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Abstract: Frames are mathematical tools which can represent redundancies in many application problems. In the studies
of frames, the frame bounds and frame bound ratio are very important indices characterizing the robustness
and numerical performance of frame systems. In this paper, the frame bounds of a class of frame, which can be
modeled by the bi-directional impulse response of linear time systems, are analyzed and computed. By using
the state space approach, the tightest lower and upper frame bounds can be directly and efficiently computed.

1 INTRODUCTION oversampled FBs. Necessary and sufficient condi-
tions on a FB to implement a frame or a tight frame
In the study of vector spaces, frame is a more flex- in 12(Z) were given in terms of the properties of
ible tool compared with basis. The frame elements the corresponding polyphase analysis matrix. The
are linearly dependent, so to provide redundancies inframe-theoretic analysis is based on the fact that the
frames, and all elements in the vector space can bepolyphase matrix provides matrix representation of
written as a linear combination of the frame elements. a frame operator, i.eS(z) = E*(2)E(z), which can
Frames, as a mathematical theory were introduced bybe found in (Bolcskei et al., 1998) (Bolcskei and
Duffin and Schaeffer (Duffin and Schaeffer, 1952) in Hlawatsch, 2001) (Mertins, 2003) etc. Recently (Chai
1950s. Since 1986, frames have played an impor- et al., 2007) presented a direct computational method
tant role in signal processing, see (Daubechies et al.,for the frame-theory-based analysis and design of
1986) written by Daubechies, Grossman, and Meyer. oversampled FBs, which employed the state space
Some particular classes of frames have been exten+epresentation of the polyphase matfikz).
sively studied, for example, Gabor frames, which In the studies of frames, the frame bounds and
are also called Weyl-Heisenberg frames described inframe bound ratio are very important indices charac-
(Heil and Walnut, 1989) and (Casazza, 2001), and terizing the robustness and numerical performance of
wavelet frames, which are introduced in (Daubechies frame systems. The quantification and computation of
et al., 1986), (Daubechies, 1990), and (Daubechies,frame bounds have been actively investigated in past
1992). Frames, or redundant representations, canyears. The classic approach to obtain frame bounds of
also be found in pyramid coding (Burt and Adel- multirate FBs is in the frequency domain, for exam-
son, 1983); source coding (Benedettom et al., 2006); ple, (Bolcskei et al., 1998), (Bolcskei and Hlawatsch,
denoising (Dragotti et al., 2003); robust transmis- 2001), (Mertins, 2003), (Stanhill and Yehoshua Zeevi,
sion (Bernardini and Rinaldo, 2006); CDMA sys- 1998). (Bayram and Selesnick, 2009) stated the frame
tems; multiantenna code design; segmentation; clas-bounds of iterated FBs making use the wavelet frame
sification; restoration and enhancement; signal recon-bounds computed in the frequency domain. The fre-
struction; and so on. quency approach to compute the frame bounds is an
The theory of frames is a powerful means for the approximation method which samples the polyphase
analysis and design of the oversampled uniform fil- matrix of the frame operator over the frequency range
ter banks (FBs). (Vetterli and Cvetkovic, 1996) and w € [0,2m) and then performs eigenanalysis on the
(Cvetkovic and Vetterli, 1998) studied properties of sampled matrices. Such sampling approach can be
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very tedious when the frequency grid is dense and or complex inner product space. Lgj" denote the
the polyphase matrix is nondiagonal and of infinite transpose of a matrix or vector, afid* denote the
impulse response. Moreover, the error due to the Hermitian (conjugate) transpose of a matrix or vec-
frequency domain sampling of the polyphase matrix tor or function, which is also known as the adjoint of
cannot be precisely quantified and predicted by the (.), (.)~* denote the inverse df), and(.)" the left
density of the frequency grid for generic oversam- pseudo-inverse of.). 12(Z) is the space of square
pled FBs. The existing literature shows that wavelet summable scalar sequences with an indexZsde-
frame bounds are computed in the frequency do- fined as

main see for example (Daubechies, 1992) and (Chris-

tensen, 2003). The frequency approach to approxi- IZ(Z) = {Xm €C,me7Z| Z |Xm|2}~

mate wavelet frame bounds is even more complex and meZ

more tedious since it involves much denser frequenc : '
q Y Thel2 norm is a vector norm defined for a complex

grids.

Frame bounds can also be obtained in the time :
domain via linear matrix inequality (LMI) technique, X_1
see (Chai et al., 2008), which is an application of the column vectox= | %o | by

KYP lemma stated in (Rantzer, 1996). This method X1
avoids the frequency-domain sampling and approx- .
imation, but is only applicable to causal filter bank
(FB) frames in the forward direction.

In this paper, motivated by the limitation of ex-
isting techniques, we propose a direct state space apThel?(Z) space is a Hilbert space with respect to the
proach to the analysis and computation of the frame inner product
bounds of a more ggngral c_;lass of_framgs. This class <Xy >=Xy =YX
of frames can be bi-directional with mixed causal-
anticausal realizgtions and may not necessarily be in2_2 Fundamental of Frames
the form of multirate FBs. A state space approach
is presented to the modeling of the bi-directional
frames. The LMI solution, based on the state space o oxl
model, can then provide accurate and efficient com- Definition 1. A sequencgfy € R** }cz of elements

IIX]| = v/xx.

A bi-directional frames is defined as:

putation of the optimal frame bounds. in H is a frame forH if there exist constants,3 > 0
The rest of the paper is organized as follows. Such that

Section 2 presents notatipns followed by the fun- aHfHZ < Z | <, fic> |2 < Bllsz,Vf CH

damentals of frames. Different representations of &

_mlxed_ causal-anticausal LTI systems are mtroduced,-l-he constants andp are called frame bounds.
including the state space representation and the trans- )
fer function representation in Section 2. Section 3 = A Vector space can be represented in terms of
presents a direct state space approach to compute thffames and elements in such vector space can be writ-
frame bounds of a class of frame which can be mod- €N as a linear combination of frame elements. In this
eled as mixed causal-anticausal linear systems. Ex-Paper,we consider a class of bi-directional infinite di-
amples are given in Section 4 to illustrate how to ob- Mensional frames. ,

tain the bounds of frames that are modeled as stable ' "€ optimal lower frame bound is the supremum

mixed causal-anticausal LTI systems. The paper is OVer all possible lower frame bounds, and the opti-
concluded by Section 5. mal upper frame bound is the infimum over all possi-

ble upper frame bounds. Note that the optimal frame
bounds are called the frame bounds in short in the rest
of the paper. If the frame bounds satigfy= [3, the

2 PRELIMINARIES frame is called a tight frame.
For a frame{ fy }kez in H, the pre-frame operator
2.1 Notations or the synthesis operator is given by
T:1%(Z) - H,T{q =Y cfe
R(C) denotes the set of real (complex) numbers, @) {echez ng Kk

RIP(CY9*P) denotes the set of real (complex) ma-
trix with size g x p. Let Z denote the set of integer
numbersH denotes the Hilbert space, which is a real T H— IZ(Z),T*f ={< f, fk >}kez.

The adjoint of the pre-frame operator is given by
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By composingT with its adjointT*, we obtain the
frame operator

S:H - H,Sf=TT f = §Z< f, fic> fi.
ke

The frame operatdBis bounded by the frame bounds
o andp, invertible, self-adjoint, and positive.
If {fk}kez is a frame forH, the pre-frame oper-

ator (synthesis operator) can be shown as an infinite

dimensional matrix
T:[--- fq, fo f1 2 fi }7
i.e. the infinite dimensional matrix has the vectéys

as columns. The adjoint of the pre-frame operator can
be shown as

T =

i.e. the infinite dimensional matrik* has the vectors
fy as rows.

The frame{gk}kez = {S *fk}kez is called the
canonical dual frame offy }kez, Which satisfies

f= < f,ogk > fy,Vf € H.
2
If a,B are the optimal bounds fdffy}kez, then

the bounds3~1,a~! are optimal for the canonical
dual frame{S~1fx}kez. Hence, the lower bound of a

to represent the causal system and

AlB b I e
Eac(Z) = |:‘C/—~—D/*:| = D +C (Z_ll 7A >_lB
ac

to represent the anticausal system. Hence the mixed
causal-anticausal LTI system has transfer function

matrix
A|B AlB
E(Z) = |: :| + |: 7 7 :|
C |/D e LC|D |,
D+D +C(zI-A)"1B
+C(z U -A)1B.
For consistency of the symbols, we usdo de-
note the system operator for the causal-anticausal LTI
system (1), which gives

y=Eu
In the above equation,

u=| U |, y=1| yo |, (2)
uy Y1
and
D+D CcB CAB
E= cB D+D CB .3
CAB

cCB DD

frame is equivalent to the inverse of the upper bound The entries of the system opera®(it" row andjt"

of the canonical dual frame.

2.3 Fundamental of LTI Systems

State space equations of causal and anticausal linear

time-invariant (LTI) systems are given as

X1 = AXmJF BUma

Xmo1 = AXp+BUm,

Ym :C><m+C/x'm+(D+D/)um,
wherexm, € R™ is the forward state variableén €
R"ac js the backward state variabley, € RP is
the system inputym € RY9 is the system output.
A€ R B e Re*P.C e R™™ D e RI*P, A ¢
RMacxNac B’ ¢ RNacxP C' ¢ RY*Mac gndD’ € RI*P are

(1)

the state space matrices of the causal-anticausal sys-

tem. We use

Eo(2) = [%’%} =DicEl-ATB

columni,i, j € Z) can be shown as

CA-I-1B, i> ],

D+ Dlv i= jv
C(A)i--1B i<

An LTI system is causal if the system operakois
left lower-triangular and anticausalEfis right upper-
triangular.

The mixed causal-anticausal LTI system (1) is sta-
ble if and only if

Ip(A)| < 1and |p(A)] < 1,

where p(.) indicates the largest eigenvalue @f,
which means thaE(z) has no poles on the unit cir-
cle.

The operator norm (induceld norm) of stable
mixed causal-anticausal systems is defined by:

[Eu]
7O ull

Eij =

Il = sUReiz(z)
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Itis equivalent to the square of the upper frame bound finding the minimunf3 and maximurmo over w €
if E implements a frame. [0,2m) is equivalent to
The following lemma from (Shu and Chen, 1996) .
is very useful to obtain the state space description of mF!”B
the cascaded causal-anticausal discrete time LTI sys-
tems. It is essential in the state space analysis of LTI Subject to:

systems. ATPA-P+CTC  ATPBLCTD | _,,
Lemma 1. Assume the compatibility of the opera- B'PA+D'C  B'"PB+D'D-BI |~
tors. We have the state space matrices of the cascaded
causal-anticausal discrete time systems as P=P"B>0.
A | B, Al | By and
C’2 D’2 ol & | D1 |, mée\xor
= { A | B } bject t
DyC1 + XAy | D;D1+CoXBy |, subjectto
LA | B,D1 + AXBy ATPA-P+CTC ~ ATPB+CTD | _,
c'2 | 0 . BTPA+D'C  B"PB4+D'D+al |~
Az | By Al | B; -
[Cz|D2 sl ci| D, Q=Q,a>0.
[ Az | BoD; +AY B The result makes use of the KYP lemma stated
G DD 4 e B |, in (Rantzer, 1996).
o terel 3
DG, +CoYA | O |,

3 FRAMES IN LTI STATE SPACE
REALIZATIONS

where XY are given by the Sylvester equations:
AX AL — X +B,Cy =0, @
AYA —Y +ByC; = 0. Let {h(m) € R9P} be the impulse response of a sta-

ble causal-anticausal LTI systeh Then the output

Let E; be a causal-anticausal LTI system such signal ofE is given by

Al | By A | B,
thatE1(z) = 1 —}+| ,andE
12 [C1|Dl ]c {01|D1LC ? y=Eu
be another causal-anticausal LTI system such that o oo
o 4 The bi-directional infinite sequenbg = {hx(m)} can
[ A8 A, | B, !
Ex(z) = + ¢ 4 . be represented by the state space matrices as
C[D2 |, C, | Dy |y
Lemma 2 below presents the necessary and sulffi- CAm-1g k>m,
cient condition for an LTI system to be a frame. Its h«(m)=<{ D+ D, k=m, (5)
proof can be found in (Cvetkovic and Vetterli, 1998). c (A’)mfkle’ k<m
A|B AlB _—
Lemma 2. Let E(z) = 7 7 € resulting in
o=l efo] [ Ero] g

Yk = Z hk (M) up,.

C9*P pe the transfer function of a stable causal- &,

anticausal LTI system. Then for allail?, there exist

constantsx and such that For a frame whose element$(m)} can be writ-
) ) ) ten as the bi-directional infinite impulse responses of
of[ul|* < |Eul]” < Bljul the linear systen that maps the input to the out-

puty, i.e. {fx(m) = hl(m)}, we say that the frame
can be modeled as a mixed causal-anticausal LTI sys-
The frame bounds of frames that modeled as {em with the state space realization. For such frames,
causal LTl systems are computed in (Chai et al., jts canonical dual frame is actually the pseudo-inverse
2008), and this result is stated in lemma 3. system. Hence the lower frame bound can be found
Lemma 3. Given a causal LTI system E with state as the inverse of the upper frame bound of the canon-

tati A|lB th bl f ical dual frame, which is constructed by the impulse
space representation —=rp . € problem 0 response of the pseudo-inverse system.

if and only if E(el®) is full column rank or{0, 2m).
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Theorem 1. Let {fi}kez({h{ }kez) be a frame im-  bound of the canonical dual frame, which is equiv-
plemented by the impulse respop{i;|§}kez of a sta- alent to the square of the operator norm of the left
ble mixed causal-anticausal LTI system E. Then its pseudo-inverse systeld. 0
canonical dual frame is given by the impulse response ~ Lemma 3 presents the LMI approach to obtain the
of ET, the pseudo inverse system of E. The squareframe bounds of the frames modeled as causal LTI
of the operator norm of Eequals the inverse of the systems. In this paper, we propose a direct method to
lower frame bound of fx }kez- obtain the frame bounds of frames modeled as mixed
causal-anticausal LTI systems. This method avoids
a large amount of computations to convert the sta-
ble mixed causal-anticausal realization into unstable
® ¢ i ¢ causal realization.
U= k:z—oo <G> fe= kzz_m <Ufc>8 ) qheorem 2. Given a frame that can be modeled as
a stable mixed causal-anticausal LTI system E with

The frame element represents the bi-directional in- g (ei®) being full column rank om € [0, 2m), the op-
finite impulse responses of a linear system, hencetimal upper frame bound is the infimum (minimum) of
fe = h{ results inE = T*, whereT* is the adjoint gl possiblep satisfying
of the synthesis operator of the fraffi&}kez. The IEu|? < B|lu|]?
linear system operatd@ can be factorized into: - :

Proof: There exists a dual framégy}kez for
given frame{ fi }kez for which

The problem of finding the minimughis equivalent

E=QURV to the following optimization problem:
whereQ is inner,U*U = | andVV* = | andR; is {,%{QB
the left and right outer. More details of the inner subject to:

factor and the outer factor can be found in (Dewilde . A AT X XA 4 CTC
-P+ —XA +
and Vgn Der Veen, 1998)E has a Moore-Penrose KTA_ATXT+CTC  ATOA —Q+0TC
(pseudo-) inverse BTPALDTC_BTXT BTQA +D'C +BTX
T ATPB+CTD—XB
E'=V R" U Q A/TQB/JFC/TDJFXTB <0,

The pre-frame operator fofgk}i ., is denoted BTPB+BTQE +D'D—pl

by T. The canonical dual frame is obtained by where P=PT >0, Q=Q" > 0and X is a general
- 1e oo matrix.
{0 o = {5 e e Proof: The class of frames modeled by the mixed
causal-anticausal LTI system has the rational transfer

which implies

. function as
T=siT=(TT91T,
~ E
henceTT* = 1. The canonical dual frame has the =(IZD>+C(2|7A)—1B+C’(2—1I _A)1E
minimumI? norm among the dual frames. AlB N B
Since E = T*, the pre-frame operator of the = { c|D } { cTo } )
c ac

canonical dual frame can be obtained:
T =TT

and||Eu||? < B||ul|? impliesE*(2)E(z) < BI.

m
*
—~
N
m
—
N

*po—1p 1% O\ — *po—1p 1%
=V'RU'QQU(R) V'R U'Q AT | CT AT | T
=V'RUQ. BUGEEE -
We can see that x({A B} +{A’ B’}
T:ET. 1(_:|DTC C||O ac,
A" | C A| B
ThusTT* =1 andE'E = 1. ) {B/T|D/TLC{C/|D/L
SinceET equals the pre-frame operafbrof the +{ AT |CT } { A |B }
dual frame, the square of the operator nornEdfis BT| o J.lC[o ],
equivalentto the upper frame bound of the dual frame, N AT |CT A|B
following the definition of the operator norm of a lin- BT| o J.L[C[D ],
ear system given in Section 2.3. The inverse of the AT | CT AlB
lower bound of the frame is equivalent to the upper BT DT .l C o ac
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There are four terms in the above expression, each
term is a cascaded system. By using lemma 1, we can

Hence we can represefit(z)E(z) — Bl as
E*(2E(z) — Bl

represent the first term as:

{AT|CT] {A|B'
BT|DT ac C|D

dC

~ | D'C+B'PA|D'D+B'PB |,
N AT |CTD+ATPB |
B" | 0

Jdac

where ATPA— P 4 C'C = 0, yielding BT (z71I —

AT)"L(ATPA—P+CTC)(zI - A)"'B=0. The sec-

ond term can be rewritten as:

AT |CT AlB
{B’T| 0 } {c’|oLc
[ AT|ATQB A |8
- [ 87| B7QB ]*[ BTQA | 0 }

where ATQA — Q+CTC' = 0, yielding BT (zI —
AT)YATQA — Q+CTCH(z 1 —A) 1B = 0.
The third term can be rewritten as:

AT |CT A|B
{B’T| 0 HC DL
A 0
=| CTc AT
| o BT|
[ A 0 B
- 0 AT |C"™D+UB
| -BTU BT| 0

|

B
c™D

0

C

C

where UA— ATU +CTC = 0, yielding BT (zI —
AT)"JUA—-ATU +CTC)(zI —A)B=0. The
fourth term can be rewritten as:

{AT|CT} {A’|B’]
BT [DT L C [0 ],

AT C'C'|o
=/ o A |B
L BT D'C'|o0 ],
[ AT 0 VB
=0 A B
| BT D'C'+BV| 0

ac

where ATV — VA +CTC' = 0, yielding BT (z°11 —
AT)"LATV —VA +CTC)(z 1 —A) 1B = 0. The
third term conditionUA — ATU +CTC = 0 and
fourth term conditionATV —VA +CTC' = 0 result
inV=UT Uu=VT,

248

= (D'D+B"PB+BTQB —fI)+(DTC
+BTPA)(zI-A)B+BT(z 11 -AT)"1(C™D
+ATPB)+B' (z71 —AT)"1(ATPA-P+CTC)
x(zl—-A)1B+BT(zI-AT)"L(ATQB)
+(BTQA)(z M —A) 1B +BT(zI-AT) 1
x(ATQA —Q+CTC)(z LI —-A) 1B -BTU
x(zl—A)"1B+BT(zI-AT)"1{CTD+UB)
+BT(z2I-AT)"L{UA-ATU +CTC)(zI —-A) L
xB—BT(z 1 -AT)"WVB +(D'C' +B™V)
x(z U -A)1B +BT(z 11 -AT) !

x(ATV —VA +CTC)(z 1 -A)~1B,

We can further rewrit&*(z)E(z) — Bl <0 as:

E*(2)E(z) — Bl

= [ BT(z 1 —AT)?
{ ATPA-P+CTC

X

BT(zI-AT)1 |
ATV —VA +CTC
UA-ATU+CTCc  ATQA —Q+CTC
D'C+B'PA_BTU BTQA +D'C +BTV
CTD+ATPB-VE
ATQB +CTD+UB
D'D+B'PB+BTQB —pl

(zI-A)1B
x| (zU-A)1B | <0
[

Thus the matrix

ATPA—P+CTC ATV VA +CTC’
UA-ATU+CTC  ATQA —Q+CTC
D'C+B'PA-BTU BTQA +D'C +BTV
C'TD+APB-VE
ATQB +CTD+UB
D'D+B'PB+BTQB —pI

<0

is a negative definite matrix. Letting =V, which
means thaX™ = U, we prove the theore

Theorem 2 can be used to obtain the upper bound
of the causal LTI system by setting = 0,B' =
0,C' =0,D’ =0, resultingX = 0. In this case, theo-
rem 2 can be found in lemma 3. The theorem can also
be used to obtain the upper bound of the anticausal
LTI system by settingA = 0,B=0,C =0,D =0,
henceX = 0.

Similarly, we have the lower bound computed by
the following theorem.

Theorem 3. For a frame whose elements are the
bi-infinite dimensional impulse responses of a stable
mixed causal-anticausal LTI systems E wittel®)
being full column rank inw € [0,2m), the optimal
lower frame bound is the supermum (maximum) of all
possiblea satisfying

2 2
ofjul]* < |Eull*.

The problem of finding the maximumis equivalent
to the following optimization problem
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min —a The frame bounds of the Butterworth FB frame are
_ PQX shown in table 1. The FB constructs a approximate
subject to: tight frame. The dual frame is realized by:
ATPA—P+CTC ATX — XA +CTC’ ~ 1 1
XTA-ATXT+CTC  ATQA —Q+CTC H(z) =H(z"),6(2) =G(z ).

BTPA+DTC—-BTXT BTQA +D'C +BTX

ATPB.CTD - X8 Table 1: Frame bounds of Butterworth FB frame.

ATQB +CTD+XTB >0, . .
BPB+BTOE +D'D—al Decimation Facto 1 2
oT T . B 2 1.0008
where P=P' >0, Q=Q' >0and X is a general o 199851 0.9984

matrix.
The proof is analogue to the proof of theorem 2.

Example 2. The scaling filteH (z) and wavelet filter
G(2) are given as
4 EXAMPLES HE = LE2+iz+3+irt+i79),
— 70 (1 1,1
Example 1. We make use of the IIR Butterworth fil- G(z= 6 m(_ZZJF 1-3z ) :

ters shown in (Herley and Vetterli, 1993). The low

. - . The state space representations of the low pass and
pass filteH (2) is given as b P P

high pass filters are given as

ZiN=0< K )T' 0 0 | 05

H(z) = ; H(2) = 1 0 0
ﬁz(ﬂw( N )Tz 0.7071 01768 0.5303

=0 2 0 0 |05

whereN is the order of the filter and the high pass + 1 0 0

filter G(z) is given as: 0.7071 01768| O

ac
G(z) = 2" H(-z1).
We give an example with ordé& = 7 andn = 0:

0 | 1 0 |1
_ 14771421724357 34352 442175477 6477 G(2) = +
H(z) = V2(1+217 21357 4177 6) ; @ —0.6927 1.3854 L [ —0.6927| 0 L

G(z)=z1 17214217352+ 357! 212547207 ) )
V2(1+2122+3674+729) ’ The frame bounds of the FB frame are given in table
The causal-anticausal state space representations th2.
low pass filterH(z) and high pass filtelG(z) are

shown as: Table 2: Frame bounds of FIR FB frame.
0 —0.2319 0 1 Decimation Factor; 1 2
H(z) = 1 0 0 0 B 7.6773] 3.8385
0 1 0 0 a 1.1090 0
0.3499 0 00234| 0.7071
0 -0.6881 0 -0.0331 0
1 0 0 0 —6.6787
+1o0 1 0 0 0 7 5 CONCLUSIONS AND FUTURE
0 0 1 0 16.3918 WORK
0 0 0 00331 | 0 ac
and A class of frames, with elements in the form of bi-
G2 = directional infinite impulse responses of an LTI sys-
0O 06881 0 00331 0 1 tem, can be equivalently modeled as mixed causal-
1 0 0 0 0 0 anticausal LTI systems. This paper presents a direct
0 1 0 0 0 0 state space approach to the analysis and computation
8 g é 2 8 8 of optimal frame bounds of this class of frames. It

is shown that the lower frame bound is also equal to
0 02319 | _0.0404 the inverse of the square of the operator norm of the

+1 1001 0 ‘ 0 ' left pseudoinverse system which achieves perfect re-
{ —0001 -14273| 0 1 construction. Accurate and efficient computation of

07071 —-05431 04865 -0.1524 00234 | —0.3499 |
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the frame bounds has been achieved using the LMI Daubechies, I. (1992)Ten Lectures on WaveletSociety

technique and the obtained results are demonstrated

by examples.
The results obtained in this paper are applicable

to a class of frames which are governed by exponen- ) ) )
dDeW|Ide, P. and Van Der Veen, A.-J. (1998)ime-Varying

tial type perfoamance hahavior and can be modele
by LTI system responses in the time and frequency
domains. Currently, the authors are extending the LTI

state space approach presented in this paper to lin-

ear time varying (LTV) state space modeling, analy-
sis and computation of frames. This study will en-

able deeper understanding and more efficient evalua-

tion of a more general class of frames which may not
be properly analyzed and evaluated in the conventi-
noal frequency domain.
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