
A MULTI-LEVEL ARCHITECTURE FOR COLLECTING 
AND MANAGING MONITORING INFORMATION 

IN CLOUD ENVIRONMENTS 

Gregory Katsaros, Georgina Gallizo, Roland Kübert, Tinghe Wang 
HLRS, Stuttgart, Germany 

J. Oriol Fitó 
Barcelona Supercomputing Center (BSC), Barcelona, Spain 

Daniel Henriksson 
Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden 

Keywords: Cloud computing, Monitoring, Information management, Energy efficiency monitoring. 

Abstract: While the Cloud computing paradigm is maturing and gaining wide acceptance, topics like Quality of 
Service assurance and resource monitoring will remain active fields of investigation and research. In this 
paper, we identify characteristics of the monitoring infrastructure in Cloud environments and we present a 
new architectural approach. The proposed mechanism is spanning across different levels of the 
infrastructure, providing monitoring data from the application, virtual and physical infrastructure as well as 
energy efficiency related parameters. Apart from the collection mechanism, we present a monitoring 
management and storage framework which lies above the infrastructure layer. By exploiting open source 
APIs combined with custom components we have come up with a generic yet efficient solution, applicable 
to public, private and hybrid Cloud scenarios.  

1 INTRODUCTION 

The emergence of the Cloud Computing paradigms 
of Software as a Service (SaaS), Platform as a 
Service (PaaS) and Infrastructure as a Service (IaaS) 
along with the actual appearance of providers for 
such services (Amazon, Google, VMware etc.), has 
lifted the topic of monitoring resources, services and 
applications into a new level. The definition and 
design of computer system monitoring is definitely 
not a new topic. Early back in the 70s there have 
been initiatives regarding monitoring in the frame of 
controlling cost and improving performance of 
computing (Carlson, 1972). With the introduction of 
new architectural approaches, new technologies and 
different business models a brand new market place 
has been created. In order for this market to be 
prosperous and receive the acceptance of the 
consumers, the Quality of Service (QoS) of the 

Cloud infrastructure as well as of the provided 
service must be ensured and effectively monitored 
(Menychtas, 2009) (Ferretti, 2010). The use of 
virtualization technologies, the distribution of the 
infrastructure, the scalability of the applications and 
the energy consumption metrics are just a few 
challenges to be overcome towards the development 
of an effective Monitoring system in the Cloud. This 
paper presents a holistic Monitoring Infrastructure 
solution which, through a multi-level architecture, 
aims to address the abovementioned challenges.  

2 PROBLEM DEFINITION 
AND RELEVANT INITIAVES 

Even though monitoring of computational resources 
is a relatively old topic, the definition of a 
mechanism for Cloud Computing is a complex 

232
Katsaros G., Galizo G., Kübert R., Wang T., Oriol Fitó J. and Henriksson D. (2011).
A MULTI-LEVEL ARCHITECTURE FOR COLLECTING AND MANAGING MONITORING INFORMATION IN CLOUD ENVIRONMENTS.
In Proceedings of the 1st International Conference on Cloud Computing and Services Science, pages 232-239
DOI: 10.5220/0003388602320239
Copyright c
 SciTePress



 

problem due to the immaturity of the Cloud 
paradigm and the lack of standards for all those new 
service models (SaaS, PaaS, IaaS etc.). To this end, 
there are several issues raised from the realization of 
this new architectural and business model. The 
abstraction of the physical infrastructure and the 
virtualization of the execution environment are 
fulfilling the End User requirements as much as the 
Provider’s business model. On the other hand, the 
introduction of those technologies and concepts not 
only distinguish the management of each level 
(infrastructure, services, platform etc.) but also 
isolates the information generated from those. In the 
use case of a public Cloud (e.g. Amazon WS), the 
End User does not have access to the monitoring 
information of the infrastructure and the 
Infrastructure Provider does not have access to the 
application monitoring data. Some may not see this 
as a deficiency, but rather the actual objective of this 
abstraction introduced by the Cloud. Even if this 
statement is absolutely right, the metrics that should 
be monitored and could indicate the performance of 
the application must be revised. An example is that 
resource utilization is no longer the absolute and 
reliable indicator and we should start focusing on 
different values such as the response time of the 
application. From another perspective, when 
realizing more sophisticated scenarios including 
private Clouds and Cloud federations (Figure 1) the 
requirements of the monitoring infrastructure are 
more complex. The existence of different type of 
information providers (service, virtual environment, 
physical infrastructure, energy efficiency etc.) points 
out that a centralized aggregation and management 
of the data could really become more effective. The 
extraction of cross-layer information could allow 
multi-disciplinary evaluation of those data (risk, 
cost, energy, trust) through certain tools/services. 
Currently, there are various APIs and solutions 
available managing each layer separately but not a 
holistic approach that could serve different types of 
monitoring information and use case scenarios. To 
this end, the introduction of a powerful monitoring 
management framework could allow certain 
providers to offer Monitoring as a Service (MaaS). 
In such scenario, a provider could expose services 
through which users could have access to the 
monitoring information either raw or post-processed.  

There are some initiatives that try to cope with 
the new requirements of Monitoring in Cloud 
environments. The RESERVOIR project 
(Rochwerger et. al., 2009) is an EC-funded research 
initiative aiming at the development of a Cloud- 
enabled ICT infrastructure that can offer services as 

 
Figure 1: Cloud federation. 

utilities. Within the context of the project the Lattice 
framework (Clayman, 2010) has been developed and 
released. Lattice is an open source, Java based, 
monitoring API, which offers monitoring 
capabilities for resources and services on virtualized 
environments. It offers a quite big API but is up to 
the developer’s effort to build the management 
framework. In the same direction, EMOTIVE Cloud 
middleware (EMOTIVE, 2009) provides 
management and monitoring of virtualized 
resources. The focus of EMOTIVE is mainly on the 
creation and management of virtual machines (VMs) 
but they offer also features for VM monitoring 
through the Libvirt API (Libvirt, 2005). Finally there 
have been other research initiatives such as the 
IRMOS project (IRMOS, 2008) that spent effort on 
the development of a Service Oriented monitoring 
framework applicable in virtual environments 
(Katsaros 2010). The monitoring solution provided 
by IRMOS is twofold: collecting low-level 
information from the infrastructure as well as high-
level data from the application execution. Since the 
IRMOS monitoring mechanism is dependent on the 
Globus Toolkit framework (Foster, 2006), which is a 
Java based API, a significant load into VMs has 
been introduced and certain limitations regarding the 
interoperability of the system as a whole. 

In this paper we present an architecture for 
Monitoring that focuses on the aggregation of data 
from multiple Information Providers, management 
of that data and a Data Model designed for flexible 
post-processing of that monitoring data. The goal is 
to provide a holistic approach that will introduce an 
abstraction layer on top of the various sources of 
information of the Cloud paradigm and effectively 
store, manage and offer that data to other 
components or actors of the framework. In addition, 
we dedicate some effort to defining the metrics and 
mechanisms for measuring the energy efficiency of 
the physical infrastructure. We utilize knowledge 

A MULTI-LEVEL ARCHITECTURE FOR COLLECTING AND MANAGING MONITORING INFORMATION IN
CLOUD ENVIRONMENTS

233



 

and experience from other projects (GAMES, 2009) 
and integrated into our approach components and 
principles that will allow us to extend the sources of 
monitoring information gathered. By acquiring such 
a variety of information regarding the same 
execution, the assessment tools that can be situated 
on top of the monitoring framework can operate in 
an effective way orchestrating the deployment and 
utilization of resources. In the following sections, we 
elaborate on the structure and the capabilities of the 
designed system, while in the end we summarize the 
added value of it along with some future extensions. 

3 PROPOSED APPROACH 

3.1 Monitoring Infrastructure Overall 
Architecture  

The proposed Monitoring Infrastructure architecture 
is presented in Figure 2. Two different layers can be 
distinguished: 

• Information Providers: it comprises the 
different sources where monitoring data is 
collected from, as well as the components in 
charge of collecting them (known as 
“Collectors”). The Monitoring Infrastructure is 
designed in a way that this layer is scalable, 
allowing the incorporation of additional 
sources, through the corresponding collectors.  

• Managing / Storing of the data: this layer 
includes those components in charge of 
managing the data collected from the 
monitoring information providers and storing 
them in an aggregated database.  

 
Figure 2: Architecture of Monitoring Infrastructure. 

A more detailed description of the functionality 
of each component of the infrastructure is described 
in the following sections. 
 
 
 
 

3.2. Monitoring Information Providers  

3.2.1 Application Level Monitoring 
Collector  

This component collects high-level monitoring 
information from the applications or services that are 
being executed within the virtual environment.  

The challenge is to extract data from inside VMs 
and to make this available to the hosting site, 
preferably without introducing tight dependencies 
between the software in the VM and the surrounding 
environments. This is a common problem for 
monitoring of application or service based metrics in 
all VMs that is not yet well studied. 

The subcomponents responsible for reading and 
publishing the monitoring data are sometimes 
referred to as 'probes'. In, for example, Lattice, there 
is normally a separate probe for each value that is to 
be measured. Probes measuring some value (for 
example current number of users using an Apache 
Web server) can be reused in several different 
services without modification. The alternative is to 
have a custom data collector for each type of 
service, managing all interesting values from a 
single virtual machine. 

A common data model for application or service 
data has to be shared between the probes themselves 
(producing the data) and the higher-level 
components consuming the data, but the collector 
software should be kept agnostic to the contents of 
the application data. 

Regardless of how the data passes through the 
barriers of the virtual machine, an external data 
collector component is responsible for making the 
data available to the upper level of the monitoring 
infrastructure. This may be done either in a pushing 
manner, notifying the monitoring system when new 
data is available, or in a pulling manner, exposing an 
interface which allows pulling data on demand. The 
Aggregator component of the Monitoring 
Infrastructure (c.f. section 3.3.2) will generally 
access the data via the pulling interface, on demand, 
in order to avoid it to be overloaded by data being 
pushed. 

The diagram in Figure 3 shows a general 
scenario for service-level monitoring. Data is 
collected inside the virtual machine by some 
component(s), which are either small probes or 
fewer but more potent components. The collected 
data is then externalized and forwarded to an 
external component that is responsible for making 
the data available to the common monitoring system 
(Aggregator). 

CLOSER 2011 - International Conference on Cloud Computing and Services Science

234



 

3.2.2 Virtual IT-Infrastructure Monitoring 
Collector 

Mainly, this component collects virtual IT-
infrastructure monitoring data (e.g. VM parameters). 
All this monitoring information is returned by the 
system in a XML document, similar to the outputs of 
the Ganglia Monitoring System (Ganglia, 2000). 
Additionally, we support getting monitoring 
information from different virtualization 
environments through the use of the Libvirt 
virtualization API. 

In particular, the set of virtual IT-infrastructure 
parameters collected by this component are 
described in the following table: 

Table 1: Virtual IT-Infrastructure Parameters. 

Parameter Description Data type Example 

State The VM’s state String Running 

IP address IP address of a VM String x.y.z.w 

Virtual 

domain 

The virtual domain where a 

VM is running 
String dom0 

Architecture 
The system’s architecture of 

a VM 
String x86 

# CPUs 
The number of CPUs 

available on the VM 
Integer 4 

CPUs’ speed 
The speed of the CPUs (in 

MHz) 
Integer 3000 MHz 

CPU allocated 

The CPU capacity 

(i.e. #CPUs*100) 

dynamically assigned to a 

VM 

Integer 300 

CPU usage 
The current usage of CPU 

(in %) 
Float 0.25 

Memory 

The amount of memory (in 

megabytes) allocated to a 

VM 

Integer 1024 MB 

Memory 

Usage 

The current usage of 

memory (in %) 
Float 0.118 

Bandwidth 
The bandwidth of a VM (in 

Kbytes/sec) 
Integer 

10 

Kbytes/sec 

Disk space 

The amount of disk space 

(in megabytes) available in 

a given VM 

Integer 2048 MB 

3.2.3 Physical IT-infrastructure Monitoring 
Collector 

This component collects monitoring data regarding 
the physical infrastructure. In particular to this kind 
of monitoring information, we are able to obtain the 
measurements as shown in Table 2. 
 

 
Figure 3: Architecture diagram for Application Level 
Monitoring Collector. 

Table 2: Physical IT-Infrastructure Parameters. 

Parameter Description Data type Example 

IP address IP address of a physical 
node String x.y.z.w 

Architecture The node’s architecture String Amd64 

CPUs The number of CPUs 
of a node Integer 8 

CPUs’ 
speed 

The speed of the CPUs 
(in MHz) Integer 3000 MHz 

Memory 
The amount of memory 

(in megabytes) of a 
given node 

Integer 8192 MB 

Free 
Memory 

The amount of free 
memory (in 
megabytes) 

Integer 2048 MB 

Bandwidth 
The bandwidth 

available on the node 
(in Kbytes/sec) 

Integer 10 Kbytes/sec 

Disk space 
The amount of disk 

space (in megabytes) 
available in a node 

Integer 1000000 MB 

The implementation of this Monitoring Collector 
is based on the Nagios tool. By setting specific 
service checks we are able to obtain the presented 
parameters with a certain time interval. In order to 
forward the data to the next layer (Aggregator) we 
extended the NDOUtils plugin (NDOUtils, 2006) 
and created a Push interface. Our custom plugin 
sends an XML structure to the Aggregator every 
time that a service check is being executed. Figure 4 
shows the structure and the operation of the 
collector: 

A MULTI-LEVEL ARCHITECTURE FOR COLLECTING AND MANAGING MONITORING INFORMATION IN
CLOUD ENVIRONMENTS

235



 

 
Figure 4: Physical Infrastructure Monitoring Collector. 

3.2.4 Energy Efficiency Monitoring 
Collector 

Current methodologies for measuring and allocating 
energy and carbon to IT are still very immature. In 
order to get meaningful information, energy use and 
associated carbon emissions must be measured in 
association with tasks, resources, usage and other 
workload parameters in the IT infrastructure. 
Furthermore, they may vary from data center to data 
center and other factors, such as the place, time of 
day, measurement point, etc.  

In the proposed approach we are using the 
methodology of the GAMES project as a starting 
point (D2.1 GAMES, 2010). In this context, the 
monitoring and assessment of energy efficiency is 
performed through different metrics, known as Key 
Performance Indicators (KPIs) and Green 
Performance Indicators (GPIs). Those indicators are 
derived from variables that are measured and 
monitored in the system at different levels of the 
data center:  

• Facilities (energy consumption of the 
cooling / heating system, energy consumed by 
the UPS, etc.) 

• Single server (energy consumption by a single 
compute node, CPU speed of a compute node, 
etc.) 

• Cluster server (aggregated information, as 
average and absolute values, of all single servers 
that are part of the cluster) 

• Storage system (e.g. energy consumption, 
workload, IO/second for different kinds of 
read/write operations) 

• Virtual systems associated with concrete services 
deployed in the cloud infrastructure, such as 
virtual machines, virtual storage and application 
containers (power consumption per virtual 
machine, percentage of virtual machine used by a 
service/application, number of processes running 
per application, etc.) 

The abovementioned variables (KPIs and GPIs) 
depend not only on parameters related purely to 
energy consumption, but also on other information 
collected by different Monitoring Collectors, 
depending on the source level they are coming from 
(Physical IT-Infrastructure, Virtual IT-Infrastructure, 
Application/Service Level, Energy Efficiency). The 
Energy Efficiency Monitoring Collector (which is 
the focus of this concrete section) is in charge of 
collecting only those parameters which are directly 
related to energy consumption or carbon emissions, 
and that are not collected by other collectors in the 
infrastructure. This includes variables such as 
temperature data, which is directly affecting others 
like energy consumed by cooling systems. Once the 
single measurements are collected, the KPIs and 
GPIs necessary for energy efficiency assessment are 
calculated at the Aggregator level (c.f. section 
3.3.2). 

We adopted the classification of GPIs and KPIs 
as described in GAMES project (D2.1 GAMES, 
2010) which defines: IT Resource Usage GPIs, 
Application Lifecycle KPIs, Energy Impact GPIs, 
and Organizational Factors GPIs. The most relevant 
ones are included in Table 3.  

Table 3: Energy Efficiency Parameters: GPIs and KPIs 
(c.f. Appendix section). 

IT Resource Usage GPIs Application 
Lifecycle KPIs 

CPU Usage  
Memory Usage  
I/O Usage  
Storage Usage  
Corporate Average Data centre Efficiency 
(CADE)  
Data Centre Density (KWatts / m3)  
Space, Watts and Performance (SWaP) 
Deployed Hardware Utilization Ratio (DH-UR) 
Deployed Hardware Utilization Efficiency (DH-
UE) 

Response Time 
Process 
Time/Job 
Duration 
Throughput 
Availability 
Rate 
Reliability 
Recoverability 
Application 
Cost  

Energy Impact GPIs Organizational 
Factors GPIs 

Application Performance Indicators (e.g. 
Transactions/KWh; FLOPS/KWh)  
Power Usage Efectiveness (PUE) 
Data Center Infrastructure Efficiency (DCiE)  
Compute Power Efficiency (CPE)  
Data Centre Energy Productivity (DCEP) 
Data Centre Performance Efficiency (DCPE) 
Coefficient of Performance of the Ensemble 
(COP Ensemble) 
CO2 Emission  
Other energy efficiency indicators (e.g. Processor 
Performance (MHz/Watt); Data transferred/Watt; 
Storage Capacity/Watt; I/O transactions/Watt) 

Compliance 
Indicator 
(compliance 
with 
government 
regulations) 
Infrastructural 
Costs  
Carbon Credit 
Return of Green 
Investments 
(RoGI) 

CLOSER 2011 - International Conference on Cloud Computing and Services Science

236



 

3.3 Managing / Storing the Data 

3.3.1 Monitoring Manager 

The Monitoring Manager component serves as the 
orchestrator of the whole Monitoring process. The 
role of this component is actually twofold and 
includes the capabilities of: controlling the 
Monitoring process (start/stop actions) and 
providing the necessary interfaces towards other 
internal components of the Cloud infrastructure (e.g. 
Monitoring Evaluators and assessment tools, c.f. 
section 4) as well as to other external consumers of 
monitoring information (e.g. a Graphical User 
Interface etc.). The importance of this component is 
very high while it realizes the gateway for the 
monitoring information to the rest of the Cloud 
framework.  
Three major actors have been identified as the 
consumers of the interfaces exposed by the 
Monitoring Manager (Figure 5): 

• The Service Provider (SP) will be controlling 
the monitoring process by using the respective 
interfaces (Enable, Disable etc.).  

• The assessment components of the Cloud 
Infrastructure (Cost Assessment, Risk 
Assessment, Energy Assessment tools etc.) 
will interact with the Monitoring Manager in 
order to receive Monitoring information from 
the DB regarding some past executions.  

• Finally, the external components that want to 
have access to the data stored in the database, 
such as a GUI, will have to interact with the 
Manager components as well.  

 
Figure 5: Monitoring Manager Use Cases. 

 

3.3.2 Aggregator 

As it can be understood from the name, the role of 
this component is to collect, aggregate and store the 
monitoring information coming from various 
Information Providers. The challenge but at the 
same time the objective when implementing that 
component is the development of a lightweight 
mechanism that effectively combines information 
that comes from difference levels (from high-level 
application monitoring to low-level energy related 
data). A list of the capabilities of the Aggregator is 
presented below: 

• Performance oriented implementation: 
efficient coding that allows the aggregation 
process to be completed almost in real-time. 

• Twofold operation: the component exposes a 
REST interface (Fielding et. al, 2002) and 
through a POST method any Information 
Provider can submit a dataset. In addition to 
that Push implementation, the Aggregator can 
acquire data with a Pull mechanism. That 
operation is realized through a configurable 
file that includes the list of available 
Information Providers. The type of those 
providers and its respective collector (Nagios, 
Ganglia, Globus etc.), the access path (URL, 
MySQL, path etc.) as well as the time interval 
of the data collection action will be defined in 
that file with a certain syntax. The Aggregator 
will then parse that file and create a custom 
thread for each case in order to pull the 
monitoring data. 

• Storing the information to a database: the 
outcomes of the aggregation are various 
records, towards a database which follows the 
schema of the designed data model (c.f. 
section 3.4). The specific schema supports the 
consistency of the collected data and allows 
the effective extraction of information for 
post-processing.  

• Buffer of records: the Aggregator is able to 
store temporary into a resource the last 
aggregated record from the received data. An 
interface for accessing those records is 
provided in order for the assessment tools, and 
other components of the framework to have 
access to the monitoring information in real-
time (without accessing the database). 

In Figure 6 we present the interfaces that the 
Aggregator component exposes and the interaction 
with the database: 

A MULTI-LEVEL ARCHITECTURE FOR COLLECTING AND MANAGING MONITORING INFORMATION IN
CLOUD ENVIRONMENTS

237



 

 
Figure 6: Interfaces of Aggregator and interaction with 
DB. 

The Aggregator offers two interfaces, one 
towards the collectors (POST resources data), in 
order to receive the monitoring information and 
create related resources/entries to the database, and 
one towards the rest of the framework in order for 
the assessment tools and other components (such as 
a Monitoring Stream interface etc.) to have direct 
access to the last entry. 

3.4 Data Model 

Every monitoring solution for distributed and 
services oriented architectures needs a well defined 
data model in order for the collected information to 
be managed efficiently. In that context, we have 
designed a generic but yet consistent with the 
proposed architecture data model (Figure 7).  

SERVICE-IP

PK,FK1 service_ID

FK2 infrastructure_provider_ID
 virtual_machine_ID

INFRASTRUCTURE_PROVIDER

PK infrastructure_provider_ID

 name
 contact
 details

SERVICE

PK service_ID

 name
 type
 details

MANIFEST

PK manifest_ID

 service_details

MANIFEST_SERVICE

FK1 manifest_ID
FK2 service_ID

SERVICE_PROVIDER

PK service_provider_ID

 name
 contact
 details

SERVICE_PROVIDER_SERVICE

FK1 service_provider_ID
FK2 manifest_ID  

Figure 7: Proposed Data Model. 

The major entities identified are the 
Infrastructure Provider (IP) and the Service Provider 
(SP). The first is obviously the one who offers IaaS 
through his virtual infrastructure over physical hosts. 
The second is interacting with the IP by deploying 
his own services on the virtual machines in order to 
offer SaaS to customers. The Manifest entity 
presented in Figure 7 is actually the definition of a 
service while the Service entity is an instance 
generated from the respective Manifest. As a result, 
there is a one-to-many relationship between the 
Manifest and the Service entities. In addition, each 
SP owns several Manifests from which he can 
instantiate and deploy different services. Finally, 
while any IP can host several service instances we 

have defined the SERVICE-IP relationship in order 
to keep track of the deployments. 

4 FUTURE WORK 

Within our future plans is to populate the framework 
with several evaluation and assessment tools as an 
extra hierarchical level on top of the management 
and storage layer.  

 
Figure 8: Evaluation layer. 

As presented in Figure 8, we have identified a 
number of evaluators starting from Service Level 
Agreement (SLA) and including Trust, Risk, Cost as 
well as Energy Assessment tools. Each one of those 
components will interact with the Monitoring 
Manager in order to acquire the historical data from 
the database but also will communicate with the 
Aggregator directly in order to get the last dataset 
from the buffer and proceed to direct assessing, such 
as SLA violation detection. Overall, the post-
processing of the data and the assessment of the 
monitoring information will allow us to optimize the 
resource utilization, identify the relation of the high-
level service deployment with the low-level energy 
consumption, reduce the related costs, and diminish 
risks and uncertainties when managing Cloud 
environments. Furthermore, the Trust assessment 
tool will assist us on drawing useful conclusions 
regarding the relationships between customers, 
services and their impact on resources.  

5 CONCLUSIONS 

In this paper we investigated briefly the 
requirements of the monitoring infrastructure for 
Cloud-enabled architectures and presented the latest 
initiatives in that direction. We proposed an 
architectural approach that is utilizing several open 
source APIs (Nagios, Libvirt etc.) yet offering an 
efficient, dynamic and scalable monitoring solution. 
The designed mechanism involves monitoring 
information collected from the physical hosts, virtual 
host and applications/services. We have also 

CLOSER 2011 - International Conference on Cloud Computing and Services Science

238



 

considered the collection of data regarding the 
energy efficiency of the infrastructure. The topic of 
monitoring on Service Oriented and Cloud 
architectures will remain a field of active research 
and development while the Cloud paradigm evolves 
from being a trend to become a widely accepted 
computing technology.  

ACKNOWLEDGEMENTS 

This work has been supported by the OPTIMIS 
project (A.J. Ferrer et. al., 2010) and has been partly 
funded by the European Commission’s ICT activity 
of the 7th Framework Programme (FP7-ICT-2009-5) 
under contract number 257115. 

REFERENCES 
Carlson, G. et.al, How to Save Money With Computer 

Monitoring, Proceeding of the ACM Annual 
Conference, ACM Press, Boston MA, USA, 1972  

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, 
K., Llorente, L., Montero, R., Wolfsthal, Y., Elmroth, 
E., Cá́ceres, J., Ben-Yehuda, M., Emmerich, W., and 
Galán, F. The RESERVOIR Model and Architecture 
for Open Federated Cloud Computing, IBM Journal of 
Research and Development, Vol. 53, No. 4. (2009)  

Andreas Menychtas, Dimosthenis Kyriazis, Konstantinos 
Tserpes, Real-time reconfiguration for guaranteeing 
QoS provisioning levels in Grid environments, Future 
Generation Computer Systems, Volume 25, Issue 7, 
July 2009, Pages 779-784, ISSN 0167-739X. 

Ferretti, S.; Ghini, V.; Panzieri, F.; Pellegrini, M.; Turrini, 
E., "QoS–Aware Clouds," Cloud Computing 
(CLOUD), 2010 IEEE 3rd International Conference 
on, vol., no., pp.321-328, 5-10 July 2010 

Clayman, S., Galis, A., Mamatas, L., Monitoring Virtual 
Networks With Lattice, Network Operations and 
Management Symposium Workshops (NOMS 
Wksps), 2010 IEEE/IFIP, pp. 239-246 

EMOTIVE Cloud, Elastic Management of Tasks In 
Virtualized Environments, 2009, http://www.emotive 
cloud.net/ 

Libvirt API, 2005, http://libvirt.org/ 
IRMOS Project, Interactive Realtime Multimedia 

Applications on Service Oriented Infrastructures, 
2008, http://www.irmosproject.eu/ 

Katsaros, G. et. al, A Service Oriented Monitoring 
Framework for soft real-time applications, Service 
Oriented Computing and Applications 2010, Perth, 
Australia 

Foster, I., Globus Toolkit Version 4: Software for Service-
Oriented Systems, IFIP International Conference on 
Network and Parallel Computing, Springer-Verlag 
LNCS 3779, pp 2-13, 2006. 

GAMES Project, Green Active Management of Energy in 
IT Service centres, 2009, http://www.green-
datacenters.eu/ 

Ganglia, 2000, http://ganglia.sourceforge.net/ 
Nagios Monitoring system, 2007, http://www.nagios.org/ 
NDOUtils addon, 2006, http://exchange.nagios.org/ 

directory/Addons/Database-Backends/NDOUtils/details 
D2.1 GAMES, Layered Green Performance Indicators 

Definition, project, June 2010 
Fielding, R., et. al, Principled Design of the Modern Web 

Architecture, ACM Transactions on Internet 
Technology 2002 

A. J. Ferrer, F. Hernandez, J. Tordsson, E. Elmroth, C. 
Zsigri, R. Sirvent, J. Guitart, R.M. Badia, K. 
Djemame, W. Ziegler, T. Dimitrakos, S.K. Nair, G. 
Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia, 
A. Kipp, S. Wesner, M. Corrales, N. Forgo, T. Sharif, 
and C. Sheridan, “OPTIMIS: a holistic approach to 
cloud service provisioning”, First IEEE International 
Conference on Utility and Cloud Computing (UCC 
2010) 

OPTIMIS Project, 2010, http://www.optimis-project.eu/ 

APPENDIX 
CADE = Facility Efficiency (FE) * Asset Efficiency (AE), 
where FE = Facility Energy Efficiency (FEE) * Facility 
Utilization (FU), AE =IT Energy Efficiency (ITE) * IT 
Utilization (ITU) 

SWaP = Performance / (Space * Power Consumption) 
DH-UR = n° servers running live applications / total 

n° servers deployed 
DH-UE = min. n° servers to handle peak load / total 

n° servers deployed 
PUE= Total Facility Power / IT Equipment Power 
DCiE = IT Equipment Power / Total Facility Power 
CPE=DCiE / IT Equipment Utilization 
DCEP = output of data centre (bytes) / total energy for 

data centre (kWh) 
DCPE = effective IT workload / total facility power 
COP Ensemble = Total Heat Dissipation / (Flow 
Work + Thermodynamic Work) of cooling system 

A MULTI-LEVEL ARCHITECTURE FOR COLLECTING AND MANAGING MONITORING INFORMATION IN
CLOUD ENVIRONMENTS

239


