provides a good indicator on
how easy it would be to understand or follow the
source code under evaluation. As well, NCSS is
related with testability since the number of non-
commented statements can be used as a clue towards
understanding if the code is easy to test. On the other
hand, the relationship of analyzability with CC is out
of doubt. In fact, the number of cycles has been
traditionally accepted as a measure to assess the
complexity of any software component. Therefore,

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

114

the lower the value of CC, the higher the
analyzability of the component (Heitlager, Kuipers
& Visser 2007).

5.2 PMD

We have analysed how the different rulesets that
drive the static analysis that PMD carries out are
aligned with ISO 25010 maintainability
subcharacteristics. This analysis is based on the
study of the content of each rule and our own
experience using the tool. Just 5 to 10 per cent of
the possible violations are directly related with
modifiability or testability, we have considered that
the tool does present partial alignment with the
corresponding subcharacteristic.

In particular, by studying the PMD
documentation, we can argue that 16 out of the 20
rulesets are directly related with evaluating the
clarity of the code under review. Thus, we can state
that PMD is clearly aligned with analyzability.

Finally, one the rulesset is directly related with
the testability subcharacteristic. In particular the one
that deals with the different problems that can occur
with JUnit tests

5.3 Junit, CPPUnit, NUnit and EMMA

Here we group together the tools focused on testing.
In particular, Junit, CPPUnit and NUnit perform unit
tests while EMMA focuses in code coverage.

Obviously, being focused on testing, all these
tools are fully aligned with the testability
subcharacteristic. Furthermore, since unit tests have
been traditionally acknowledged as an efficient way
of documenting source code and assessing its level
of stability (Heitlager, Kuipers & Visser 2007), we
can state that these tools are partially aligned with
analyzability and modifiability.

6 CONCLUSIONS

After analyzing the results it has been concluded that
current open source tools serve as a good starting
point towards achieving the indicators needed to
support different measurement model that
implement the product quality model according to
the new ISO 25010 standard. In fact these tools,
especially their implementations as IDE plugins can
improve maintenance task.

Not all tools obtain the same results (Lincke,
Lundberg & Löwe 2008) and are equally reliable in
terms of false positives and false negatives when

looking for violations in the source code (Plösch et
al. 2009), making indispensable the task of tool
selection and analysis. It stands for CodePro
AnalytiX tool, which assesses source code written in
Java, as one of the most complete in terms of
number of basic metrics obtained. Still, it is
advisable to check before accuracy of these tools in
real cases, especially those that perform more
complex calculations.

Maintainability is important both from the point
of view of the software product and maintenance
tasks during the development phase. Even though,
tools that assist diagnosis are not used. However,
companies carry out maintenance tasks based on
developers’ experience (whenever there is time).

As we have tried to demonstrate in this work,
open source tools have the capacity to implement
maintainability measurement models. Therefore,
these tools will help to the software product
maintenance.

ACKNOWLEDGEMENTS

This work has been partially funded by the Centre
for Technological-Industrial Development (CDTI)
(IDI-20090175), dependent on the Spanish Ministry
of Science and Innovation and the MODEL-CAOS
project (TIN2008-03582/TIN) financed by the
Spanish Ministry of Education and Science
(TIN2005-00010/).

REFERENCES

Alshayeb, M. 2009, "Empirical investigation of
refactoring effect on software quality", Information
and Software Technology, vol. 51, no. 9, pp. 1319-
1326.

Barnard, J. 1998, "A new reusability metric for object-
oriented software", Software Quality Journal, vol. 7,
no. 1, pp. 35-50.

Dyba, T. 2005, "An empirical investigation of the key
factors for success in software process improvement",
Software Engineering, IEEE Transactions on, vol. 31,
no. 5, pp. 410-424.

Ebert, C. 2009, "Guest Editor's Introduction: How Open
Source Tools Can Benefit Industry", IEEE Software,
vol. 26, pp. 50-51.

Feitelson, D. G., Heller, G. Z. & Schach, S. R. 2006, "An
empirically-based criterion for determining the success
of an open-source project", Software Engineering
Conference, 2006. Australian,IEEE, pp. 6.

Heitlager, I., Kuipers, T. & Visser, J. 2007, "A Practical

ALIGNMENT OF OPEN SOURCE TOOLS WITH THE NEW ISO 25010 STANDARD - Focus on Maintainability

115

Model for Measuring Maintainability", Quality of
Information and Communications Technology, 2007.
QUATIC 2007.IEEE, Lisbon, pp. 30-39.

Irrazábal E, Vara JM, Garzás J, Marcos E. 2010,.
"Alignment of Open Source Tools with ISO norms for
software product quality", Software Measurement
European Forum (SMEF), Rom - Italy, pp. NA.

ISO 2001, ISO/IEC Standard 9126 Software Product
Evaluation–Quality Characteristics and Guidelines
for their Use. International Organization for
Standarization.

ISO/IEC JTC 1 2011, ISO/IEC FDIS 25010 Software and
system engineering – Software product Quality
Requirements and Evaluation (SQuaRE) – Quality
model and guide. International Organization for
Standarization.

Lincke, R., Lundberg, J. & Löwe, W. 2008, "Comparing
software metrics tools", Proceedings of the 2008
international symposium on Software testing and
analysis, ACM, pp. 131.

Luijten, B., Visser, J. & Zaidman, A. 2010, "Faster defect
resolution with higher technical quality of software",
Proc. of the 4th International Workshop on Software
Quality and Maintainability (SQM’10), pp. NA.

Mouchawrab, S., Briand, L.C. & Labiche, Y. 2005, "A
measurement framework for object-oriented software
testability", Information and Software Technology,
vol. 47, no. 15, pp. 979-997.

Pagano, J. 2006. "Benefits and challenges of developing a
public sector metrics program using commercial
tools". In Proceedings of the 1st international
workshop on Contextualized attention metadata:
collecting, managing and exploiting of rich usage
information (CAMA '06). ACM, New York, NY, USA,
5-8.

Plösch, R., Mayr, A., Pomberger, G. & Saft, M. 2009, "An
Approach for a Method and a Tool Supporting the
Evaluation of the Quality of Static Code Analysis
Tools", Proceedings of SQMB 2009 Workshop, held in
conjunction with SE 2009 conference, March 3rd, pp.
NA.

Pressman, R. 2002, Ingeniería del Software: un enfoque
práctico, McGraw-Hill, Madrid.

Riaz, M., Mendes, E. and Tempero, E. 2009, "A
Systematic Review of Software Maintainability
Prediction and Metrics", 3rd International Symposium
on Empirical Software Engineering and Measurement
(ESEM 2009), pp. 367 - 377.

Saiedian, H. and Carr, N. 1997. "Characterizing a software
process maturity model for small organizations".
SIGICE Bull. Vol. 23, no. 1, pp. 2-11.

Samoladas, I., Gousios, G., Spinellis, D. & Stamelos, I.
2008, "The SQO-OSS quality model: Measurement
based open source software evaluation", Open Source
Development, Communities and Quality, Vol. 275, pp.
237-248.

Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P.
& Murphy, R. 2007, "An exploratory study of why
organizations do not adopt CMMI", Journal of
Systems and Software, vol. 80, no. 6, pp. 883-895.

Wangenheim, C. G. v. 2009, "Enhancing Open Source
Software in Alignment with CMMI-DEV". IEEE
Softw. Vol. 26, no 2, pp. 59-67.

Washizaki, H., Yamamoto, H. & Fukazawa, Y. 2003, "A
metrics suite for measuring reusability of software
components", Software Metrics Symposium, 2003.
Proceedings. Ninth International, ed. IEEE Computer
Society, IEEE, Sydney, Australia, pp. 211.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

116

