
TRACEABILITY AND VIEWPOINTS IN ENTERPRISE
ARCHITECTURES

Dmytro Panfilenko, Roman Litvinov
DFKI IWi, Stuhlsatzenhausweg 3, Campus D3.2, D-66123 Saarbruecken, Germany

Dirk Werth, Peter Loos
DFKI IWi, Stuhlsatzenhausweg 3, Campus D3.2, D-66123 Saarbruecken, Germany

Keywords: Viewpoint, Traceability, System development, Enterprise architecture.

Abstract: In the times of increasing information volumes it is virtually impossible to harness the complexity and
changes of the enterprise processes and requirements without taking into account the aid of the enterprise
architectures, which are being supported by methodologies surveyed in this article. Software architectures
for them serve as templates for system development processes and can describe the basic infrastructures for
hardware, software and networks as well as their interrelations. Each involved participant fashions its own
view on the final system, a developer or an architect alike, thus constituting rationale for the introduction of
viewpoints at different abstraction levels provided in this article.

1 INTRODUCTION

Each viewpoint represents a model for certain
stakeholders, as the capability for embracing the
whole of the complexity is usually limited.
Therefore it is rational to split a large concept into a
series of relatively small views. Modelling is one of
the acknowledged techniques for facilitating the
understandability of the system under construction
during development phase. The introduction of
abstraction levels allows developers focusing on
specific aspects of the system and communicating
the information for specific notations and viewpoints
of stakeholders.

The changes on the system caused by enterprise
goal adjustment or obsolete technologies induce
analysis of the dependencies between artefacts,
where traceability plays important role during
project phases of requirements definition,
specification, and testing. Traceability of software
artefacts has been identified as one of the important
factors for supporting different activities during
software system development processes. In general
the goal of traceability is the improvement of the
software systems quality, especially the analysis,
integration and support for the induced changes on a

system.
The term traceability has been introduced in the

context of requirements traceability in the 1970-ies
in order to avoid deviations between software
behaviour and customer requirements. Software
traceability is a crucial success factor in software
engineering. During the evolution of projects a
number of products, artefacts and relations between
them emerge. One of the main tasks of traceability is
to watch the changes in the relations between these
artefacts and specification stated in the
documentation. IEEE (1994) defined traceability as
a capacity of a software for creation of a certain
relation grade between artefacts, especially for the
components having predecessor-successor or
superordinate-subordinate relations.

This article is providing a survey on existing
methodologies for viewpoints and traceability and is
composed as follows: the related work section 2
makes a short overview of known scientific
publications on viewpoints and traceability;
traceability in concept of viewpoints in section 3
shows the classification approaches for viewpoints,
traceability and its techniques; discussion and
implications in section 4 present reasoning on the
collected methodologies and finally section 5 makes
a summary and outlines the future work.

150 Panfilenko D., Litvinov R., Werth D. and Loos P..
TRACEABILITY AND VIEWPOINTS IN ENTERPRISE ARCHITECTURES.
DOI: 10.5220/0003435301500156
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 150-156
ISBN: 978-989-8425-55-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

The term viewpoint is a topic of many scientific
publications (Finkelstein et al., 1993; Kotonya and
Sommerville, 1995; Leite et al., 1996; Sabetzadeh et
al., 2010, and Steen et al., 2004). We return to
detailed examining of this term in section 3.

Ramesh und Jarke, 2001 define this term as a
characteristic of a system which uniquely binds the
requirements with its sources and artefacts, i.e.
requirement specification can include business
requirements, user queries, rules, interface
specification, source standards etc.

Projects involve a number of interest groups, e.g.
sponsors, project managers, analysts, designers,
programmers and end users. The task of traceability
is to support the different interests, priorities and
goals, which are difficult to provide at the same time
(Ramesh and Edwards, 1993). Gotel and Finkestein,
1994 gave the following definition for traceability:
The capability to describe and trace a requirement in
both directions, forwards and backwards, from its
specification to the development, usage and
continuous improvement in each phase of the life-
cycle. Edwards and Howell, 1991 wrote the
definition as a guarantee for the support of the
relations between requirement specification, design
and the final implementation. As by Spanoudakis
and Zisman, 2005 traceability is a capacity to trace
the artefacts that emerge during system development
in order to describe the system from different
perspectives and levels of abstraction for all of the
interest groups. Another interpretation of Wright,
1991 tells that with aid of requirement traceability a
software developer can check whether the system
fulfils the customer requirements and whether any
unnecessary components to functionalities are
present.

The benefit of software traceability usage lies in
improved verification und validation of the customer
requirements, lower maintenance costs and better
software quality estimation. Moreover, traceability
analyses system understanding, impact, defect
correction and communication between developer
and customer. Despite all the advantages it is not
easy to conduct the complete checking through all
the phases of the software development (Ahn, 2007).
The confluence of different factors through the
distribution between different groups, the
heterogeneity of artefacts and used tools, the quick
property changes of the components represent a
great challenge for traceability management. The
artefacts are distributed between different groups
and as such difficult to reach. Heterogeneity hinders

the traceability throughout different formats and
abstraction levels. Lack of interoperability and tool
support complicates the representation of the
relation links. Due to constant changes of the
relations between components they quickly become
obsolete. These factors contribute to the high costs
for traceability support.

Further reading of the following literature not
discussed in this article in detail could be helpful for
more comprehensive understanding of the topic
(Andrade et al., 2004; Antoniol et al., 2002; Cleland-
Huang et al., 2003; Darke and Shanks, 1996;
Dijkman et al., 2008; Hayes et al., 2006; Leite and
Freeman, 1991).

3 TRACEABILITY AND
VIEWPOINTS IN ENTERPRISE
ARCHITECTURES

3.1 Viewpoints in Enterprise
Architecture Frameworks

Software systems comprise of a number of complex
components. As per Breitman et al., 1999 there are
managerial, organizational and computational
aspects of a system that involve different resources
(human, software, hardware, specification etc).
Leite, 1996, defines an approach for viewpoint
categorization which classifies viewpoints on three
orthogonal directions for opinion (participants
involvement), services (automatic goal fulfilment
with aid of the “Viewpoint-Oriented Requirement
Definition“ (VORD) method by Kotonya and
Sommerville, 1995) and specification (exact
collaboration of different components described by
Nuseibeh et al., 1994; Sommerville, 2007; Steen et
al., 2004). Also, the standardisation work for
viewpoints has already been laid out in IEEE 1471,
2007.

3.2 Viewpoints for Traceability

Sometimes the stakeholders cannot see the whole
complex representation of the system and therefore
are not able to improve the process of testing,
documentation and validation in order to deliver the
higher quality product to the customers. In general
the traceability is the capability to follow the
requirements all the way down from the
specification and development of the system to the
implementation and usage of the system. The goal of
this article is to survey the traceability in context of
viewpoints. The latter represent a concept for

TRACEABILITY AND VIEWPOINTS IN ENTERPRISE ARCHITECTURES

151

requirements representation of the various
stakeholders with their own perspectives and roles in
the development process. Each stakeholder is
responsible for the requirements profile and
notation, with aid of which the domain, strategy and
processes with histories are defined. It is supposed
that each stakeholder can create her requirements in
different viewpoints with different techniques.
Frameworks with multiple viewpoints as per
Finkelstein et al., 1993 provide the concept for tool
integration through specific methods.

The authors believe that the focus of the
consistency support lies in two following aspects.
Firstly, all of the relations between different
requirement profiles must be uniquely expressed.
Secondly, through the transformation between
specifications there are robust techniques for
maintaining the consistency of the relations. Further,
the techniques are discussed that provide for
consistency and traceability.

3.2.1 Increasing Need for Traceability

A number of stakeholders like project manager,
designer, and end-users with their own goals and
priorities need the traceability for the consistent
requirements specification and implementation. In
the investigation phase it is important to represent
the relations to specification in order to understand
the development and verification better. During
design phase the changes have to be documented.
Traceability provides at this stage the capability to
follow the modifications and information for
reasoning and decisions. During the test phase the
traceability comes in handy for the testing scenarios
definition.

Change management benefits from traceability
introduction as during changes the whole process of
propagation of changing requirements can be
examined and urgent changes can be identified.
Moreover, the impact and costs of the changes can
be estimated at each level.

3.2.2 Traceability Types

During design traceability empowers the designer to
keep the overview over the changes’ impact. It is
useful when there is a possibility to relate the design
and reasoning with respect to which decisions and
assumptions can be bound to which results. System
development needs better understanding of
requirements during following them back to their
sources. Due to facilitation of the references
between instances of the requirements profile and
design specifications precise change costs could be
calculated.

Leon, 2000 points out a series of advantages the
traceability brings with it: the overall analysis is
easier to conduct, the better design is the result of
traceability concept usage, the source code
refactoring is bound to less costs. It is possible to
discover all the potential problems in advance with
traceability usage. Ecklund et al., 1996 claims the
ease of the estimation of the impact through changes
with aid of traceability. Gotel und Finkelstein, 1994
introduce two aspects of traceability: Pre- und Post-
Traceability. Pre-Traceability deals with the aspects
of the requirements, which are not directly involved
in the requirement specification and focuses on
better understanding of the requirements. The Pre-
Traceability connects the original domain
requirements with the actual ones for the better
actual system and software understanding. The
domain requirements comprise of stakeholders,
business rules and original documentation. Post-
Traceability defines such aspects of requirements in
the design documents and components that are
already in the requirement specification. In this way
it is ensured that all the requirements through design
and implementation are fulfilled.

Apart from these two aspects of traceability
Davis, 1990 classifies traceability in the following
four types: “forward-from traceability“, “backward-
to traceability“, “forward-to traceability”,
“backward-from traceability“. For further
traceability classification approaches and
illustrations please refer to Gotel, Finkelstein, 1994
and Emrich et al., 2010.

3.2.3 Traceability Techniques

In practice there are numerous techniques for
traceability support being used as traceability matrix,
hypertext, templates etc. They differ in variety of
information that can be followed, in the number of
relations between artefacts and in amount of traces
being supported. Some forms of these techniques
can be differentiated through usage of certain
languages, models and methods for the
development.

ARM. Modelling of software architecture requires
as per Tang und Han, 2005 amongst other things the
fulfilment of such premises as traceability,
verifiability and completeness. For that the authors
developed the “Architecture Rationale Method”
(ARM). This method examines the qualitative and
quantitative principles for the choice of the
appropriate architecture design. “Architecture
Rationale” is an artefact for storing the requirements
and design principles. Qualitative rationale is
described in textual format and chooses the design.
Quantitative rationale concerns the costs, advantages

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

152

and risks of the chosen design. ARM is using the
top-down method with two techniques: “requirement
refinement” and “architecture decomposition”.

Value Based Traceability Technique (VBRT).
Other traceability techniques impose no importance
on which requirements are essential and which are
of lower value. The goal of VBRT is the
identification of the “traces”, which one can see as
more prior and meaningful as the others (Heindl and
Biffl, 2005). VBRT method comprises of 5 iterative
steps: requirements definition for the requirements
specification; requirements prioritization for
estimation of the value, the risks and results of all
stakeholders; requirements packaging for
requirements clusters; requirements linking for the
relations definition between artefacts and
requirements here; evaluation for different goals,
e.g. change impact estimation.

Feature-Oriented Requirement Tracing (FORT).
Requirements tracing registers also the logical
relation between individual requirements and further
system elements. Certain artefacts as requirements
specification, design documentation, source code
and test cases are being created during software
development. It is hard to determine which parts
have been changed during software engineering
process. The FORT method supports the links
management through requirements prioritization
with respect to costs and results (Ahn, 2007).

Pre-RS Tracing. The requirements are being
checked against their sources that have primarily
unstructured information. Traceability between
requirements and their sources as per Ravichandar et
al., 2007 is the great challenge for consistency
support. This method is based on „capability
engineering“, which is the process for creating a
change tolerant system under functional abstraction
consideration known as capabilities, and comprises
three phases: problem-, transition- und solution
space.

Event-based Traceability (EBT). This method has
been suggested by Cleland et al., 2002. The main
reason for the development of this method is the
thorough maintenance of the traceability relations.
The authors define relation for traceability as
“publisher - subscriber” type, which registers
artefacts by the respective requirement. Each time
the changes are being done a message to this event is
being published which notifies all dependent
artefacts. With aid of this method one can fulfil
functional and non-functional requirements.

Information Retrieval (IR). This method can be
used for automatic traceability links generation,
which comprises Vector Space Model (VSM),

Probabilistic Models and Latent Semantic Indexing
(LSI) methods. IR is based on a similarity
comparison and probabilistic values of two artefacts.
Blaauboer et al., 2007 define three steps in this
process: the pre-processing; the analysis, indexing,
creation of the presentations and archiving; the
analysis of the incoming artefacts with aid of
classifying algorithm.

Rule-based Approach. This method has been
suggested by Spanoudakis et al., 2004. The idea of
this approach is the automatic traceability links
generation with usage of a series of rules. All of the
rules and all of the document types are presented in
XML format. This method comprises the four
essential steps: grammatical tagging, XML
conversion, generation of requirements-to-object-
model relations, and generation of requirements-to-
requirements relations.

Hyper-Text based Approach (HB). The most
traceability studies count it to optional activity that
consumes a lot of resources and brings little benefit.
The reasons for that depend not only on the
developer side, but also on the project managers.
The reason for that is the creation of multiple
artefacts in different viewpoints during software
system development. Artefacts represent as per
Maletic et al., 2005 the system models on different
abstraction levels (specifications, design,
requirement models etc.).

Traceability Matrix (TM). This method is being
used in the industry for definition of the relations
between specification and other artefact types, to
which also belong design, code module and test
cases. This method envisions the manual relation
creation between artefacts. In the practice the usage
of traceability matrix is constrained to the critical
non-functional requirements. Usually the
requirements are being brought up on the rows and
artefacts on the columns of the matrix, in which the
marks being set on each of the cells when the
according requirement relates to the artefact.

Goal-Centric Traceability (GCT). Traceability of
NFR like security, performance and reliability is
hard to reach. Cleland-Huang, 2005 developed a
holistic method GCT for NFR. This method uses
„Softgoal Interdependency Graph“ (SIG) for NFR
model description. It comprises four phases: goal
modelling, impact detection, goal analysis and
decision making (Cleland-Huang, 2005). The goals
in SIG are being distributed in sub-goals for better
requirements tracing with respect to stakeholder
needs: goal modelling for data gathering,
specification and design of the system; impact
detection for definition of the traceability links and a
set of potentially related SIG elements; goal analysis

TRACEABILITY AND VIEWPOINTS IN ENTERPRISE ARCHITECTURES

153

for contribution re-analysis and goal re-evaluation;
decision making for examination of the conducted
analysis and identification of the influences of the
changes with respect to NFR goals.

3.2.4 Reasons for Introduction

This section will elicitate the motives for introducing
traceability for the system development.

Rationale and Origins. Originally traceability has
been used for the development of the security
features in the critical systems. Ramesh and Jarke,
2001 give an overview of the areas traceability can
be used for. The relations between customer needs
and requirements can be defined manually, whereas
the automated techniques guarantee the complete
tracing. The analysis and monitoring can identify the
lost relations of the informal customer requirements,
for example the creation of the traceability links of
the customer requirements to the existing design.

Non-functional Requirements. Through
traceability even the non-functional requirements
can be bound to model elements and source code. In
addition traceability provides for identification of
contradictory requirements. It is always complicated
because of scalability concerns to derive all the
requirements, whereas the automatic methods for
dependency creation can be critical, as it is not clear
whether the requirements are consistent or not.
Traceability in this context eases the communication
between involved stakeholders.

Verification of Requirements. Software developer
should check whether the original requirements are
completely realized during the development process.

Determination of the Lost Requirements. It can
happen in practice that one of the customer
requirements by mistake or an oversight is not being
accounted for or lost. If some requirements for
scenario definition are missing, it can mean that one
of the developers forgot to take these into account.

Determination of “change impact“. In reality it is
usual to see the changing requirements. These
changes can lead to changes in other requirements
that have to be taken into account.

Understanding of the Intensity of a Dependency.
In this context the intensity is a number of joint
classes or methods two artefacts have in between. It
is clear that different traceability links depend on
each other and one has to clarify to which
percentage they are dependent.

Definition of Essential Artefacts. These should be
handled with a special care, as they can constrain

many other artefacts. Complexity of one artefact can
depend on the number of constraining artefact,
which traceability can determine.

Comparison of the Granularity of Requirements.
In the early phases of the project the requirements
gathering is relatively generic and is getting more
complex in the later phases. Through traceability it
is relatively easy to determine which requirements
are generic and which are not.

Detection of Inconsistencies. Through creation of
dependency links between requirements it is
possible to identify the inconsistencies between
different artefacts and to conduct the following
activities as specification, detailed documentation of
design and testing.

Responsibility. The existence of relations between
artefacts during design, implementation and
verification can support the understanding of the
customer requirements. Moreover it is possible to
conduct the regular checking for the test cases
association with customer requirements.

Change Management. The thorough documentation
of requirements and other artefacts support the
change management. It is simple to follow the
relations between design elements and the according
position in the source code and thus to define the
changes needed.

Verification and Re-engineering of Software.
Systems. An advantage of traceability lies in the
complete documentation of the relations between
artefacts, which allows for checking the accordance
of the requirements with the implemented system.

Storing the Information. Usually a participant in
the project possesses only a constrained view at the
big picture of the project development, but a very
specific one, containing information endangered in
case she lefts, but which could be preserved through
traceability feature. Domges und Pohl, 1998 pointed
this benefit of storing the information for the system.

4 DISCUSSION

Traceability term comes from the domain of
requirements engineering and describes the
relationships between requirement artefacts. In the
literature there are different kinds of traceability:
among other horizontal and vertical. Horizontal
traceability analyses the relationships among
requirements, whereas vertical traceability explores
how requirements are used in consequent phases of
the software development process. Other newer

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

154

methodologies can define traceability in a different
way, in a sense that it analyses the traceability
among all the artefacts.

In the context of the viewpoints, traceability is
the main property among different artefacts that
allows for analyses according to changes. The
artefacts can be of different types, as in commonly
known software engineering understanding of
traceability. Moreover, it enables incorporation of
additional information from the context, such as
associated roles, persons, or help documents, etc.
Thus, traceability is the key enabler for the system
development for enterprise architectures.

Traceability provides the technique to analyse all
changes that have to be performed, when a certain
event occurs. However, it does not make any
assumptions about the costs.

Costs models can either be explicitly assigned to
certain transformation tasks with the traceability
support and tooling or can be gathered by
monitoring the actions of users during system
development. Consequently, the costs in terms of
assets, time and quality can be estimated for (a set
of) transformation tasks.

In case of design decisions making this can be a
helpful assistance. If two different transformation
tasks would both resolve a conflict, cost estimation
could help to decide, which task performing is more
efficient.

System development with aid of traceability
between the viewpoints allows for the seamless
management of artefacts of a software architecture
throughout the entire software and services
development lifecycle. It empowers developers and
software engineers to keep track of all the changes
occurring in the context of a chosen architecture
with respect to the system under development or the
service cloud being modelled within this system.
Furthermore, it helps understanding the system
development process much better through the
extensive traceability support for participants. It aids
with identifying appropriate contact points for
problems and enables easy-to-use cost estimations
for transformation tasks. Overall, this makes
decisions more transparent for the user.

5 CONCLUSIONS AND FUTURE
WORK

In this work we provided an overview for existing
viewpoint and traceability classifications and
techniques. The task during development of a
complex software system consists of the back-

tracing of the changes being made in order to
maintain their value for the enterprise. The decision
concerning design is usually being made under
unclear conditions, because the consequences of
different alternatives cannot be determined exactly
a-priori. To this extent the traceability helps making
the right decision, minimizing the risks of
inconsistencies and providing analysis for change
impact despite the opinion that it only costs
resources and time in vain.

In order to support the sustainability of the
traceability subject to such factors as the project or
enterprise specificity, we classified various methods
for its realization. In practice there is a series of tools
providing the realization frameworks for traceability
concept, whereas manual and automatic methods are
supported.

Future work will comprise research and
development project work for viewpoint based
enterprise architectures with traceability
functionality including all kinds of forward,
backward, vertical and horizontal traceability,
impact analysis and recommendations.

REFERENCES

Ahn, S.; Chong, K.: Requirements Change Management
on Feature-Oriented Requirements Tracing. In:
Lecture Notes in Computer Science, 2007, pp. 296-
307.

Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodriguez, S.,
Silva, A., A methodological framework for viewpoint-
oriented conceptual modeling, IEEE Transactions on
Software Engineering, Volume 30, Issue 5, 2004, pp.
282-294.

Antoniol, G.; Canfora, G.; Casazza, G.; De Lucia, A.;
Merlo, E.: Recovering Traceability Links between
Code and Documentation, IEEE Transactions on
Software Engineering, v.28 n.10, October 2002,
pp.970-983.

Blaauboer, F.; Sikkel, K.; Aydin, M. N.: “Deciding to
Adopt Requirements Traceability in Practice”,
Springer Lecture Notes in Computer Science, v.
4495/2007, pp 294-308.

Breitman, K. K.; Leite, J.C.S.D.P.; Finkelstein, A.: The
world’s a stage: a survey on requirements engineering
using a real-life case study. In Proceedings of J. Braz.
Comp. Soc.. 1999, 13-37.

Cleland-Huang, J.; Chang, C. K.; Sethi, G.; Javvaji, K.;
Hu, H.; Xia, J.: Automating speculative queries
through event-based requirements traceability. In:
Proceeding of the IEEE Joint RE, 2002, p. 289.

Cleland-Huang, J.; Chang, C. K.; Christensen, M.: Event-
Based Traceability for Managing Evolutionary
Change, IEEE Transactions on Software Engineering,
v.29 n.9, September 2003, pp.796-810.

TRACEABILITY AND VIEWPOINTS IN ENTERPRISE ARCHITECTURES

155

Cleland-Huang, J.: Toward improved traceability of non-
functional requirements. In: Proc. of TEFSE '05,
Automated Software Engineering, 2005, p. 14-19.

Cleland-Huang, J., Settimi, R.; BenKhadra, O.;
Berezhanskaya, E.; Christina, S.: Goal-centric
traceability for managing non-functional requirements.
In: International Conference on Software Engineering,
2005, pp. 362-371.

Darke, P.; Shanks, G.: Stakeholder, Viewpoints in
Requirements Definition: A Framework for
Understanding Viewpoint Development Approaches,
Requirements Eng., v. 1, pp. 88-105, 1996.

Davis, A.: Software requirements: analysis and
specification. In: Systems and Software Requirements
Engineering, IEEE Computer Society Press (1990).

Dijkman, R. M.; Quartel, Dick A.C.; van Sinderen, M. J.:
Consistency in multi-viewpoint design of enterprise
information systems, IST,v.50, n.7-8,2008,pp.737-752.

Domges, R.; Klaus, P.: Adapting traceability environments
to project-specific needs. In: Commun. ACM (1998),
v.41, n.12, pp. 54-62.

Ecklund, E. F.; Delcambre, L. M. L.; Freiling, M. J.:
Change cases: use cases that identify future
requirements. In: Proceedings of the eleventh annual
conference on Object-oriented programming systems,
languages, and applications (1996), v.31, n.10, pp.
342-358.

Edwards, M.; Howell, S.: A methodology for systems
requirements specification and traceability for large
real-time complex systems (1991).

Emrich, A.; Panfilenko, D.; Weber, S. (2010): MDA
Organization Platform: A Holistic Approach for the
Management of Model-Driven Architectures. In Proc.
of the 4th MDA4ServiceCloud’10 Workshop, co-
located with the 6th ECMFA 2010, Paris, France, June
15, 2010.

Finkelstein, A.; Easterbrook, S. and Kramer, J. and
Nuseibeh, B.: Requirements Engineering Through
Viewpoints. In: DRA Colloquium on Analysis of
Requirements for Software Intensive Systems, 1993,
pp. 18-26.

Gotel, O.; Finkelstein, A.: An Analysis of the
requirements traceability problem. In: Proceedings of
the First International Conference on requirements
engineering (1994), pp. 94-98.

Hayes, J. H.; Dekhtyar, A.; Sundaram, S.K.: Advancing
Candidate Link Generation for Requirements Tracing:
The Study of Methods, IEEE Transactions on
Software Engineering, v.32 n.1, pp.4-19, 01/2006.

Heindl, M.; Biffl, S.: A Case Study on Value-based
Requirements Tracing. In: Proceedings of the 10th
European software engineering (2005), pp. 60-69.

IEEE Std 1471-2000 ISO/IEC Standard for Systems and
Software Engineering – Recommended Practice for
Architectural Description of Software-Intensive
Systems, 2007.

Kotonya, G.; Sommerville, I.: Requirements Engineering
with Viewpoints, Technical Report CSEG/10/1995,
CSEG Computing Department, University of
Lancaster.

Leite, J. C. S. P.; Freeman, P. A.: Requirements Validation
Through Viewpoint Resolution, IEEE Transactions on
Software Engineering, vol. 17, no. 12, pp. 1253-1269,
Dec. 1991.

Leite, J. C. S. D.: Viewpoints on Viewpoints, Joint
Proceedings of the SIGSOFT’96 Workshops, The
Association for Computing Machinery (ACM) 1996,
pp. 285-288.

Leon, M.: Staying on Track. In: Intelligent Enterprise
2000, pp. 54-57.

Maletic, J. I.; Collard, M. L.; Simoes, B.: An XML Based
Approach to Support the Evolution of Model-to-
Model Traceability Links. In: Automated Software
Engineering (2005), pp. 67-72.

Nuseibeh, B.; Kramer, J.; Finkelstein, A.: A framework
for expressing the relationships between multiple
views in requirements specifications, IEEE
Transactions on Software Engineering, 20(10) 1994,
pp. 760-773.

Ramesh, B.; Edwards M.: Issues in the development of a
requirements traceability model. In: Proceeding of the
International Conference on Requirements
Engineering (1993), pp.256-259.

Ramesh, B.; Jarke, M.: Towards reference models for
requirements traceability. In: IEEE Transactions on
Software Engineering, Vol.27, No.1 2001, pp. 58-63.

Ravichandar, R.; Arthur, J. D.; Pérez-Quiñones, M.: Pre-
Requirement Specification Traceability: Bridging the
Complexity Gap through Capabilities. In: TEFSE/GCT
(2007).

Sabetzadeh, M.; Finkelstein, A.; Goedicke, M.:
"Viewpoints," in Encyclopedia of Software
Engineering, P. Laplante, Ed. New York: Taylor and
Francis, 2010.

Spanoudakis, G., Zisman, A.; Pérez-Miñana, E.; Krause,
P..: Rule-based Generation of Requirements
Traceability Relations. In: The Journal of Systems and
Software (07/2004), v.72, Issue 2, pp. 105-127.

Spanoudakis, G.; Zisman, A.: Software Traceability: A
Roadmap. In: Handbook in Software Engineering and
Knowledge Engineering, Word Scientific Publishing
Vol. 3 (2005), pp.395-428.

Steen, M. W. A.; Akehurst, D. H.; ter Doerst, H. W. L. l
Lankhorst, M.M.: Supporting Viewpoint-Oriented
Enterprise Architecture. Proc. 8th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC’04), Monterey,California, September, pp. 201-
211.

Tang, A.; Han, J.: Architecture Razionalization: A
Methodology for Architecture Verifiability,
Traceability and Completeness. In: ECBS, 2005,
pp.135-144.

Wright, S.: Requirements Traceability –What? Why? And
How? In: IEE Colloqium, Computing and Control
Division, Digest Number 1991/180, pp. 1/1-1/2.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

156

