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Abstract: Feature Selection is one of the focuses in pattern recognition field. To select the most obvious features, there 
are some feature selection methods such as LASSO, Bridge Regression and so on. But all of them are 
limited in select feature. In this paper, a summary is listed. And also the advantages and limitations of every 
method are listed. By the end, an example of LASSO using in identification of Traditional Chinese 
Medicine is introduced to show how to use these methods to select the feature. 

1 INTRODUCTION 

The traditional linear regression model is  

0 1 1 N Ny x x         (1)

Where  , , 1, 2, .... ,i ix y i N are data. 
 1 2, , ...,

T

i i i ipx x x x  are regressors and iy are 
response for the i th observation. The coefficients 
are what we need. 

 1 2, , ..., N     (2)

According to the ordinary least square (OLS), we 
can minimize residual squared error  
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and solve it to find the estimator of   which is 
expressed as  

 1 2
ˆ ˆ ˆ ˆ, , ..., N     (4)

and the solution by OLS is 

1ˆ ( )T TX X X y   (5)

By using the OLS method, coefficients can be 
obtained, and so obtain the solution of the linear 
regression model. However there are some 
problems. The most important problem is that as the 
dimension get higher, the OLS method are no longer 
perfect, especially in predicting and selecting 
obvious coefficients. So based on the above 
statements, there are a new method to consummate 
the solution - feature selection. It’s an effective way 
to choose the most useful coefficients from 

thousands upon thousands coefficients, in order to 
optimize the model. 

Now we are going to discuss some of the method 
which can solve the feature selecting problem. In 
this paper, we list the advantages and disadvantages 
of every method and through the compare we give a 
summarization to the method of feature selecting. 
Also we show some of the methods which are not be 
solved completely yet.  These problems are the next 
goal we want to solve. 

2 ANALYSIS 

2.1 Nonnegative Garrote 

Breiman (1993) proposed the non-negative garotte, 
it starts with OLS estimates and shrinks them by 
non-negative factors whose sum is constrained. In 
these studies, Breiman proved the garotte has 
consistently lower prediction error than subset 
selection and is competitive with ridge regression 
except when the true model has many small non-
zero coefficients. The garotte can get result in overfit 
or highly correlated settings. It can do a little than 
LASSO in the small number of large effects. 

2.2 Previous Regression Method 

2.2.1 Bridge Regression 

Frank and Friedman (1993) proposed Bridge 
Regression which is a common form of penalized 
OLS. 
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When 1q   it is LASSO and when 2q   it 
becomes Ridge Regression. 

2.2.2 Ridge Regression 

Hoerl and Kennard (1970) Proposed Ridge 
Regression, is the earliest use of punishment to 
achieve this purpose least square thinking. 
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Here is a control factor to reduce the extent of the 
parameters: the larger the value of income, the 
greater the degree of reduction. 

2.3 LASSO 

2.3.1 The Traditional LASSO 

Define: 
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The LASSO (Tibshirani, 1996) can solve the 
problem in the traditional method of the feature 
selection. For example, too many useless 
coefficients are existed in the traditional method. 
Also, the computation is large. By limit the 
coefficients, some of them can be zero and by doing 
this can we make the feature selection. LASSO 
variable selection has been shown to be consistent 
under certain conditions. With the research of 
LASSO, many of the corresponding algorithms have 
been proposed. One of the earliest algorithms is the 
“Shooting” algorithms proposed by Fu (1998).Then 
Osborne, M ． R. proposed that the path of the 
regressive solution is piecewise linear and also 
proposed the “homotopy” algorithms. Bradley Efron 
(2004) proposed the LARS algorithms which 
expound the relationship between the LASSO and 
Boosting. This algorithm solves the problem in 
computation perfectly. Zhao and Yu (2007) 

proposed the Stagewise LASSO algorithm to solve 
LASSO and Boosting. 

2.3.2 Fused LASSO 

However, there still are limitations in LASSO when 
facing particular problems, so improving the method 
becomes the main idea of researchers. Tibshirani, R 
proposed Fused LASSO which is based on LASSO 
as they take the order between features in some 
meaning way into consideration. The improved 
method was effective in solving variable selection 
problem with order between features. The Fused 
LASSO penalized coefficients as well as the 
difference of neighboring coefficients.  
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(9)

The first constraint provides sparsity in coefficients 
and the second one gives sparsity in difference of 
coefficients. Tibshirani provide 2 solutions for Fused 
LASSO using in unordered problems: 
a) Order the features using multidimensional 
scaling or hierarchical clustering. 
b) Remark the index of features. The Fused LASSO 
just require the order of neighboring features instead 
of all features, so, for each j  we can set the index 

( )k j  to the closet feature of feature j , and then the 

second constraint becomes ( ) 2
2

| |
p

j k j
j

t 


   

A drawback of Fused LASSO is the computational 
speed is quite slow, especially as 2000p   and 

200N  , the method is totally out of work. The 
method of solve the problem is still a topic. 

2.3.3 Adaptive LASSO 

Consider the Adaptive LASSO  
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and   is a known weights vector. Compare to the 
LASSO, Adaptive LASSO assign different weights 
to different coefficients, not forces the coefficients 
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to be equally penalized in the penalty. Hui Zou 
(2006) shows that the weighted LASSO will have 
the oracle properties if the weights are data-
dependent. However LASSO variable selection can 
to be consistent under certain conditions. We can use 
the current efficient algorithms for solving the 
LASSO to compute the Adaptive LASSO estimates. 
Nicolai Meinshausen （ 2007 ） proposed Relaxed 
LASSO to solve the over-compression problem.  

2.3.4 Relaxed LASSO 

Definition: 
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It is obvious that in the Relaxed LASSO,   is no 
longer the only penalty for the coefficients, but 
based on the LASSO added another penalty variable
 . When 1  , the Relaxed LASSO and the 
LASSO are identical; When 1  , Relaxed 
LASSO will show the more sparse solution compare 
with the LASSO. And especially when 0  , there 
will be a degenerate solution. 

LASSO is an effective method but it has some 
disadvantages. One of them is that when data are 
high- dimensioned, the rate of convergence is very 
slow. Relaxed LASSO has a lower complexity and 
by using this, it can both very effective and have a 
high rate of convergence. And Relaxed LASSO will 
get a sparser solution than LASSO. Also, it’s 
solution both soft-thresholding and hard-
thresholding estimators. 

2.3.5 Group LASSO 

When the dimensionality exceeds the sample size, it 
cannot assume that the active set of groups is 
unique, Yuan & Lin (2006）extends the former in 
the sense that it finds solutions that are sparse on the 
level of groups of variables, which makes this 
method a good candidate for situations described 
above, for handling discrete variables in the model 
selection. 

2.4 SCAD 

Fan and Li (2001)  proposed  SCAD  (smoothly clip- 

ped absolute deviation). 
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The penalty function makes the larger one of   as 
same as OLS solution (unbiased). What is more, the 
solution is continuous. 
The solution of SCAD was given by Fan(1997). 
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2.5 Elastic Net 

The LASSO is not a good choice to solve problems 
with the following 3 characters. 

a) p N . Someone has proved that the number 
of non-zero coefficients that LASSO can provide at 
most is  max ,p N . So in the p N  situation, 
there are at most p variables can be selected, which 
seems to be not enough to represent all the features 
of model.  

b) If a group of coefficients show high correlations, 
the LASSO will choose one from the group, 
however, it doesn’t concern which one has been 
chosen. 

c) While p N  , there are high correlations among

ix  , Ridge Regression would be a better choice. 

H. Zou and T. Hastie (2003) offered a method based 
on LASSO to solve variables selection problems in 
these situations, called Elastic Net. 

We introduce Naïve Elastic Net first. The 
criterion was given as following 
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When 1 0   it becomes Ridge Regression when 

2 0    it appear to be LASSO, while 

2 10     or 1 20     , the criterion shows 
both features of Ridge Regression and features of 
LASSO. 

3 APPLICATION 

The quality of Traditional Chinese medicine is 
uneven. So it’s necessary to distinguish between low 
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quality and high quality medicine. To meet the 
requirement, we need to select the effective features 
from Traditional Chinese medicine fingerprint.  

Because the fingerprint characteristics is suitable 
for the methods we said before.so we try to apply 
LASSO to identify the quality of Traditional 
Chinese medicine fingerprint. 

 

Figure 1: Traditional Chinese Medicine Fingerprint. 

We treat each fingerprint as a observe (
i ), the 

value ofj th peak is value of j th feature (
ij ), and 

iy  is symbol of medicine type identifier . 
So Traditional Chinese Medicine Fingerprint Model: 
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j

j
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The model has the same form as LASSO, and the 

solution of is also availiable for this model.
 

4 CONCLUSIONS 

LASSO is a wonderful method for variable selection. 
However, nothing is perfect. To solve the weakness 
of LASSO, many techniques based on LASSO have 
been proposed. The fused LASSO is a most widely 
used method now, because it can meet the demands 
of many actual problems. But there is still no 
efficient computation method of Fused LASSO to 
solve complicate problems. Adaptive LASSO is a 
creative procedure which penalizes each coefficient 
with different weights. “Oracles Properties” is a 
good feature of Adaptive LASSO. Relaxed LASSO 
was raised to overcome the correlation of variables 
which has negative influence on predict accuracy of 
regression model. The solution of Group LASSO is 
sparse on the level of groups of variables. SCAD 
hold properties of sparse, continuous and unbiased. 
Elastic Net which holds advantages of both Ridge 
Regression and LASSO is another popular 
procedure. 
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