
OVERCAST SKIES
What Cloud Computing Should Be?

Mark Wallis, Frans Henskens and Michael Hannaford
Distributed Computing Research Group, School of Electrical Engineering and Computer Science

University of Newcastle, Callaghan, NSW, Australia

Keywords: Cloud computing, Enterprise service bus, Web engineering, Client computing.

Abstract: From an consumer perspective the Cloud is opaque. Online storage and the rise of web applications are
changing the way users work. There continues though to be no distinction from a user experience point of view
between accessing a Cloud-based application and accessing a web application deployed on a classic server. We
propose a new paradigm for online application development which takes the best from web applications, thick
client applications and the new ”application store” market. This approach expands the cloud to encompass all
resources that belong to a user; be it local client resources or server-farm resources procured using a traditional
cloud model. By implementing these concepts we can bring the benefits of cloud computing directly to the
end user while breaking developers out of the confines of the web browser.

1 INTRODUCTION

From a consumer perspective, the Cloud (Boss et al.,
2007) is opaque. The web browser provides the soli-
tary interface between the user and the application.
Application developers are moving to web application
models to take full advantage of the benefits that cloud
computing provides. This has forced the end user ex-
perience into the web browser where security (Web-
Devout, 2009) and usability continue to be a con-
cern. While technologies such as HTML5 (Coursey,
2009) attempt to address the growing pains of the web
browser, they appear to be destined to encounter early
adoption issues (Krill, 2010).

Thick client applications have a history of provid-
ing stable and secure end-user experiences, but lack
such benefits as rapid deployment and single support
platform. A new trend towards ”application store”
platforms does attempt to address some of the tradi-
tional issues with thick client deployment. In review,
it is obvious that there are benefits from each of these
three deployment styles.

We propose a new paradigm for component-based
software engineering. The paradigm takes advantage
of each of the three historical application deployment
methodologies. A truly component-based system al-
lows us to expand the concept of the cloud to encom-
pass all resources to which a user has access. In turn,
the user experience can break outside of the web br-

owser into process-based user-interface components
while maintaining the benefits of dynamic patching
and ease-of-deployment.

This new global component-based design ad-
dresses some of the published concerns with cloud
computing, which are delaying wide-spread adoption.
We show that issues such as compliance and security
in the cloud can be addressed by designing our appli-
cations in a component fashion based around a global-
scale component service bus.

2 PROBLEM DESCRIPTION

The competition between web application and tradi-
tional thick client applications has largely been de-
cided. The web application is now seen as a viable
deployment methodology that provides many bene-
fits over the traditional thick client approach. While
web applications are thriving, especially in the cloud,
a number of key issues remain;

� Security concerns about user data in the cloud
continue to stifle uptake. Concerns that revolve
around end-user privacy, transparency and com-
pliance are key (Buyya et al., 2009; Newman,
2009).

� The user experience is limited by the virtual en-
vironment provided within the web browser. Web

73Wallis M., Henskens F. and Hannaford M..
OVERCAST SKIES - What Cloud Computing Should Be?.
DOI: 10.5220/0003390900730078
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 73-78
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



Browsers are not able to provide full feature-rich
user interfaces whereas traditional thick client ap-
plications can be implemented using a wide range
of interface features.

� Application development in a cloud environment
is still prone to vendor lock-in issues due to a lack
of common application programming interfaces
(Brandel, 2009)

Issues such as these have led to continued use of
thick client applications. In addition, we are seeing
adoption of a new model revolving around ”Applica-
tion Stores”. These application stores provide a way
for thick clients to be easily deployed and updated
on end-user devices. Unfortunately, each application
store to-date has been limited to a single platform. No
common abstraction has been developed that allows
applications to execute across multiple platforms, dis-
tributed by multiple stores. Application stores present
a move away from large integrated software pack-
ages to smaller, function-specific applications. These
small fat client applications provide service-style, sin-
gle purpose, functionality. Another defining point is
that application stores are generally controlled by the
hardware vendor for the device to which they relate.
It has been proposed that this tight relationship pro-
vides a level of quality control, but often it has been
critized as a way of limiting innovation and control-
ling the user (Kaneshige, 2010).

The three main application development and de-
ployment approaches - web application, thick ap-
plication and application store all have well docu-
mented issues (Kaneshige, 2010; Gilbertson, 2007).
These represent a hindrance to adoption of a single
consolidated approach. We propose a new global
component-based paradigm, which takes the best
from all three models, while addressing key concerns
found in the areas of Web 2.0, user experience and
cloud computing.

3 EXISTING FRAMEWORKS

There are many distributed component-based frame-
works that aim to resolve key points raised in the
above problem description.

The .NET framework and corresponding Azure
(Microsoft, 2009) cloud computing platform present
a component-based environment for code execution.
A key failing with the .NET approach is the lack of
global scale and open protocol. Non .NET compo-
nents must use bridges to access the .NET environ-
ment and transparent migration of components across
WANs is not supported.

Component migration and location transparency
is a feature of the OMG’s CORBA (Object
Management Group, 2004) component technology.
Again, CORBA fails to scale to a global environ-
ment in which objects housed in multiple virtual
clouds discover/locate each other and exchange mes-
sages. Many technologies and concepts from within
CORBA have been leveraged in our new proposed
framework.

Web Services and the traditional Service-
Orientated Architectures (Bell, 2008) approaches
also address issues relevant to this paper. Web
Services rely on DNS names for transparency and
component locality functions are restricted to discov-
ery services and ill-defined service specifications.

The web browser itself can be viewed as a dis-
tributed execution platform, especially due to recent
developments in web browser ’plugin’ and ’exten-
sion’ technology. Enhancements to the web browser
model to support a lower-level of component exe-
cution have been suggested (Henskens and Ashton,
2007) and may provide a stepping stone for a com-
plete component-based solution.

In Section 4 we present a truly global component-
based architecture, which builds on lessons learnt
from the above technologies.

4 COMPONENT-BASED
ARCHITECTURE

Component-based software engineering is not a new
concept. Component-based systems from a de-
sign perspective are commonly compared to Object-
Oriented approaches (Szyperski, 1997). The key
difference is that each component retains its own
execution thread within the system. By taking a
component-based approach to application develop-
ment we can clearly define each application as a set
of components. These components do not need to
all execute within the one run time environment. The
application developer may define one group of com-
ponents as server-components and have them execute
within a traditional remote cloud environment. An-
other group may be client-components that execute
on end-user devices, outside of a sandbox such as the
web browser. Some components are defined as data
storage components and are in charge of persisting ap-
plication information. There is no need for all appli-
cation data to be stored by a single component using
this approach. For example, the design allows a user
to instantiate different storage components for private
and public data.

Such a component-based system requires technol-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

74



ogy that allows components to locate and commu-
nicate with each other. While technologies such as
CORBA and SOA address some of these require-
ments, no existing system can scale to a global model.
The quest for a global model leads us to Cloud Com-
puting.

4.1 Cloud Computing

Currently, the Cloud encompasses processing and
storage resources within one or more data centres.
The Cloud is opaque to the end-user with the inter-
nal resources being hidden. Taking this traditional
cloud approach excludes incorporation of end-user re-
sources. Despite this, there are many benefits that the
Cloud can provide. Dynamic resource scaling, rapid
deployment and abstraction of resources are all key
to a global deployment model. Bringing together a
component-based design with the inclusion of client
based resources within a cloud environment provides
a powerful, global approach to application develop-
ment.

A key aspect of this expanded cloud concept re-
lates to the end-user’s perspective of the system. Cur-
rently, any processing or data storage that occurs on
the local PC is seen as being ’my data’. When mov-
ing to a cloud computing based model this distinction
is blurred as the end-user is seen as giving their data
and processing away to a 3rd party system. This rep-
resents a loss of control, transparency and trust in the
overall system. Applications in the cloud, and in Web
2.0 in general, are also tailored to suit the general user
base. Traditional thick client applications, in contrast,
can be configured for that specific end-user.

By expanding the boundaries of the cloud (Wal-
lis et al., 2010b) to encompass all resources available
to the user we can extend deployment of the applica-
tion components to include client devices and work-
stations. This creates a ’virtual cloud’, for each user,
which surrounds all resources that the user can ac-
cess - be they local computing resources or remote
server resources. Users essentially become part of the
cloud with full control over where data is stored and
processing takes place. Specific components of ap-
plications can be tailored and even replaced to suit
end-user specific needs. Each component has its own
execution thread, which ensures that the end-user sees
the executing application as ’my application’, as com-
pared to a multi-tenant shared instance.

To bring this concept to the end-user requires
a new component-based system that can extend the
boundaries of the cloud and give processing and con-
trol back to the end-user.

4.2 The New Paradigm

Figure 1 shows the current model of cloud computing
in which the user and their workstation/device is ex-
ternal to the cloud. Notice that the role of the worksta-
tion/device in this model is as an input/output device
only. Figure 2 depicts the enhanced model in which
the users’ resources are brought into the cloud, allow-
ing components of applications to execute across all
available resources.

Figure 1: Existing Cloud Computing Model.

Figure 2: Expanded Cloud Concept.

Application developers can release updates at a
component level, and share versioned components
between applications. Components can be listed as
mandatory and pre-loaded onto client devices when
an application is purchased. These techniques allow
for an application store approach to deployment while
retaining the openness of a traditional thick client
platform.

At a high-level, the following key advances can be
expected for a global component-based model:

OVERCAST SKIES - What Cloud Computing Should Be?

75



� Local data storage of sensitive data while retain-
ing web application access to the data for process-
ing.

� Component level application patching which will
allow application developers to push out updated
code in a distributed manner, retaining many of
the deployment benefits found with existing web
applications.

� Distributed execution will allow unused resources
in a user’s local environment to be consumed by
processor-intensive and storage-intensive compo-
nents.

� Component mobility will allow users to move
components from system to system as required.

� User interaction to the application is abstracted as
a graphical user interface (GUI) component and
is deployed into the system in the same manner as
other application components.

� Existing technology such as web browsers can be
wrapped in component shells and executed within
the new web platform environment providing a
large amount of reuse of existing technology.

5 INTER-COMPONENT
COMMUNICATION

To provide a global communication backbone for
these components an extension to the classic enter-
prise service bus is required. A hierarchical de-
ployment of multiple buses will allow components
in LANs to communicate with a single bus, while
buses can communicate in a hierarchical fashion to
pass inter-component messages across WANs and in-
ternets. This model allows inter-cloud communica-
tion and treats each cloud as a logical LAN in a global
internet. A service bus also facilitates inter-language
and inter-platform communication. This allows com-
ponents within an application to be developed using
distinct languages. For instance, the developer may
decide to implement a user interface component in
native C++/OpenGL while implementing data storage
using J2EE. The service bus will handle the commu-
nication between those components and provide any
required data transformations.

A service bus architecture also allows for com-
ponent mobility. Combined with abstraction on the
run time environment, this allows for components to
migrate from one processing resource to another in
a transparent fashion without losing connectivity to
other components within the application. It is fore-
seeable that user-interface components could migrate

from device to device without losing state or connec-
tivity to the system.

Security is implemented at the service bus layer,
inspecting all messages between components. Inter-
cloud communication also occurs through publish ser-
vice bus endpoints and as such allows the bus to val-
idate all external requests. Public-key cryptography
and existing trust-relationships have be leveraged to
provide request signing and validation functions.

Client-side bi-directional connectivity will be re-
quired and hence provisions have to be made to ad-
dress such end-user technology blockers as NAPT.
Previous research (Wallis et al., 2007) provides a dy-
namic technique for addressing such issues in a IPv4
setting. The introduction of IPv6 (Deering and Hin-
den, 1998) will also assist in addressing this issue due
to the removal of NAT and translation layers.

6 DATA STORAGE

A key focus of this research is data storage within
the web/cloud environment. Previous research (Wal-
lis et al., 2010c; Wallis et al., 2010a) has presented
a solution to the issues surrounding data duplication,
data freshness and data ownership online. The more
data stored by web applications the greater these con-
cerns become. By making data storage a resource
within each user’s virtual cloud we can move the onus
of data storage away from the application and back to
the data owner.

Our previous research presents a model for data
storage which has the end-user being responsible for
the storage of their own personal information. Web
applications can broker access to this data and present
it to 3rd parties in a transparent fashion using au-
thentication tokens based on protocols such as SAML
(OASIS, 2007). Figure 3 depicts this approach.

Taking this approach to a component-based sys-
tem allows these data storage services to become
components addressed within each user’s virtual
cloud. High-risk information such as date of birth and
credit card numbers can be stored on private data stor-
age services managed directly by the end-user, while
public information such as photo libraries and blog
entries can be stored on less-secure infrastructure. By
connecting these data storage services to a common
communication bus it allows each service to be ac-
cessed transparently by any services requiring access
to this information. Requests from 3rd party com-
ponents outside of the user’s domain (such as a mer-
chant requesting access to a credit card number) can
be tightly controlled and validated by the service bus
before making it to the data storage service for further

CLOSER 2011 - International Conference on Cloud Computing and Services Science

76



validation.

Figure 3: Data Storage Service model.

7 IMPLEMENTATION

To prove the model presented by this new paradigm,
an implementation that focuses on the following key
issues has been created:

� Application design and definition.

� Component deployment, installation and updat-
ing.

� Component locality and mobility.

� Inter-component communication.

A focus has been placed on providing an open API
for the component-based system, which allows cloud
vendors and operating system designers to adopt the
model at a core level. This provides a common infras-
tructure across both local and remote resources and
addresses many of the vendor and technology lockin
issues that continue to stifle cloud adoption.

This proof of concept implementation will be
used to prove the model is providing a step for-
ward beyond what is capable with existing technolo-
gies. A generic set of applications will be devel-
oped across all four application approaches - web ap-
plication, thick application, application-store and the
new global component-based model. Metrics will
then be collected around data transfer, user interface
response and general performance before a feature-
comparison is completed to review non-function re-
quirements such as ease of development and deploy-
ment.

The current implementation is focused on execut-
ing components developed in the Java programming

language. The actual execution environment for the
components is generic as long as the components can
obtain access to the service bus communication back-
bone. The API being developed as part of this re-
search does not limit the application developer to any
specific language or framework as long as the API is
adhered to and communication with the service bus is
possible.

8 CONCLUSIONS AND FUTURE
WORK

This new paradigm continues to be an open project
with a key emphasis being placed on providing an
open API for discussion within the cloud and software
engineering community. The concept of defining an
application as a series of components where those
components can be deployed on a global scale with
high levels of transparency is novel and non-trivial.
This research will provide a platform that addresses
this issue while also providing for future application
development, which does not limit the developer to
the confines of a single runtime environment.

For cloud computing this new approach opens up
the resources of the client for use by the cloud. Clouds
will no longer encompass data centres, but instead,
surround all resources belonging to a single user or
corporation. These virtual clouds can communicate
through well-defined service bus entry points, which
logically firewall one cloud from another.

Open issues such as how to allow the application
developer to define where each component should ex-
ecute need to be addressed. While maximum flexi-
bility is ensured, it is unreasonable to expect the end-
user to be able to direct components to resources in a
micro-managed fashion. Generic application profiles
can address these issues in a fashion that still allows
power-users full control of their resources.

Adoption of the API being developed as part of
this work can be used to help facilitate inter-cloud
communication and break the user away from a web-
browser based experience. Operating Systems have
been providing rich user experiences for years at a
native level without an abstraction such as the web
browser. The presented technology allows for native
execution of user interfaces while retaining all of the
benefits of a dynamic web application. By moving out
of the web browser to a component-based model we
can help address some of the security concerns raised
in the web browser space which have been caused by
the rapid evolution of the browser far beyond its orig-
inal intention.

OVERCAST SKIES - What Cloud Computing Should Be?

77



REFERENCES

Bell, M. (2008). Introduction to Service-Oriented Mod-
eling, Service-Oriented Modeling: Service Analysis,
Design, and Architecture. Wiley and Sons.

Boss, G., Malladi, P., Quan, D., Legregni, L.,
and Hall, H. (2007). Cloud computing.
http://download.boulder.ibm.com/ibmdl/pub/software
/dw/wes/hipods/Cloud computing wp final 8Oct.
pdf.

Brandel, M. (2009). The trouble with cloud: Vendor lock-
in. CIO.com.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Com-
puter Systems, 25(6):599 – 616.

Coursey, D. (2009). Html5 could be the os killer. PCWorld
Business Centre.

Deering, S. and Hinden, R. (1998). Rfc 2460 - internet pro-
tocol, version 6. Technical report, Network Working
Group.

Gilbertson, S. (2007). Jakob nielsen on web 2.0: ”glossy,
but useless”. Wired Magazine.

Henskens, F. A. and Ashton, M. G. (2007). Graph-based
optimistic transaction management. Journal of Object
Technology, 6(6):131–148.

Kaneshige, T. (2010). Apple iphone kill switch: Can cios
trust apple ? cio.com.

Krill, P. (2010). W3c: Hold off on deployment html5 in
websites. InfoWorld.

Microsoft (2009). Microsoft azure. http://www.microsoft.
com/windowsazure/.

Newman, H. (2009). Why cloud storage use could be lim-
ited in enterprises. Enterprise Storage Forum.

OASIS (2007). Security assertion markup language (saml)
v2.0 technical overview. Technical report, Working
Group.

Object Management Group (2004). Common Object Re-
quest Broker Architecture: Core Specification.

Szyperski, C. (1997). Component Software: Beyond
Object-Oriented Programming. Addison-Wesley Pro-
fessional.

Wallis, M., Henskens, F. A., and Hannaford, M. R. (2007).
A system for robust peer-to-peer communication with
dynamic protocol selection. The 8th International
Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT).

Wallis, M., Henskens, F. A., and Hannaford, M. R. (2010a).
A distributed content storage model for web appli-
cations. In The Second International Conference on
Evolving Internet (INTERNET-2010).

Wallis, M., Henskens, F. A., and Hannaford, M. R. (2010b).
Expanding the cloud: A component-based archi-
tecture to application deployment on the internet.
In IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid).

Wallis, M., Henskens, F. A., and Hannaford, M. R. (2010c).
Publish/subscribe model for personal data on the in-
ternet. In 6th International Conference on Web In-
formation Systems and Technologies (WEBIST-2010).
INSTICC.

WebDevout (2009). Web browser security statistics,
http://www.webdevout.net/browser-security. WebDe-
vout.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

78


