
CONTEXT-AWARE REASONING ENGINE
WITH HIGH LEVEL KNOWLEDGE FOR SMART HOME

Jiaqi Zhu, Lee Vwen Yen, Jit Biswas
Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore

Mounir Mokhtari, Thibaut Tiberghien, Hamdi Aloulou
Image & Pervasive Access Lab (IPAL), I2R, A*STAR, Singapore, Singapore

Keywords: Context-aware, Reasoning engine, High level knowledge, Smart home, Sensor network, Pervasive
environment, Ambient assistive.

Abstract: We are interested in providing people living or working in smart home environment with sensor network
based assistive technology. We propose a novel rule-based reasoning engine that could be used in
ubiquitous environments to infer logical consequences from events received over a sensor network. We
introduce methods for rule design with high level knowledge input and using minimum information to infer
micro-context. Personalised profiles can be introduced into the reasoning engine to customise features for a
particular user using our rule refinement and generation module. New mechanism for sensor-engine
communication is also introduced. As a proof of concept, a prototype system (using DROOLS) has been
developed to demonstrate the functionalities of our reasoning engine in a simulated smart home
environment.

1 INTRODUCTION

Homes have basically not changed in centuries and
the ways we live in homes have not varied much too.
However, with the introduction of the Smart Home
concept, this interdisciplinary research that
addresses the challenges facing the future of home
technologies, offers a range of technological benefits
to the user (Feki, 2007). Coupled with the gradual
trend of ageing populations around the world, much
interest have been placed into designing and
developing smarter systems to assist and enable an
individual to stay at home and take care of
themselves independently without the need for
constant monitoring of their Activities of Daily
Living (ADL).

In current hospitals, nursing homes and other
similar health care facilities, nurses and caregivers
often have to manage many duties in order to
provide excellent patient care. These duties include
the need to dispense medication throughout the day
at stipulated timings and also having to go on their
rounds in their designated wards to observe patients
and ensure there are no significant incidents. These

two main duties take up quite a lot of the nurses’
time. Hence there would be insufficient medical
personnel and caregivers that are available to
provide prompt and quick responses to every patient
around the clock. Emergency situations that require
immediate responses have to be given priority over
other common occurring incidents and thus
assistance could not always be rendered to patients
in a timely manner.

The solution to these situations is to install
Ambient Intelligent systems and sensors in homes,
hospitals and nursing homes to assist nurses and
caregivers in monitoring patients or the elderly.
However, sensors are only able to provide low-level
context which is useful for informing users about
simple events like opening or closing a door.
Middleware like a reasoning engine would then be
used to receive sensor information via a sensor
network and also to infer higher-level context like a
person’s ADL.

This paper looks at an integrated approach
consisting of building a rule-based reasoning engine
that initially generates generic rules with modifiable
and adjustable variables based on a person’s profile.

292
Zhu J., Vwen Yen L., Biswas J., Mokhtari M., Tiberghien T. and Aloulou H..
CONTEXT-AWARE REASONING ENGINE WITH HIGH LEVEL KNOWLEDGE FOR SMART HOME .
DOI: 10.5220/0003396202920297
In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2011), pages
292-297
ISBN: 978-989-8425-48-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

The reasoning engine could also adapt to different
smart home environments through a rule generation
process. Rules are created such that logical
consequences could be inferred from low-level
context received over a sensor network. The
reasoning engine is also built to detect any
anomalies in a person’s ADL and also to reason if
any accident has happened. Based on a given set of
rules controlled by the nurses or caregivers, alerts or
reminders could then be sent out to the medical
personnel in-charge or patients whenever
abnormalities are detected, for example when
somebody stays too long in the shower and needs to
be reminded to leave the washroom. With this set of
rules, nurses and caregivers would be able to
determine and configure actions to be taken and the
different type of reminders to be issued based on
each person’s unique personality or habits.

In scenarios where sensors are unavailable to
transmit sensor information due to low battery
power or incorrect sensor data being transmitted to
the reasoning engine, a probabilistic model would be
used to determine the type and number of rules that
are to be fired and the subsequent consequences due
to the fired rules.

In addition, we note that existing reasoning
engines are mostly governed by rules that are pre-
defined by programmers before being deployed for
end-users usage. Editing of such initial set of rules is
often too difficult for non-technical end-users and is
also a barrier for user’s acceptance towards the
system. Therefore we intend to only host generic
rules with a pre-defined setting and also develop a
control mechanism that allows the user to determine
preferences within their personal profiles to be
uploaded into our reasoning engine.

The rest of the paper is organised as follows.
Existing reasoning engines and related work are
listed and compared in Section 2. We introduce our
novel context-aware reasoning engine in Section 3.
In Section 4, we describe the implementation of our
prototype and scenario which our prototype has
already been tested in, together with feedback from
medical personnel. We end with the conclusion in
Section 5.

2 RELATED WORK

We are aware of current reasoning engines with
similar capabilities pertaining to the uncertainty
aspect. Many probabilistic schemes for context
processing have been used to tackle the issue of
uncertainty. The theory on fuzzy logic (Zadeh, 1996)

and Hidden Markov Models (HMM) (Krogh et al.,
1994) have been mentioned and discussed as
potential probabilistic schemes that could be used
(Dargie, 2007). Ranganathan et al. (Ranganathan,
2004) have used Microsoft’s Belief Network
(MSBN) software to create Bayesian networks to
represent relationships between events. Liu Peizhi et
al. (Liu, 2008) applied the combination rule in
Dempster-Shafer Theory of Evidence (DST) to their
reasoning mechanism to construct the inferencer.
There was work done on Dynamic Bayesian
Networks (DBN) that are able to represent and learn
in order to produce more complex models. Murphy
modelled hierarchical HMMs as DBNs, as part of
his work (Murphy, 2002).

These approaches, apart from fuzzy logic, are
mainly generalizations of the Bayesian network and
are proposed as possible solutions to solving the
uncertainty problem by providing the probabilistic
reasoning mechanism. Our approach towards
uncertainty is to also create a probabilistic model
with probabilistic information optimally pre-defined.
However, generic rules related to common smart
home scenarios would initially be obtained via a
rules repository.

We could not afford to have learning processes
when we deploy our reasoning engine as it is
expected to be effective on deployment. Therefore,
as and whenever the reasoning engine is unable to
handle any given situation with the prepared rules,
the end-user could personalise or customise the rules
and probabilistic information to meet their needs.
This manner of customisation would be covered by
our rule generation process and end-user control
mechanism within our reasoning engine. User
profiles from different individuals could also be used
for customisation purposes.

There are other reasoning engines that are rule
based, but do not take into account high level
knowledge that could be used to optimize rule
design (Goh, 2007). There are also methods that
utilise high level knowledge but are instead used to
computerize Clinical Practice Guidelines (CPG) so
as to operationalize them within Clinical Decision
Support Systems (Hussain, 2007).

3 OUR REASONING ENGINE

3.1 Rule with High Level Knowledge

Our context-aware reasoning engine (later referred
to as “engine”) is rule driven and based on first order
logic. It is able to work without training. The engine

CONTEXT-AWARE REASONING ENGINE WITH HIGH LEVEL KNOWLEDGE FOR SMART HOME

293

uses predefined rules in a rule repository (in our case
about 30 rules) as the initial rules. The initial rules
are predefined in the way that domain expert
knowledge is built into them. Domain expert
knowledge could be the knowledge from doctors or
nurses in the domain of healthcare as they know
exactly how a patient or an elderly performs his/her
activities of daily living. The knowledge can then be
mapped to some rules or components of some
specific rules. The components of a standard rule in
the rule repository are described in Table 1.

Table 1: Rule components.

Rule name
Person

Location
Time

Sensor1 status
Sensor2 status

...
Sensorn status

Sensor selection scheme
Firing condition

The first 4 components are easy to understand. The
sensors status is the related sensors behaviour that
would imply the underlying micro-context. We have
created the “sensor selection scheme”. This spirit in
the rule design of the engine is that we always use
minimum information possible to make judgement
of the current context (location of a person, status of
location) or the micro-context (activity of a person)
although there is more information available. Only
when we do not have sufficient information on hand
to make a sound judgement, do we actually resort to
seek for additional available information to perform
inference. This is to alleviate the workload of the
processing server and to save on data transmission
bandwidth. Firing condition specifies the input
conditions of the first order logic.

For example, a rule which monitors person A’s
showering activity and alerts when person A is
showering for too long is defined in Table 2. The
duration of sensor1 and sensor2 in active state being
the threshold for judging is set according to expert
knowledge. Though we have four sensors installed,
we try to only use sensor1 and sensor2 in the first
place. Only when sensor2 is not available (may due
to malfunction or battery failure) or if certain
conditions are not satisfied, do we take into account
information received from sensor3 and sensor4.

So in the afternoon, when the status of sensor 1
and 2 are met or those of sensor 1, 3 and 4 are met,
the showering for too long rule is fired and an alert
will be sent to a speaker in the washroom telling
person A to finish shower quickly.

Table 2: Rule for showering for too long.

Rule name showering for too long
Person A
Location washroom
Time afternoon
Sensor1 status shower pipe shake sensor: active for

15 minutes
Sensor2 status shower area PIR sensor: active for 15

minutes
Sensor3 status shower soap dispenser: pressed
Sensor4 status washroom door reed switch sensor:

closed
Sensor selection
scheme

check sensor 1 and 2 first, and then
sensor 3 and 4

Firing condition if sensor 1 and 2 are satisfied, or if
sensor 1, 3 and 4 are satisfied

3.2 Rule Generation and Refinement

The engine uses predefined initial rules obtained
from a rules repository. However, we have designed
algorithms for the engine to refine the rules
accordingly overtime, and generate new rules when
necessary. The idea is shown in Figure 1.

Figure 1: Rule refinement and generation.

Figure 1 shows that the rules repository is used
to initialize the reasoning engine. On receiving
sensor data, the engine does reasoning to infer the
context and micro-context.

The temporal information in the context and
micro-context is used to modify the components of
the existing rules, such as sensor duration and status.
If some new micro-context is discovered, new rules
can be generated by combining the spatial, temporal
and sensor information.

The engine will save the modified rules and the
newly generated rules back into the rules repository
so that the repository always reflects the most
updated set of rules.

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

294

3.3 Engine-sensor Communication

One important characteristic of the engine is its
Sensor Universal Plug and Play (SUPnP) feature.
This feature is to overcome the drawback of existing
sensor network smart home systems as it allows the
engine to automatically recognize newly deployed
sensors and then adopt them to work together with
our rules. No restart or re-configure of the engine is
needed.

Figure 2: SUPnP feature.

When a new sensor is deployed into the network,
it has to use a “register” function (provided by the
engine) to register itself. The sensor sends its
information such as the sensor type, identity (must
be unique), location and functionality to the engine.
The engine then adds the sensor into its working
sensor list and uses the ‘acknowledge’ function to
reply. Subsequently, the sensor and the engine
communicate through a communication bus using
‘send’ and ‘decode’ functions respectively.

With the design of SUPnP, the engine will no
longer need to stop and restart whenever a new
sensor comes. When used in conjunction with our
rule generation and refinement module, the designer
of the engine does not have to manually re-write
existing rules or write new rules in order to include
the sensors into the system. The system will
automatically add new sensors into rules according
to their functionality using their unique sensor id.

3.4 Other Features

Some other features of the engine include abstract
rule, rule image and rule verification.

An abstract rule is a rule with one or more
components being some variable(s). A rule image is
an instantiation of an abstract rule. When we want to
create a rule for multiple people and it has some
component with values that will vary for different
people, we would firstly create an abstract rule with

the component being a variable instead of a value.
We then retrieve the necessary related value from a
profile and replace the variable with a specific value
specifically denoted for the particular person. So,
this rule becomes an image of the abstract rule. With
the introduction of the rule image, we do not have to
explicitly define different rules for different people.
The engine will create an image of an abstract rule
the moment it receives an input from a user’s
profile. Abstract rules are also stored in the rules
repository (refer to Section 3.1). Figure 3 illustrates
how this works.

Figure 3: User profile is used to instantiate abstract rules.

We are using Process Analysis Toolkit (PAT)
(PAT, 2010) to conduct verification of rules, i.e. to
discover conflicting, redundant and non-reachable
rules. This is done based on PAT’s model checking
techniques.

4 PROTOTYPE

We used a Rules Engine implementation termed
JBoss rules (Jboss, 2010), tailored for Java language
to assist us in creating the rule file. This rule file can
be edited with normal text editors or IDEs like
Eclipse or NetBeans. By using DROOLS, we also
have the ability to use Domain Specific Language
(DSL) to simplify our rules for end-users to
understand.

The sequence flow of our prototype reasoning
engine starts off with the administrator generating
and obtaining the initial set of rules from the rules
repository. If there are occasions where specific new
rules need to be constructed or present rules need to
be modified, the amendment could be completed by
the administrator. Using a main java program
MainReasoner to read in the rules, the reasoner
would accept user profiles and using the information
from the profile to create rule images, which are
instantiations of the abstract rules. In this way, the
reasoner would be able to personalise particular sets

CONTEXT-AWARE REASONING ENGINE WITH HIGH LEVEL KNOWLEDGE FOR SMART HOME

295

of rules for users according to their profiles. The
modified rule image would then be inserted into the
working memory of the knowledge base.

Figure 4: Sequence diagram for our prototype reasoning
engine with numbered annotations as follows:

1 setRule()
1.1 readRules()

2 sendProfile()
2.1 initialiseUser()
2.2 insertRules()
2.3 setTimer()

3 decode()
4 fireAllRules()

4.1 sendData()

Sensor information in string format would be
transmitted by sensors and received over the XMPP
(XMPP, 2008) stream whenever an event has
occurred. The decoding of the strings would then
provide us with information of events, which would
then be used for comparison with the current
information within the working memory. This
updating process would also allow us to decide
whether the conditions of the rules within the
working memory are fulfilled and if any appropriate
alerts or reminders need to be fired.

A context checker which works as a timer would
constantly check the context at every fixed interval,
detecting if there are any changed states or variables
within the working memory. If the XMPP stream is
silent and there are no events within the fixed
interval, the context checker would then proceed to
check through the rules within the working memory
and decide on any alerts or reminders based on the
fulfilled conditions of rules within the working
memory.

The alerts would be in the form of sending
messages back into the XMPP stream whereby a
separate UI component would then pick up the
message and translate them into verbal reminders to
be communicated to the users involved.

Working together with two other teams
consisting of a sensor team and a UI team, we were
able to present several demonstrations of our
engine’s capabilities to medical personnel and
caregivers. We have generated a few scenarios based
on inputs and feedback from medical institutions
about the current situation regarding elderly and
patient care, so as to allow our scenarios to be as
closely related to real-life situations as possible. The
general feedback obtained from these personnel was
largely positive with the view that this system in
conjunction with our sensors would be suitable for
future clinical trials as the capabilities of the entire
system proved to be useful for nurses or caregivers,
and would also help in reducing their workload
during their shifts.

It was also pointed out that present Ambient
Intelligent systems tend to over-saturate the user
with too many reminders when an incident or user
error has occurred, which we took into consideration
when building our system. Hence, with further
considerable information from medical personnel
and users, we would be able to further fine-tune our
engine to cater to their actual needs and provide a
better service.

5 CONCLUSIONS

In this paper, we have presented our context-aware
reasoning engine for ambient assistive systems. The
engine does not require training as it can start
working with predefined rules in a rule repository.
The engine infers micro-context from minimum
information possible and then uses the micro-context
to refine its rules or generate new rules. It
communicates with sensors in an automated way
that new sensors will be incorporated into the engine
without the need to restart the engine.

A DROOLS version has already been
implemented and demonstrated. Currently, we are
developing a new version of the engine based on
ontology using JENA (JENA, 2010). We plan to
make it OSGi (OSGi, 2010) ready, so other modules
in the ambient assistive system will be able to call
methods implemented in the engine directly. Our
work is also part of an ongoing project on Activity
Monitoring and UI Plasticity for supporting Ageing

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

296

with mild Dementia at Home (AMUPADH)
(Biswas, 2010).

Some of the future works include dealing with
uncertainty from sensors and managing the
reliability of the rule factory when the number of
rules is large.

REFERENCES

Feki, M. A., 2007. An Ontology based Context aware
modelling and reasoning to enhance Human
Environment Interaction. National Institute of
Telecommunication.

Zadeh, L. A., 1996. Fuzzy Sets, Fuzzy Logic, and Fuzzy
Systems: Selected Papers. World Scientific Publishing
Co., Inc.

Krogh A., Brown, M., Mian, I. S., Sjolander K., and
Haussler D., 1994. Hidden Markov models in
computational biology: Applications to protein
modelling. Journal of Molecular Biology.

Dargie, W., 2007. The Role of Probabilistic Schemes in
Multisensor Context-Awareness. In Fifth IEEE
International Conference on Pervasive Computing and
Communications Workshops (PerComW'07).

Ranganathan, A., Al-Muhtadi, J., Campbell, R. H., 2004.
Reasoning about Uncertain Contexts in Pervasive
Computing Environments. In IEEE Pervasive
Computing.

Liu, P., Zhang, J., 2008. A Context-Aware Application
Infrastructure with Reasoning Mechanism Based on
Dempster-Shafer Evidence Theory. In Vehicular
Technology Conference (VTC Spring 2008).

Murphy, K. P., 2002. Dynamic Bayesian Networks:
Representation, Inference and Learning. University of
Carlifornia, Berkeley.

Goh E., Chieng D., Mustapha A. K., Ngeow Y. C., and
Low H. K., 2007. A Context-Aware Architecture for
Smart Space Environment. In International
Conference on Multimedia and Ubiquitous
Engineering.

Hussain S., and Abidi S. S. R., 2007. Ontology Driven
CPG Authoring and Execution via a Semantic Web
Framework. In The 40th Hawaii International
Conference on System Sciences.

Biswas, J., Mokhtari, M., Dong, J. S., Yap, P., 2010. Mild
Dementia at Home – Integrating Activity Monitoring,
User interface plasticity and Scenario verification. In
8th International Conference on Smart Homes and
Health Telematics, (ICOST 2010).

Jboss Rules (Drools 5.1), http://www.jboss.org/
drools/documentation.html (accessed October 2010).

PAT: Process Analysis Toolkit, http://www.comp.nus.edu.
sg/~pat (accessed December 2010).

JENA, Semantic Web Framework for Java,
http://jena.sourceforge.net (accessed December 2010).

Extensible Messaging and Presence Protocol, XMPP,
http://www.e-framework.org/Default.aspx?tabid=708
(accessed December 2010).

Open Services Gateway initiative (OSGi),
http://www.osgi.org/Main/HomePage (accessed
December 2010).

CONTEXT-AWARE REASONING ENGINE WITH HIGH LEVEL KNOWLEDGE FOR SMART HOME

297

