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Abstract: Genetic algorithms work on randomly generated populations, which are refined toward the desired optima.
The refinement process is carried out mainly by genetic operators. Most typical genetic operators are
crossover and mutation. However, experience has proved that these operators in their classical form are not
capable of refining the population efficiently enough. Moreover, due to lack of sufficient variation in the 
population, the genetic algorithm might stagnate at local optimum points. In this work a new dynamic
mutation operator with variable mutation rate is proposed. This operator does not require any pre-fixed 
parameter. It dynamically takes into account the size (number of bits) of the individual during runtime and 
replaces a randomly selected section of the individual by a randomly generated bit string of the same size.
All the bits of the randomly generated string are not necessarily different from bits of the selected section 
from the individual. Experimentation with 17 test functions, 34 test cases and 1020 test runs proved the
superiority of the proposed dynamic mutation operator over single-point mutation operator with 1%, 5% and 
8% mutation rates and the multipoint mutation operator with 5%, 8% and 15% mutation rates. 

1 INTRODUCTION 

Evolutionary algorithms are heuristic algorithms, 
which imitate the natural evolutionary process and 
try to build better solutions by gradually improving 
present solution candidates. It is generally accepted 
that any evolutionary algorithm must have five basic 
components: 1) a genetic representation of a number 
of solutions to the problem, 2) a way to create an 
initial population of solutions, 3) an evaluation 
function for rating solutions in terms of their 
“fitness”, 4) “genetic” operators that alter the genetic 
composition of offspring during reproduction, 5) 
values for the parameters, e.g. population size, 
probabilities of applying genetic operators 
(Michalewicz, 1996). 

A genetic algorithm is an evolutionary algorithm, 
which starts the solution process by randomly 
generating the initial population and then refining 
the present solutions through natural like operators, 
like crossover and mutation. The behaviour of the 
genetic algorithm can be adjusted by parameters, 
like the size of the initial population, the number of 
times genetic operators are applied and how these 
genetic operators are implemented. Deciding on the 

best possible parameter values over the genetic run 
is a challenging task, which has made researchers 
busy with developing even better and efficient 
techniques than the existing ones.   

2 GENETIC ALGORITHM 

Most often genetic algorithms (GAs) have at least 
the following elements in common: populations of 
chromosomes, selection according to fitness, 
crossover to produce new offspring, and random 
mutation of new offspring.  
A simple GA works as follows: 1) A population of 
n  l -bit strings (chromosomes) is randomly 
generated, 2) the fitness )(xf  of each chromosome 
x  in the population is calculated, 3) chromosomes 
are selected to go through crossover and mutation 
operators with cp  and mp  probabilities respectively, 
4) the old population is replaced by the new one, 5) 
the process is continued until the termination 
conditions are met. 

However, more sophisticated genetic algorithms 
typically include other intelligent operators, which 
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apply to the specific problem. In addition, the whole 
algorithm is normally implemented in a novel way 
with user-defined features while for instance 
measuring and controlling parameters, which affect 
the behaviour of the algorithm.  

2.1 Genetic Operators 

For any evolutionary computation technique, the 
representation of an individual in the population and 
the set of operators used to alter its genetic code 
constitute probably the two most important 
components of the system. Therefore, an appropriate 
representation (encoding) of problem variables must 
be chosen along with the appropriate evolutionary 
computation operators. The reverse is also true; 
operators must match the representation. Data might 
be represented in different formats: binary strings, 
real-valued vectors, permutations, finite-state 
machines, parse trees and so on. Decision on what 
genetic operators to use greatly depends on the 
encoding strategy of the GA. For each 
representation, several operators might be employed 
(Michalewicz, 2000). The most commonly used 
genetic operators are crossover and mutation. These 
operators are implemented in different ways for 
binary and real-valued representations. In the 
following, these operators are described in more 
details.  

2.1.1 Crossover 

Crossover is the main distinguishing feature of a 
GA. The simplest form of crossover is single-point: 
a single crossover position is chosen randomly and 
the parts of the two parents after the crossover 
position are exchanged to form two new individuals 
(offspring). The idea is to recombine building blocks 
(schemas) on different strings. However, single-
point crossover has some shortcomings. For 
instance, segments exchanged in the single-point 
crossover always contain the endpoints of the 
strings; it treats endpoints preferentially, and cannot 
combine all possible schemas. For example, it 
cannot combine instances of 11*****1 and 
****11** to form an instance of 11***11*(Mitchell, 
1998). Moreover, the single-point crossover suffers 
from “positional bias” (Mitchell, 1998): the location 
of the bits in the chromosome determines the 
schemas that can be created or destroyed by 
crossover.  
Consequently, schemas with long defining lengths 
are likely to be destroyed under single-point 
crossover. The assumption in single-point crossover 

is that short, low-order schemas are the functional 
building blocks of strings, but the problem is that the 
optimal ordering of bits is not known in advance 
(Mitchell, 1998). Moreover, there may not be any 
way to put all functionally related bits close together 
on a string, since some particular bits might be 
crucial in more than one schema. This might happen 
if for instance in one schema the bit value of a locus 
is 0 and in the other schema the bit value of the same 
locus is 1. Furthermore, the tendency of single-point 
crossover to keep short schemas intact can lead to 
the preservation of so-called hitchhiker bits. These 
are bits that are not part of a desired schema, but by 
being close on the string, hitchhike along with the 
reproduced beneficial schema (Mitchell, 1998). 
In two-point crossover, two positions are chosen at 
random and the segments between them are 
exchanged. Two-point crossover reduces positional 
bias and endpoint effect, it is less likely to disrupt 
schemas with large defining lengths, and it can 
combine more schemas than single-point crossover 
(Mitchell, 1998). Two-point crossover has also its 
own shortcomings; it cannot combine all schemas. 
Multipoint-crossover has also been implemented, 
e.g. in one method, the number of crossover points 
for each parent is chosen from a Poisson distribution 
whose mean is a function of the length of the 
chromosome. Another method of implementing 
multipoint-crossover is the “parameterized uniform 
crossover” in which each bit is exchanged with 
probability p , typically 8.05.0 ≤≤ p  (Mitchell, 
1998). In parameterized uniform crossover, any 
schemas contained at different positions in the 
parents can potentially be recombined in the 
offspring; there is no positional bias. This implies 
that uniform crossover can be highly disruptive of 
any schema and may prevent coadapted alleles from 
ever forming in the population (Mitchell, 1998). 

There has been some successful experimentation 
with a crossover method, which adapts the 
distribution of its crossover points by the same 
process of survival of the fittest and recombination 
(Michalewicz, 1996). This was done by inserting 
into the string representation special marks, which 
keep track of the sites in the string where crossover 
occurred. The hope was that if a particular site 
produces poor offspring, the site dies off and vice 
versa. 

The one-point and uniform crossover methods 
have been combined by some researchers through 
extending a chromosomal representation by an 
additional bit. There has also been some 
experimentation with other crossovers: segmented 
crossover and shuffle crossover (Eshelman et al., 
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1991; Michalewicz, 1996). Segmented crossover, a 
variant of the multipoint, allows the number of 
crossover points to vary. The fixed number of 
crossover points and segments (obtained after 
dividing a chromosome into pieces on crossover 
points) are replaced by a segment switch rate, which 
specifies the probability that a segment will end at 
any point in the string. The shuffle crossover is an 
auxiliary mechanism, which is independent of the 
number of the crossover points. It 1) randomly 
shuffles the bit positions of the two strings in 
tandem, 2) exchanges segments between crossover 
points, and 3) unshuffles the string (Michalewicz, 
1996). In gene pool recombination, genes are 
randomly picked from the gene pool defined by the 
selected parents. 

There is no definite guidance on when to use 
which variant of crossover. The success or failure of 
a particular crossover operator depends on the 
particular fitness function, encoding, and other 
details of GA. Actually, it is a very important open 
problem to fully understand interactions between 
particular fitness function, encoding, crossover and 
other details of a GA. Commonly, either two-point 
crossover or parameterized uniform crossover has 
been used with the probability of occurrence 

8.07.0 −≈p  (Mitchell, 1998). 
Generally, it is assumed that crossover is able to 

recombine highly fit schemas. However, there is 
even some doubt on the usefulness of crossover, e.g. 
in schema analysis of GA, crossover might be 
considered as a “macro-mutation” operator that 
simply allows for large jumps in the search space 
(Mitchell, 1998). 

2.1.2 Mutation 

The common mutation operator used in canonical 
genetic algorithms to manipulate binary strings 

}1,0{),...( 1 =∈= Iaaa  of fixed length  was 
originally introduced by Holland (Holland, 1975) for 
general finite individual spaces AAI ...1 ×= , where 

},...,{
1 lkiiiA αα= . By this definition, the mutation 

operator proceeds by: 

i. determining the position }),...,1{(,...,1 liii jh ∈  to 
undergo mutation by a uniform random 
choice, where each position has the same 
small probability mp  of undergoing mutation, 
independently of what happens at other 
position  

ii. forming the new vector 

),...,,,...,,,,...,( 11111111 aiaiaiaaiaaaia
hhhii +−+− ′′=′ , 

where ii Aa ∈′ is drawn uniformly at random 

from the set of admissible values at position 

i . 

The original value ia  at a position undergoing 
mutation is not excluded from the random choice of 

ii Aa ∈′ . This implies that although the position is 
chosen for mutation, the corresponding value might 
not change at all (Bäck et al., 2000).  

Mutation rate is usually very small, like 0.001 
(Mitchell, 1998). A good starting point for the bit-
flip mutation operation in binary encoding is 

LPm
1= , where L  is the length of the chromosome 

(Mühlenbein, 1992). Since L
1  corresponds to 

flipping one bit per genome on average, it is used as 
a lower bound for mutation rate. A mutation rate of 
range [ ]01.0,005.0∈mP  is recommended for binary 
encoding (Ursem, 2003). For real-value encoding 
the mutation rate is usually [ ]9.0,6.0∈mP  and the 
crossover rate is [ ]0.1,7.0∈mP  (Ursem, 2003). 

Crossover is commonly viewed as the major 
instrument of variation and innovation in GAs, with 
mutation, playing a background role, insuring the 
population against permanent fixation at any 
particular locus (Mitchell, 1998; Bäck et al., 2000). 
Mutation and crossover have the same ability for 
“disruption” of existing schemas, but crossover is a 
more robust constructor of new schemas (Spears, 
1993; Mitchell, 1998). The power of mutation is 
claimed to be underestimated in traditional GA, 
since experimentation has shown that in many cases 
a hill-climbing strategy works better than a GA with 
crossover (Mühlenbein, 1992; Mitchell, 1998). 

While recombination involves more than one 
parent, mutation generally refers to the creation of a 
new solution from one and only one parent. Given a 
real-valued representation where each element in a 
population is an n -dimensional vector nx ℜ∈ , there 
are many methods for creating new offspring using 
mutation. The general form of mutation can be 
written as: 

)(xmx =′  (1) 

where x  is the parent vector, m  is the mutation 
function and x′  is the resulting offspring vector. The 
more common form of mutation generated offspring 
vector: 
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Mxx +=′  (2) 

where the mutation M  is a random variable. M  has 
often zero mean such that 

xxE =′)(  (3) 

the expected difference between the real values of a 
parent and its offspring is zero (Bäck et al., 2000). 

Some forms of evolutionary algorithms apply 
mutation operators to a population of strings without 
using recombination, while other algorithms may 
combine the use of mutation with recombination. 
Any form of mutation applied to a permutation must 
yield a string, which also presents a permutation. 
Most mutation operators for permutations are related 
to operators, which have also been used in 
neighbourhood local search strategies (Whitley, 
2000). Some other variations of the mutation 
operator for more specific problems have been 
introduced in (Bäck et al., 2000). Some new 
methods and techniques for applying crossover and 
mutation operators have also been presented in 
(Moghadampour, 2006).  

It is not a choice between crossover and mutation 
but rather the balance among crossover, mutation, 
selection, details of fitness function and the 
encoding. Moreover, the relative usefulness of 
crossover and mutation change over the course of a 
run. However, all these remain to be elucidated 
precisely (Mitchell, 1998). 

2.1.3 Other Operators and Mating 
Strategies 

In addition to common crossover and mutation there 
are some other operators used in GAs including 
inversion, gene doubling and several operators for 
preserving diversity in the population. For instance, 
a “crowding” operator has been used in (De Jong, 
1975; Mitchell, 1998) to prevent too many similar 
individuals (“crowds”) from being in the population 
at the same time. This operator replaces an existing 
individual by a newly formed and most similar 
offspring. In (Mengshoel et al., 2008) a probabilistic 
crowding niching algorithm in which subpopulations 
are maintained reliably, is presented. It is argued that 
like the closely related deterministic crowding 
approach, probabilistic crowding is fast, simple, and 
requires no parameters beyond those of classical 
genetic algorithms. 

The same result can be accomplished by using an 
explicit “fitness sharing” function (Mitchell, 1998), 
whose idea is to decrease each individual’s fitness 
by an explicit increasing function of the presence of 
other similar population members. In some cases, 

this operator induces appropriate “speciation”, 
allowing the population members to converge on 
several peaks in the fitness landscape (Mitchell, 
1998). However, the same effect could be obtained 
without the presence of an explicit sharing function 
(Smith et al., 1993; Mitchell, 1998). 

Diversity in the population can also be promoted 
by putting restrictions on mating. For instance, 
distinct “species” tend to be formed if only 
sufficiently similar individuals are allowed to mate 
(Mitchell, 1998). Another attempt to keep the entire 
population as diverse as possible is disallowing 
mating between too similar individuals, “incest” 
(Eshelman et al., 1991; Mitchell, 1998). Another 
solution is to use a “sexual selection” procedure; 
allowing mating only between individuals having 
the same “mating tags” (parts of the chromosome 
that identify prospective mates to one another). 
These tags, in principle, would also evolve to 
implement appropriate restrictions on new 
prospective mates (Holland, 1975). 

Another solution is to restrict mating spatially. 
The population evolves on a spatial lattice, and 
individuals are likely to mate only with individuals 
in their spatial neighborhoods. Such a scheme would 
help preserve diversity by maintaining spatially 
isolated species, with innovations largely occurring 
at the boundaries between species (Mitchell, 1998). 

The efficiency of genetic algorithms has also 
been tried by imposing adaptively, where the 
algorithm operators are controlled dynamically 
during runtime (Eiben et al. 2008). These methods 
can be categorized as deterministic, adaptive, and 
self-adaptive methods (Eiben & Smitt, 2007; Eiben 
et al. 2008). Adaptive methods adjust the 
parameters’ values during runtime based on 
feedback from the algorithm (Eiben et al. 2008), 
which are mostly based on the quality of the 
solutions or speed of the algorithm (Smit et al., 
2009). 

3 THE RANDOM BUILDING 
BLOCK OPERATOR 

The random building block (RBB) operator is a new 
self-adaptive operator proposed here. During the 
classical crossover operation, building blocks of two 
or more individuals of the population are exchanged 
in the hope that a better building block from one 
individual will replace a worse building block in the 
other individual and improve the individual’s fitness 
value. However, the random building block operator 
involves only one individual. The random building 

RANDOM BUILDING BLOCK OPERATOR FOR GENETIC ALGORITHMS

57



 

block operator resembles more the multipoint 
mutation operator, but it lacks the frustrating 
complexity of such an operator. The reason for this 
is that the random building block operator does not 
require any pre-defined parameter value and it 
automatically takes into account the size (number of 
bits) of the individual at hand. In practice, the 
random building block operator selects a section of 
random length from the individual at hand and 
replaces it with a randomly produced building block 
of the same length. 

This operator can help breaking the possible 
deadlock when the classic crossover operator fails to 
improve individuals. It can also refresh the 
population by injecting better building blocks into 
individuals, which are not currently found from the 
population. Figure 1 describes the random building 
block operator. 

 
Figure 1: The random building block operator. A random 
building block is generated and copied to an individual to 
produce a new offspring. 

This operation is implemented in the following 
order: 1) for each individual ind  two crossover 
points 1cp   and 2cp  are randomly selected, 2) a 
random bit string bstr  of length  12 cpcpl −=  is 
generated, and 3) bits between the crossover points 
on the individual ind  are replaced by the bit string 
bstr . The following is the pseudo code for the 
random building block operator. 
 
procedure RandomBuildingBlock 
begin 

select individual from the population 
select crossover point 

[ ))(,01 individuallengthcp ∈  
select crossover point 

[ ))(,02 individuallengthcp ∈  so that 12 cpcp ≠ and 

12 cpcp >  
generate random bit string rbs of 
length 12 cpcpl −=  

replace bits between 1cp  and 2cp  on  
the individual with rbs 

Figure 2: The pseudo code for the random building block 
(RBB) operator. 

3.1 Survivor Selection 

After each operator application, new offspring are 
evaluated and compared to the population 
individuals. Newly generated offspring will replace 
the worst individual in the population if they are 
better than the worst individual. Therefore, the 
algorithm is a steady state genetic algorithm. 

4 EXPERIMENTATION 

The random building block operator was applied as 
part of a genetic algorithm to solve the following 
minimization problems: 
The Ackley’s function: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

−−+
n

i
ix

n

n

i
ix

n
e

1
).2cos(1exp

1
212.0exp2020 π , 

where 768.32768.32 ≤≤− ix . 

The Colville’s function: 
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The Griewank’s function F1: 

2
1

1

1 100( 100) cos( ) 1
4000

n
n i

i i
i

xx
i=

=

−
− − +∑ ∏ , 

where 
i-600 x 600≤ ≤ . 

The Rastrigin’s function: 

2

1

( 10cos(2 ) 10)
n

i i
i

x xπ
=

− +∑ , 

where 
i-5.12 x 5.12≤ ≤ . 

The Schaffer’s function F6: 

2 2 2
1 2

 22 2
1 2

sin 0.5
0.5

1.0 0.001( )

x x

x x

+ −
+
⎡ ⎤+ +⎣ ⎦

, 

where 100100 ≤≤− ix . 

For multidimensional problems with optional 
number of dimensions ( n ), the algorithm was tested 
for 50 ,10 ,5 3, ,2 ,1=n . 
The efficiency of the random building block operator 
and three versions of single-point mutation operator 
(with 1%, 5% and 8% mutation rates) and three 
versions of multipoint mutation operator (with 5%, 
8% and 15% mutation rates) in generating better 
fitness values were tested separately 30 times for 
each test case. The population size was set to 12 and 
the maximum number of function evaluations for 
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each run was set to 10,000. During each run the best 
fitness value achieved during each generation was 
recorded. This made it possible to figure out when 
the best fitness value of the run was actually found. 
Later at the end of 30 runs for each test case the 
average of best fitness values and required function 
evaluations were calculated for comparison. In the 
following test results for comparing the random 
building block operator with different versions of 
mutation operator are reported. 

Table 1 summarizes test results for comparing 
single-point mutation operator with the random 
building block operator on Ackley’s and Colville’s 
functions. In the table the average of best fitness 
values and required function evaluations by single-
point mutation operator (with 1%, 5% and 8% 
mutation rates) and the building block operator are 
reported. 

Table 1: Comparison of the average of the best fitness 
values achieved for Ackley’s (A1-A50) and Colville’s 
(C4) functions by single-point mutation (SPM) operator 
with 1%, 5% and 8% mutation rates and the random 
building block (RBB) operator. In the table Fn. stands for 
function, F. for fitness and FE. for function evaluations. 

Fn. Operator 

 SPM (1%) SPM (5%) SPM  (8%) RBB 

 F. FE. F. FE. F. FE. F. FE. 

A1 0.5 2097 0.2 1410 0.5 1927 0.0 889 

A2 0.8 4399 1.5 5992 0.4 2896 0.0 4278 

A3 1.5 6809 1.2 6275 1.2 6326 0.0 9400 

A5 1.8 9127 1.5 8393 1.8 8863 0.0 10008 

A10 2.3 10020 2.5 10146 2.0 10034 2.7 10008 

A50 8.0 10146 7.6 10833 6.4 11550 16.9 10008 

C4 103.9 10004 35.9 9793 26.7 9648 2.8 7225 

Comparing results in Table 1 indicates that the 
random building block operator has produced better 
results than different versions of the single-point 
mutation operator in 71% of test cases. In 14% of 
test cases for Ackely’s function with 10 variables the 
results were almost equal. But, the random building 
block operator outperformed overwhelmingly on 
Colville’s function. Figure 3 demonstrates 
differences between average fitness values achieved 
by different operators. 
In many cases it took the random building block 
operator less function evaluations to achieve better 
fitness values and in some other cases it achieved 
better fitness values than different versions of the 
single-point mutation operator although more 
function evaluations were required on average. 
Figure 4 illustrates differences in the average 
numbers of function evaluations. 

 
Figure 3: Comparison of average fitness values achieved 
for Ackley’s (A1-A50) and Colville’s (C4) functions by 
the single-point mutation operator (with 1%, 5% and 8% 
mutation rates) and the random building block operator. 
The optimal fitness values for all functions are zero. 

 
Figure 4: Comparison of the average numbers of function 
evaluations needed by each operator to achieve the best 
fitness values for Ackley’s (A1-A50) and Colville’s (C4) 
functions. 

The performance of the random building block 
operator against the single-point mutation operator 
was also tested on the Griewank’s, Rastrigin’s and 
Schaffer’s F6 functions. Table 2 summarizes the test 
results. 

Table 2: Comparison of the average of the best fitness 
values achieved for Griewank’s (G1-G50), Rastrigin’s 
(R1-R50) and Schaffer’s F6 (S2 functions by single-point 
mutation (SPM) operator with 1%, 5% and 8% mutation 
rates and the random building block (RBB) operator. In 
the table Fn. stands for function, F. for fitness and FE. for 
function evaluations. 

Fn Operator 
 SPM (1%) SPM (5%) SPM (8%) RBB
 F. FE. F. FE. F. FE. F. FE. 

G1 0.0 7566 0.0 6514 0.0 7552.4 0.0 2273 
G2 0.6 10005 0.7 10028 0.7 9757 0.0 8771 
G3 2.1 10008 2.2 10028 2.0 10015 0.0 10008 
G5 3.8 10020 4.2 10015 3.8 10130 0.1 10008 
G10 10.2 10028 10.4 10069 7.1 10008 1.5 10008 
G50 62 10069 63 10234 56 11455 237 10008 
R1 0.8 6570 1.3 7754 0.7 6200 0.0 431 
R2 3.2 9732 3.4 9765 3.7 9473 0.0 2506 
R3 7.7 10003 6.3 10029 6.2 9513 0.0 6500 
R5 11.4 10000 11.8 10029 10.4 10188 0.0 10008 
R10 24.4 10056 25.3 10139 24.6 10166 5.4 10008 
R50 156 10139 157 10111 141 11549 313 10008 
S2 0.2 8874 0.1 9218 0.2 9209 0.0 9222 
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Studying data presented in Table 2 proves that the 
random building block operator has been able to 
produce significantly better results and in 85% of 
test cases. Figure 5 illustrates the same results. 

 
Figure 5: Comparison of the average of the best fitness 
values achieved for Griewank’s (G1-G50) and Rastrigin’s 
(R1-R50) functions with different variable numbers and 
Schaffer’s F6 (S2) function by the single-point mutation 
operator with 1%, 5% and 8% mutation rates (SPM1%, 
SPM5% and SPM8%) and the random building block 
(RBB) operator. The optimal fitness values for all 
functions are zero. 

The random building block operator achieved better 
results in less function evaluations on average. 
Figure 6 demonstrates differences in the average 
numbers of function evaluations.  

 
Figure 6: Comparison of the average numbers of function 
evaluations needed on average by each operator to achieve 
the best fitness value for Griewank’s (G1-G50), 
Rastrigin’s (R1-R50) and Schaffer’s F6 (S2) functions. 

The performance of the random building block 
operator was also compared against the multipoint 
mutation operator in which several points of the 
individual were mutated during each mutation 
operator. The number of points to be mutated during 
each mutation operation was set to 2 times the 
number of variables in the problem. This means that 
if a problem had 5 variables, during each mutation 
cycle, 10 points of the individual were randomly 
selected to be mutated. Clearly, the total number of 
mutation points was determined by the mutation 
rate, which was 5%, 8% and 15% for different 
experimentations. 

Table 3: Comparison of best fitness values achieved for 
Ackley’s (A1-A50) and Colville’s (C4) functions by 
multipoint mutation (MPM) operator with 5%, 8% and 
15% mutation rates and the random building block (RBB) 
operator. In the table Fn. stands for function, F. for fitness 
and FE. for function evaluations.  

Fn. Operator 

 MPM (5%) MPM (8%) MPM (15%) RBB 

 F. FE. F. FE. F. FE. F. FE. 

A1 0.0 6505 0.0 5249 0.0 4966 0.0 889 

A2 0.0 10008 0.0 9817 0.0 9929 0.0 4278 

A3 0.0 10008 0.0 10004 0.0 10032 0.0 9400 

A5 1.1 10008 1.1 10004 1.3 10032 0.0 10008 

A10 7.2 10008 6.9 10004 7.1 10032 2.7 10008 

A50 19.2 10008 19.2 10004 19.2 10032 16.9 10008 

C4 69.9 10000 43.1 9793 30.6 9648 2.8 7225 

Comparing results reported in Table 3 proves that 
the fitness values achieved by the building block 
operator have been clearly better than the ones 
achieved by different versions of the multipoint 
mutation operator in all cases. Differences between 
the average fitness values achieved for Colville 
function by the random building block and different 
versions of multipoint mutation operator are even 
more substantial. The random building block 
operator achieved an average fitness value of 2.7833 
within average 7225 function evaluations, while the 
multipoint mutation operator with 15% mutation rate 
has achieved its best average fitness value of 26.66 
within up to 9648 function evaluations. Figure 7 
demonstrates differences between average fitness 
values achieved by different operators.  

 
Figure 7: Comparison of average fitness values achieved 
for Ackley’s (A1-A50) and Colville’s (C4) functions by 
the multipoint mutation (with 5%, 8% and 15% mutation 
rates) and the random building block operator. The 
optimal fitness values for all functions are zero. 

Moreover, the best fitness values have been 
achieved within less function evaluations with the 
random building operator. Figure 8 depicts the 
summary  of  differences in the number of function 
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evaluations. 

 
Figure 8: Comparison of the average numbers of function 
evaluations needed by each operator to achieve the best 
fitness values for Ackley’s (A1-A50) and Colville’s (C4) 
functions. 

As it can clearly be seen from Figure 8, the random 
building block operator has in many cases needed 
much less function evaluations to achieve the best 
fitness values. The performance of the random 
building block operator against the multipoint 
mutation operator was also tested on Griewank’s, 
Rastrigin’s and Schaffer’s F6 functions. Table 4 
summarizes the test results. 

Table 4: Comparison of the average of best fitness values 
achieved for Griewank’s (G1-G50), Rastrigin’s (R1-R50) 
and Schaffer’s F6 (S2) functions by multipoint mutation 
(MPM) operator with 5%, 8% and 15% mutation rates and 
the random building block (RBB) operator. In the table 
Fn. stands for function, F. for fitness and FE. for function 
evaluations. 

Fn. Operator 

 MPM (5%) MPM (8%) MPM (15%) RBB 

 F. FE. F. FE. F. FE. F. FE. 

G1 0.0 8490 0.0 7002 0.0 8253 0.0 2273 

G2 0.0 10004 0.0 10008 0.0 9759 0.0 8771 

G3 0.2 10004 0.1 10008 0.1 10008 0.0 10008 

G5 1.0 10008 1.1 10014 0.9 10008 0.1 10008 

G10 8.1 10008 6.1 10014 7.1 10008 1.5 10008 

G50 479 10008 475 10014 468 10008 237 10008 

R1 0.1 1768 0.2 2861 0.3 2973 0.0 431 

R2 0.2 7341 0.2 6652 0.2 6630 0.0 2506 

R3 0.3 10008 0.3 10008 0.3 10012 0.0 6500 

R5 2.1 10008 2.3 10008 2.5 10012 0.0 10008 

R10 22 10008 22 10008 22 10012 5 10008 

R50 485 10008 485 1008 475 10012 313 10008 

S2 0.0 9518 0.0 9383 0.0 9478 0.0 9222 

Studying results presented in Table 4 proves that 
compared to different versions of the multipoint 
mutation operator, the random building block 
operator has achieved better fitness values within 
less function evaluations on average. These results 
can also be observed from Figure 9. 

 
Figure 9: Comparison of average fitness values achieved 
for Griewank’s (G1-G50), Rastrigin’s (R1-50) and 
Schaffer’s F6 (S2) functions by the multipoint mutation 
operator with 5%, 8% and 15% mutation rates (MPM5%, 
MPM8% and MPM15%) and the random building block 
(RBB) operator. The optimal fitness values for all 
functions are zero. 

Figure 10 depicts the summary of differences in the 
number of function evaluations. 

 
Figure 10: Comparison of the average numbers of function 
evaluations needed by each operator to achieve the best 
fitness value for Griewank’s (G1-G50), Rastrigin’s (R1-
R50) and Schaffer’s F6 (S2) functions. 

Figure 10 clearly indicates that compared to 
different versions of multipoint mutation operator, 
the random building block operator has needed less 
function evaluations to achieve the best fitness 
values on average. 

5 CONCLUSIONS 

In this paper a dynamic mutation operator; random 
building block operator for genetic algorithms was 
proposed. The operator was described and utilized in 
solving five well-known test problems. The operator 
was tested in 1020 runs for 34 test cases. For each 
test case, the performance of the random building 
block operator was tested against single-point 
mutation operator with 1%, 5% and 8% mutation 
rates and multipoint mutation operator with 5%, 8% 
and 15% mutation rates. The maximum limit of the 
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function evaluations was set to around 10,000. Each 
test case was repeated 30 times and the average of 
the best fitness values and the average numbers of 
function evaluations required for achieving the best 
fitness value were calculated. Comparing test results 
revealed that the random building block operator 
was capable of achieving better fitness values within 
less function evaluations compared to different 
versions of single-point and multipoint mutation 
operators. The fascinating feature of random 
building block is that it is dynamic and therefore 
does not require any parameterization. However, for 
mutation operators the mutation rate and the number 
of mutation points should be set in advance. The 
random building block can be used straight off the 
shelf without needing to know its best recommended 
rate. Hence, it lacks frustrating complexity, which is 
typical for different versions of the mutation 
operator. Therefore, it can be claimed that the 
random building block is superior to the mutation 
operator and capable of improving individuals in the 
population more efficiently. 

5.1 Future Research 

The proposed operator can be combined with other 
operators and applied to new problems and its 
efficiency in helping the search process can be 
evaluated more thoroughly with new functions. 
Moreover, the random building block operator can 
be adopted as part of the genetic algorithm to 
compete with other state-of-the-art algorithms on 
solving more problems.   
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