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Abstract: Technical processes, notably in the power transforming industries, generate a wealth of process data, 
commonly organized in a file with M records and 1 + n + m fields, i.e. a time stamp, followed by n 
independent and m dependent variables, summarized in the vectors x and y, respectively. Regardless of the 
availability of physical models it is interesting and often necessary to generate functional relationships 
between x and y from process data. The most prominent purpose is the optimization of certain performance 
indices under given constraints. This paper describes response surface estimation using Gaussian shapes 
along with finding optimal points on the surfaces to be used in machine control. The practical impact lies in 
the usability of this technique to increase machine efficiency on a broad industrial scale with its applications 
towards energy efficiency and climate protection. 

1 INTRODUCTION 

Technical processes, notably in the power 
transforming domain, continuously produce a large 
series of data at a given sampling rate determined by 
a time interval 0>Δt . At any particular time 
assume there are M records given, organized into a 
time stamp, n independent (or state) variables and m 
dependent (or response) variables. These fields are 
summarized in the n- and m-dimensional vectors x 
and y. For instance, when monitoring power 
generating systems such gas turbines, there are up to 
1200 signals monitored simultaneously, comprising 
ambient conditions, pressures, temperatures, mass 
flows, guide vane angles, vibration amplitudes in 
various channels etc. Not all of those, of course, find 
their place in physical models, which are usually 
dominated by thermodynamics, but reveal a lot of 
information about the system, worthwhile to be 
exploited. 

Therefore, whether or not there is a physical 
model expressing y – or, rather, its expected value – 
in terms of x, it is always useful and sometimes 

necessary to estimate the functional dependence, 
using process data only.  

With such a functional dependence established, a 
multitude of applications in system control, process 
optimization and experimental design come into 
view. 

It is the goal of this paper to show that there is a 
class of functions, called linear combinations of 
Gaussian shapes below, which allow to approximate 
an arbitrary cloud of points precisely and can be 
differentiated continuously infinitely often. This 
property is conducive to many tasks in mathematical 
optimization and machine control, as shown below. 

2 MODEL 

Let this functional relationship be described by a 
function y, where 

ε+= )(xfy  (1) 
mn RRf →:  (2) 

andε , for the sake of simplicity, is assumed to be a  
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random vector with  

nxnICovE == ][ ,0][ εε  (3) 

Figure 1 shows, in the special case of n=2 and m=1, 
a practical example of a response surface:  

 
Figure 1: Empirical Response Surface. 

Please note that the data underlying this figure as 
well as the following figure are arbitrarily selected 
from among the authors' pool of data and only serve 
the purpose to explain principles. 

Figure 2 shows a schematic idealization: 

 
Figure 2: Schematic Idealization. 

There is one – particularly important – example for 
the use of response surfaces in controlling industrial 
processes. Assume that in a fossil power plant such 
as a gas turbine, two of the response variables are 
given by the power output and the NOx emissions, 
while one particularly important independent 
variable is the gas inflow. It may then be of interest 
to find that particular input variable nRx ∈* which 
maximizes power output given gas inflow and an 
upper limit on the NOx emissions or minimizes gas 
inflow for given power output and - again - an upper 
limit on the NOx emissions etc. In other words, one 
is interested in maximizing efficiency for given 
power output under additional conditions.  

This optimal value can be found in a twofold 
procedure, whereby the first step consists in finding 
the m response surfaces corresponding to the m 
response variables given by formula (1) and the 
second step is expressed as 

)(1 xfMax nRx∈
 (4) 

such that 

g(x)f <=2  (5) 

and 

03 f(x)f ≤  (6)

where f1(x), f2(x), f3(x), p and f0 are power output, 
gas inflow, emissions, gas available and emission 
limit, respectively. 

In a third step, whenever a process is in a state 
nRx∈  a sequence of “control variables” must be 

found, which drives the process towards the optimal 
state nRx ∈* . 

In this paper it is shown how to find the 
functional relationship f, how to use this in order to 
find an optimal operating point under given 
constraints and how to use the optimal operating 
point in an adaptive control policy. An example 
concludes this research.  

It is to be noted that the time dependency 
between signal records plays no role in this paper, 
because, in finding optimal operating points, as well 
as regression with given input variables as 
arguments, time is not used as a regressor. Therefore 
time series analysis as expressed in ARMA or 
ARMAX techniques (Bhattacharya, 2009) remains 
in the background. 

3 FINDING THE RESPONSE 
SURFACE 

This step asks for the solution of a certain type of 
multidimensional approximation problem, wherein - 
simultaneously - m real functions of n real variables 
are to be approximated.  

3.1 The Least Squares Principle 

The method suggested in this paper uses the least 
squares principle where the objective function is to 
be minimized by an appropriate selection of the 
function f.  While classical response surface  
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methodology mostly works with quadratic forms of 
the response variable with respect to the input 
variables, see for instance (Myers, 2009) and 
(Oezer, 2004), in this paper f is to be selected from 
among the more general set of twice continuously 
differentiable functions mapping nR onto mR . 
From the practical point of view this requires an 
idea about the functional dependence of f(x) on 

nRx∈ . Once this functional relationship is 
established and expressed in a formula with 
appropriate parameters, minimization over the 
function space is reduced to minimization over the 
appropriate parameter space. 

3.2 Linear Combinations of Gaussian 
Shapes 

A possible choice for the functional relationship is 
an element-wise linear combination of Gaussian 
shapes such that  
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In (8) ej is the unit vector in j-direction, N(j) is the 
number of Gaussian shapes used in approximating  
fj(x), ck

(j), },...,1{ )( jNk ∈ is the height of the k-th 
shape for the corresponding element, μk

(j) is the 
corresponding location vector and Ak

(j) the 
corresponding shape matrix. The symbols c, μ and A 
are abbreviations as explained in the appendix. An 
additional stipulation is that the matrices Ak

(j) are 
required to be positively definite. Moreover, with 
this choice of functional representation, one works 
with functions that are infinitely often - not just 
twice - continuously differentiable. Also these 
functions tend towards zero with either of its 
arguments going to infinity, having no poles or wild 
erratic oscillations and therefore, being less prone to 
overfitting the data. 

Expanding the Euclidean norm in (7) it can be 
seen that 
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The minimization method for the objective function 
amounts to solving separately m individual 
minimization problems with the objective functions 
Zj(fj). Each of these minimization problems requires 
finding values for the decision variables 
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(10) 

Since N(j) is a discrete parameter and all other 
parameters are real, the minimization problems are 
mixed integer real. Therefore, if derivative based, 
non-linear minimization techniques are to be used 
such as Fletcher-Reeves etc., see (Press, 2007), one 
must resort to a trick, whereby N(j) is deliberately 
given a sufficiently high value and it is left to the 
height variables ck

(j) to emphasize and eventually 
eliminate one or the other of the Gaussian shapes. 
Even if this trick works, there is always the risk of 
being trapped in a local minimum. 

Both problems can be overcome simultaneously 
by using a local search technique such as Simulated 
Annealing, for instance, see (Press, 2007) and 
(Rayward-Smith, 1996). 

It is important to note that for each input dataset  

MiRRyx mn
ii ,...,,),( ∈×∈  (11) 

there is a representation (8) which approximates the 
response variables to any desired degree of 
precision, the exact proof of which is very technical 
and will be omitted here. The proof follows along 
the following lines, however: For each response 
variable one begins with M shapes, each as high as 
the corresponding response variable and located 
right at the corresponding input point, with an 
arbitrary shape matrix. The shape matrices are then 
narrowed down consecutively until for each shape, 
the impact of remote shapes is small enough to 
satisfy the precision requirement. 

3.3 A Note on Overfitting 

Like any approximation problem on the real line, it 
is necessary to limit the risk of overfitting by 
checking the goodness of fit of the minimization 
routine on a validation set of points, which are not 
used in tuning the model parameters. This task is 
currently in progress between the authors. 
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4 FINDING THE OPTIMAL 
POINT ON THE RESPONSE 
SURFACE 

In contrast to (Ribeiro, 2010) the analysis described 
in the present paper considers only one response 
variable, which determines the optimal operating 
point, while more than one response variable may 
appear in the constraints.  

This step will be analyzed under the two 
different scenarios of unconstrained and constrained 
optimization. 

4.1 Unconstrained Optimization 

Assume that one arbitrary response variable  

},...,1{* mj ∈  (12) 

is to be maximized, i.e. 

)(*)( ** xfMaxxf jRxj n∈
=  (13) 

Two special cases must be considered. In case 1 
one assumes that N(j)=1. Then, due to the positive 
definiteness of the shape matrices as required above 
and the monotonicity of the natural logarithm, 
maximizing fj*(x) with respect to x is equivalent to 
minimizing  

( *) ( *) ( *)
1 1 1( ) : ( ) ( )j T j jx x A xα μ μ= − −  (14) 

which yields the simple result  
*)(

1* jx μ=  (15) 

In case 2, i.e. whenever N(j)>1, one must either 
use a non-linear search technique with several 
randomized starting points or a local search 
technique. In view of (15), a plausible choice for the 
starting point may be 
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There is a variety of such search techniques, as 
can be seen in (Press, 2007) and (Speyer, 2010), for 
example. However, simple application of the first 
order necessary conditions of any optimal point to 
fj*(x), i.e.  

0)(* =∇ xf j  (17) 

yields, along with (8), the following equation: 

)(*)( 1 xbxHx jj
−=  (18) 

with 
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Observing that in (18) the right hand side 
depends on x as well, one may try to find an iterative 
expression with  

...3,2,1                   
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hoping, for the time being, that Hj(x) is invertible 
and (20) represents a contracting map. (20) may be 
generalized to the case of constrained optimization 
using the Lagrange function or a penalty term. In 
any case observe, that it bears a certain resemblance 
to the quadratic programming problem. 

4.2 Constrained Optimization 

As a representative of the multitude of potential 
constrained optimization problems assume that one 
must maximize a particular response variable j* 
while all the other ones are to stay within a certain 
upper limit, which amounts to solving the following 
minimization problem: 
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Introducing a slack variable  
1m

j Rξ −∈  (22) 
one easily sees that solving (21) is equivalent to 
solving a non-linear minimization problem with the 
following Lagrangian: 
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see (Speyer, 2010). Finding a solution to (23) with a 
derivative based non-linear minimization technique 
may be attempted by a large scale Sequential 
Quadratic Programming Problem such as described 
in (Gill, 2005), for instance.  
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However, in this situation local search heuristics 
can be used again by noting that the objective 
function -fj*(x) can be augmented by a penalty 
function which assumes increasingly high values, if 
the constraints 

*}{},...,1{,)( ,0 jmjfxf jj −∈≤  (24) 

are violated. The smallest such penalty function can 
then be used in the solution. 

5 APPROACHING THE 
OPTIMAL POINT ON THE 
RESPONSE SURFACE  

Assume that, at a certain time  
,...}3,2,1{,* ∈Δ= ltlt  (25) 

throughout operation of the process under 
consideration, the process state is equal to 

nRx ∈~  (26) 

with  
*~ xx ≠  (27) 

indicating operation under sub-optimal conditions. It 
is then important to find a sequence of control 
variables  

ww RuRu ∈∈ τ,...,1  (28) 

for some  
,...}3,2,1{∈w  (29) 

and some  

,...}3,2,1{∈τ  (30) 

5.1 Deterministic Case 

Here one assumes that 
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Assume there is a cost γ(xt+k-1,uk) attached to the 
transition 

1, , {1,..., }t k k t kx u x k τ+ − +→ ∈  (32) 

The total transition cost is then given by 
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As long as a transition law as given in (31) can be 
found, (33) can be - again - minimized using either 
non-linear minimization or local search. 

5.2 Stochastic Case 

Assume that the transition from xt+k-1  to  xt+k  under 
the control uk, k=1,2,...,τ  takes place in a stochastic 
manner such that the distribution density of xt+k  is 
given by a density  

1( ; , ) : n w n
t k kg z x u R R+
+ − →  (34) 

The expected cost under the control policy u1,...,uτ is 
given by 
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The optimal policy u1*,...,uτ∗ leading to the minimal 
expected cost  C*(xt,u1*,...,uτ*)  satisfies the 
Bellman equation 
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(36) 

see (Bhattacharya, 2009). The Bellman-equation can 
be solved by means of the classical dynamic 
programming approach and - again - by local search 
techniques such as Simulated Annealing. 

6 EXAMPLE 

The problem considered in this example consists in 
solving efficiency related optimization problems for 
an input file with n = 8 independent variables and m 
= 2 response variables. The two response variables 
considered are power output and NOx emissions. M 
= 4560 records were available. The data correspond 
to a gas turbine in a French power plant. All of the 
signals have been normalized to values between 0.0 
and 1.0 each.  

As a constrained optimization problem Power 
output (response variable 1) will be maximized 
while a series of constraints, partly referring to gas 
inflow - one of the control variables - and partly 
referring to NOx emissions (response variable 0) will 
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be imposed. It will be shown that the data contained 
in the input file, when filtered with respect to those 
constraints, already exhibit some variance in 
response variable 1, without the smoothing effect 
brought about by response surface modelling. 

6.1 Input Data 

Figure 3 shows the time trajectory of the NOx 
emissions throughout the time period under 
consideration: 

 
Figure 3: NOx emissions - Time Trajectory. 

Figure 4 shows the time trajectory of the power 
output: 

 
Figure 4: Power output - Time Trajectory. 

6.2 Results 

Results for this example are given for steps 1 and 2 
only. Developing optimum control policies is 
ongoing research at this time.  

6.2.1 Approximation 

Figure 5 shows the goodness of fit for NOx 
emissions as a result of the approximation: 

 
Figure 5: NOx emissions - Goodness of Fit. 

Please note that - for ease of comparison - the 
approximated points have been ordered increasingly 
with respect to size and that the corresponding input 
values, i.e. those with equal input variables have 
been juxtaposed accordingly. Figure 6 shows the 
goodness of fit for the power output:  

 
Figure 6: Power output - Goodness of Fit. 

Figure 7 shows a three-dimensional representation 
of the empirical power output as contained in the 
input data as a function of the input variables 0 and 
1 (Barometric pressure and Compressor inlet 
pressure, see below), whereby all the remaining 
input variables have been set equal to their 
respective midpoint between minimum and 
maximum: 
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Figure 7: Three-dimensional representation of empirical 
power output with respect to control variables 0 and 1. 

Figure 8 is the analogous representation with the 
empirical power output replaced by its theoretical 
counterpart obtained from approximation: 

 
Figure 8: Three-dimensional representation of theoretical 
power output with respect to control variables 0 and 1. 

The good visual agreement between figures 7 and 8 
is another view on the goodness of fit as shown in 
figure 6. 

6.2.2 Efficiency Maximization 

Optimization Problem 
The problem considered was to maximize Power 
output under the following constraints: 

 Compressor Discharge Pressure >= 97% of 
Maximum 

 NOx emissions <= 40% of Maximum 
 IGV guide angle >= 99,90% of Maximum 
 Liquid Fuel Mass Flow <= 93% of 

Maximum 
 Water Injection flow <= 89,4% of 

Maximum 

Input Data Filtered with Respect to Constraints 
Table 1 shows the subset of input data resulting 
from filtering the records with the constraints as 
 

shown above: 
 

Table 1: Input data filtered with respect to constraints. 

 
Table 1 reveals that already within the filtered 

dataset power output shows a variance of roughly 
2% with respect to the maximum value of 1.0, 
keeping the normalized range of values in mind, as 
illustrated in figure 9: 

Power Output

0,885

0,89

0,895

0,9

0,905

0,91

0,915

0,92

0,925

1 2 3 4 5 6 7 8 9  
Figure 9: Variance in power output in the filtered dataset. 

Optimization Results 
Table 2 shows the mathematical solution to the 
optimization problem stated above with respect to 
both input variables and response variables: 

Table 2: Optimization Results. 

 
The following comments must be made in order to 
properly interpret these results: 
 The column titled Empirical lists the values of 

all the input variables corresponding to that 
particular record in the filtered input file - see 
table 1 - with maximum overall power output. 

 This goes along with an NOx emission value of 
25.85 % of the maximum as shown in the 
corresponding line and 91.91% of maximum 
power. 

 The column titled Optimized lists the values of 
the input variables corresponding to the solution 
of the constrained optimization problem. It can 
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be noted that all of the constraints are satisfied 
to a good degree of precision: 
o Compressor Discharge Pressure = 100% >= 

97% of maximum 
o NOx emissions = 26,23% <= 40%  of 

maximum 
o IGV angle = 99.85% <= 99.9% required 
o Liquid Fuel Mass Flow = 92.70% of 

maximum versus <= 93% required 
o Water Injection flow = 89,45% of 

maximum versus 89,4% required 
 Yet there is a theoretical increase in the Power 

output of approximately 3.09%=95.00%-
91.91%. Comparison of the ratio of Power 
output divided by Liquid Fuel Mass Flow 
reveals an efficiency increase from the optimal 
element in the filtered dataset to the 
mathematical solution of the constrained 
optimization problem of 1.43%. 

 The column titled Sensitivity is the partial 
derivative of the Power Output with respect to 
the input variable in question, averaged over the 
input space using the sample of input data.  

 It must be noted that the solution to the 
optimization problem must be verified against 
the criteria of technological feasibility. For 
instance, turbine inlet temperature must not 
exceed a fixed value and no optimal operating 
point must violate this additional constraint. 

7 SUMMARY 

The present paper presents a technique to generate 
Gaussian response surfaces from high dimensional 
data and shows how to use them to find optimal 
operating points with respect to process 
characteristics such as Power output, NOx-
emissions, gas inflow etc.  

There are two sources of optimization to be 
expected through an industrial application of such 
surfaces: 

• Finding true optima by removing noise in the 
data and appropriate smoothing 

• Consistently using those optima as set points 
in the context of adaptive control. 

From the authors' point of view, many of the topics 
considered in this paper will be central to future 
research in the power industry around the world, 
such as  
• Fast optimization techniques in finding the 

response surfaces, using a combination of non-
linear and local search techniques 

• Fast optimization techniques to find the optimal 
points on the response surfaces 

• Embedding the algorithms inside machine 
control hardware and software to name just a 
few. 
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APPENDIX 

Definition of c, μ and A: 
}},...,1{},,...,1{,{: )()( mjNkcc jj

k ∈∈=  

}},...,1{},,...,1{,{: )()( mjNk jj
k ∈∈= μμ  
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